ArcGIS中空间数据统计、插值分析-以克里金插值法为例--胡碧峰解析

合集下载

arcgis插值方法

arcgis插值方法

arcgis插值方法ArcGIS插值方法是一种利用已知的离散点数据来推算未知地点的值的技术。

在地理信息系统中,插值方法被广泛应用于地形分析、环境模拟、资源评估等领域。

本文将介绍几种常用的ArcGIS插值方法,包括反距离加权插值(IDW)、克里金插值(Kriging)、样条插值(Spline)等。

我们来了解一下反距离加权插值(IDW)方法。

IDW方法假设距离越近的点对结果的影响越大,离待插值点越远的点对结果的影响越小。

IDW方法计算待插值点的值时,根据离待插值点的距离和邻域内点的值进行加权平均,得到待插值点的值。

IDW方法的优点是简单易懂,计算速度较快,适用于点密度较大且趋势较明显的情况。

但是IDW方法对异常值敏感,对点密度不均匀的数据拟合效果较差。

克里金插值(Kriging)是一种基于地统计学原理的插值方法。

克里金插值方法假设未知点的值是其周围点值的线性组合,并尽量使残差(即预测值与实际值之差)的方差最小。

根据克里金插值方法的预测模型,可以得到未知点的值。

克里金插值方法考虑了空间相关性,适用于点密度较低、数据不均匀分布的情况。

克里金插值方法的不足之处在于计算复杂度较高,对数据变异性的要求较高,需要根据实际情况选择合适的克里金模型。

除了IDW和克里金插值方法,ArcGIS还提供了样条插值(Spline)方法。

样条插值方法通过拟合一个平滑的曲面来估计未知点的值。

样条插值方法在计算过程中考虑了各个点的权重,能够较好地反映数据的变化趋势。

样条插值方法的优点是对数据分布没有要求,适用于各种数据类型。

但是样条插值方法需要较大的计算量,对数据噪声敏感。

除了上述三种常用的插值方法,ArcGIS还提供了其他一些插值方法,如最近邻插值、自然邻近插值等。

这些方法各有特点,可以根据实际需求选择合适的插值方法。

在使用ArcGIS进行插值分析时,除了选择合适的插值方法,还需要注意数据的质量和分布情况。

数据质量好、点密度均匀的情况下,插值结果会更加准确可靠。

arcgis克里金插值等值线标注

arcgis克里金插值等值线标注

arcgis克里金插值等值线标注(原创实用版)目录1.引言2.ArcGIS 克里金插值的概念和原理3.ArcGIS 克里金插值等值线标注的方法和步骤4.应用实例5.总结正文1.引言ArcGIS 是一款功能强大的地理信息系统软件,它可以帮助用户处理、分析和可视化地理空间数据。

在地理数据分析中,插值是一种常用的方法,它可以根据已知的数据点预测未知区域的地理特征。

克里金插值是一种基于空间变异理论的插值方法,它具有较强的适应性和精确度。

在 ArcGIS 中,可以通过插值工具创建克里金插值图,并通过等值线标注方法对插值结果进行可视化表达。

本篇文章将详细介绍 ArcGIS 克里金插值等值线标注的方法和步骤。

2.ArcGIS 克里金插值的概念和原理克里金插值(Kriging Interpolation)是一种基于空间变异理论的插值方法,它通过对空间数据的变异特征进行建模,预测未知区域的地理特征。

克里金插值的基本原理是:在空间域中,一个点的值受到其邻近点的影响,而邻近点的影响程度与其距离成反比。

因此,可以通过构建空间权重矩阵,计算每个点对预测点的影响程度,从而预测未知区域的值。

3.ArcGIS 克里金插值等值线标注的方法和步骤(1)准备数据:首先需要准备一组地理空间数据,包括需要预测的变量值和空间坐标。

(2)创建克里金插值图:在 ArcGIS 中,使用"Spatial Analyst Tools"工具箱中的"Interpolate"工具创建克里金插值图。

需要设置插值方法、插值参数和输出参数等。

(3)计算等值线:使用"Spatial Analyst Tools"工具箱中的"Calculate Distance"工具计算每个点与其邻近点的距离。

然后,根据插值图和距离信息,使用"Spatial Analyst Tools"工具箱中的"Raster Calculator"工具计算等值线。

ARCGIS插值方法原理

ARCGIS插值方法原理

ARCGIS插值方法原理ArcGIS是一款具备强大的空间分析和地理信息系统功能的软件。

在该软件中,插值方法是一种常用的空间分析工具,用于估计未知位置上的数据值。

ArcGIS提供了多种插值方法,包括克里金插值、反距离插值、样条插值等。

下面将分别介绍这些方法的原理和使用情况。

1.克里金插值方法克里金插值方法是一种基于空间自相关性原理的插值方法,通过对样本点进行空间相关分析,然后根据该分析结果对未知位置进行插值。

克里金插值方法的原理基于克里金理论,即通过计算样本点与未知点之间的空间相关性,来预测未知点的数值。

在ArcGIS中,克里金插值方法有多种变体,如简单克里金、普通克里金、泛克里金等。

2.反距离插值方法反距离插值方法是一种基于距离程度的插值方法,其原理是认为未知位置的值与其周围已知值的距离成反比。

因此,距离已知点越近的未知位置,其值越可能与该已知点相似。

在ArcGIS中,反距离插值方法提供了多种参数选项,如权重指数、半径等,用户可以根据具体应用场景进行选择和调整。

3.样条插值方法样条插值方法是一种基于数学函数模型的插值方法,在ArcGIS中也被称为Kriging方法。

该方法将空间表面视为一个连续的函数,通过对样本点进行函数拟合,来推断未知位置的值。

样条插值方法可分为二维样条插值和三维样条插值,具体使用哪种方法取决于输入样本数据的空间特征。

ArcGIS还提供了其他插值方法,如最近邻插值、多项式插值等。

这些方法根据数据特性和需求的不同,可以选择相应的插值方法来推断未知位置的值。

在插值过程中,用户可以调整一些参数选项,如网格大小、半径等,以获得更准确的插值结果。

此外,用户还可以通过制作插值模型和验证结果的方式,进一步优化插值的效果。

总结起来,ArcGIS提供了多种插值方法,可以根据实际情况选择适合的方法。

这些方法的原理基于空间自相关性、距离程度和数学函数模型等,利用已知点的信息来推测未知位置的值。

插值方法在地理信息系统中有着广泛的应用,可以用于生成地图、估算地下水位、预测空气质量等。

ArcGIS 地统计克里金插值

ArcGIS 地统计克里金插值

ArcGIS 地统计克里金插值1.1 地统计扩ArcGIS 地统在软件中轻易地统计学的功(1)ESDA:(2)表面预(3)模型检地统计学起源的克里格方法方法是最主要1.2 表面预测ArcGIS 地统程。

一个完整的空现数据的特点Data 菜单及选择和预测模Geostatistic部分,一部分下面将按上述(注:[1]文章量样本),整本理论一般未准名称的也未我们下面的任扩展模块简介统计分析模块在易实现。

体现了功能在地统计分:探索性空间数测(模拟)和验与对比。

源于克里格。

当法。

虽然空间数要、最常用的空测主要过程统计扩展模块的空间数据分析过点,比如是否为其下级菜单完模型的选择;最cal Wizard 菜分作为训练样本述表面预测过程章示例中所使用整个过程均使用未进行解释,可未进行解释。

)任务是根据测量ArcGIS 打印20在地统计学与 G了以人为本、可分析模块的都能数据分析,即数误差建模;当时他用此法预数据分析还有其空间分析方法,的菜单非常简单过程,或者说表为正态分布、有成);然后选最后检验模型是菜单完成)。

1/ 12C本,一部分作为程进行叙述。

用的数据为 Ar用此数据;[2]文可查阅相关地统量所得到的某地地统计学习印 | 推荐 | 评007-8-1 09: GIS 之间架起了可视化发展的趋能实现,包括:数据检查;预测矿产分布,其他方法,如 I下面也以此法单,如下所示,表面预测模型,有没有趋势效应择合适的模型是否合理或几种Create Subse为检验样本。

rcGIS 扩展模文章以操作方统计理论资料;地臭氧浓度数据习指南( 一)评分 11 了一座桥梁。

使趋势。

后来经过别人IDW(反距离加法为主进行。

但由此却可以一般为。

拿到应、各向异性等进行表面预测种模型进行对比ets菜单的作块中所带的学法介绍为主,操作中所用到据进行全区的臭使得复杂的地统改进修改发展加权插值法)等完成完整的空到数据,首先要等等(此功能主,这其中包括比;(后两种功用是为把采样习数据(某地所涉及到的地的某些参数为臭氧浓度预测。

基于ArcGIS的空间插值方法比较

基于ArcGIS的空间插值方法比较

的整体数据特征基本一致,且拉伸领域相比克里金插值更加接 近原始数据分布特征,而克里金插值数据变化幅度较大。下面 将通过使用监测点进行精度模型评价,表 1 为两种插值法检验 数据统计结果。表 2 为插值精度比。
表 1 插值检验数据统计
OBJECTID 1 2 3 4 5 6 7
heigh 60 51 102 96 124 100 58
表 2 两种插值法精度比较
方法
RMSE R-RMSE L-RMSE ME
SD
AR
反距离插值法 14.353 0.1913 0.2012 3.1742 14.5012 1.0124
克里金插值法 20.253 0.2625 0.2603 3.3618 20.0545 1.0113
图 1 数据原始数据与高程点数据 2.2 结果评价及改进思路 图 2 为反距离插值、克里金插值算法拉伸柱状图比较。
图 2 两种插值算法拉伸柱状图统计比较图 ( 左侧为反距离插值,右侧为克里金插值) 从图 2 的拉伸柱状图统计比较图中可以看出,反距离插值
从上表中可以看出,克里金插值法的误差以及平均误差远 大于反距离插值法,这也证明了前文中所说的克里金插值所计 算的结果波动较大,因此,就针对该组高程数据来说使用克里 金插值法的效果更好。
3 结语 使用科学合理的插值方法可以节约大量的时间,提升空间 信息数据获取与预测的效率,现今,各类插值技术以及使用都 较为成熟,相信在不久的将来,插值算法的自动性会更高,多尺 度建模以及多维表达形式更加完备。 参考文献: [1]周海荣,张亮,俞伟柯,寿祝欢,卢月明. 基于自适应采 样的空间插值 方 法 比 较 研 究[J]. 科 学 技 术 创 新,2018 ( 04) : 8-11. [2]肖城龙.基于 ArcGIS 的空间数据插值方法的研究与实 验[J].城市勘测,2017( 06) : 71-73+83.

ArcGIS克里金空间插值方法介绍

ArcGIS克里金空间插值方法介绍

谢 谢!
克里金插值法
5、打开ArcToolBox工具箱,点击“Spatial Analyst工具” “插值”双击“克里金法”
克里金插值法
6、输入点要素选“Sheet1$个事件”,Z值字段选一个要研 究的对象(这里选的Pb),点击“确定”,耐心等候
7、计算完成后,系统显示插值的结果如下
克里金插值法
克里金插值法
1、打开ArcMap 10
克里金插值法
克里金插值法
2、新建一个项目,调入几个已有图层当背景
克里金插值法
3、添加数据,找到“经仕铅业2014.xls”,双击,显 示“sheet1$”,选中,点击“添加”
克里金插值法
4、点击“文件”“添加数据”“添加XY数据(A)”, 数据表选“Sheet1$”,X字段选JD,Y字段选WD,Z字段 可不选,坐标系选WGS-1984,点击“确定”
8、显示的结果图很不好看,将结果图层按“拉伸”方式 显示,稍微好看一点了,这是按12个点进行插值的结果
克里金插值法
这是按24个点和48个点进行插值的结果,可以看出还是有 些结果,区别非常大的
克里金插值法
经过选用不同的参数进行插值的结 果来看,插值的样本越密,插值点数越 多,得到的插值结果图越光滑,可信度 越高,但运算量也越大
ArcGIS 几种空间插值方法介绍 克里金插值法
龚资林 2014.10.10
克里金插值法
基本思想:
克里金插值与IDW(反距离权重法)插 值的区别在于权重的选择,IDW仅仅将距 离的倒数作为权重,而克里金考虑到了空 间相关性的问题。它首先将每两个点进行 配对,这样就能产生一个自变量为两点之 间距离的函数。对于这种方法,原始的输 入点可能会发生变化。在数据点多时,结 果更加可靠。

arcgis栅格数据空白值插值计算_理论说明

arcgis栅格数据空白值插值计算_理论说明

arcgis栅格数据空白值插值计算理论说明1. 引言1.1 概述栅格数据是地理信息系统(GIS)中常用的数据格式之一,广泛应用于地表覆盖、环境监测、自然资源管理等领域。

然而,在实际应用中,栅格数据中可能存在空白值,也称为缺失值或无效值。

这些空白值的存在可能会影响数据分析和模型建立的准确性和可靠性。

为了解决栅格数据空白值的问题,插值计算成为一种常见方法。

插值计算可以通过利用已有的有效数据来推断出空白位置上相应属性的数值。

ArcGIS作为一个功能强大的GIS软件平台,提供了多种栅格数据插值工具,方便用户进行插值计算操作。

本文将着重探讨ArcGIS中栅格数据空白值插值计算的理论基础和具体操作方法,并通过实例分析与结果讨论来验证其可行性和有效性。

1.2 文章结构本文主要分为五个部分:引言、栅格数据空白值插值计算的理论说明、ArcGIS 中的栅格插值工具使用方法、示例分析与结果讨论以及结论与展望。

在引言部分,我们将对文章进行概述,并介绍问题背景和研究意义。

同时,还将简要阐述文章的整体结构和各个部分的内容安排。

1.3 目的本文旨在提供详细的理论说明和操作指导,帮助读者了解栅格数据空白值插值计算的基本概念、方法原理以及在ArcGIS中如何应用插值工具进行操作。

通过示例分析与结果讨论,读者可以更加直观地了解和掌握这一方法在实际应用中的效果。

最后,我们将总结研究成果,并展望未来改进方向,以期为相关领域的研究和实践提供参考。

2. 栅格数据空白值插值计算的理论说明2.1 栅格数据和空白值介绍在GIS(地理信息系统)中,栅格数据是由离散的像元构成的网格状数据,每个像元包含了特定区域的某种属性值。

然而,现实世界中获取到的栅格数据可能存在部分缺失或空白值,这些空白值可以表示无效或未知数据。

2.2 插值方法概述插值是指通过已知点的属性信息推断出未知点的属性信息。

在栅格数据中,插值方法被广泛应用于填补空白值并生成连续性表面。

插值方法可分为确定性方法和随机性方法两类:- 确定性方法:基于已有采样点之间的数学函数和统计原理进行插值,能够准确重构原始数据,并保持真实性和一致性。

ArcGIS克里金空间插值方法介绍

ArcGIS克里金空间插值方法介绍
8、显示的结果图很不好看,将结果图层按“拉伸”方式 显示,稍微好看一点了,这是按进行插值的结果,可以看出还是有 些区别的
克里金插值法
这是按固定搜索半径0.01和0.1进行插值的结果,区别非常大的
克里金插值法
经过选用不同的参数进行插值的结 果来看,插值的样本越密,插值点数越 多,得到的插值结果图越光滑,可信度 越高,但运算量也越大
克里金插值与idw反距离权重法插值的区别在于权重的选择idw仅仅将距离的倒数作为权重而克里金考虑到了空间相关性的问题
ArcGIS 几种空间插值方法介绍 克里金插值法
龚资林 2014.10.10
克里金插值法
基本思想:
克里金插值与IDW(反距离权重法)插 值的区别在于权重的选择,IDW仅仅将距 离的倒数作为权重,而克里金考虑到了空 间相关性的问题。它首先将每两个点进行 配对,这样就能产生一个自变量为两点之 间距离的函数。对于这种方法,原始的输 入点可能会发生变化。在数据点多时,结 果更加可靠。
克里金插值法
5、打开ArcToolBox工具箱,点击“Spatial Analyst工具” “插值”双击“克里金法”
克里金插值法
6、输入点要素选“Sheet1$个事件”,Z值字段选一个要研 究的对象(这里选的Pb),点击“确定”,耐心等候
7、计算完成后,系统显示插值的结果如下
克里金插值法
克里金插值法
谢 谢!
1、打开ArcMap 10
克里金插值法
克里金插值法
2、新建一个项目,调入几个已有图层当背景
克里金插值法
3、添加数据,找到“经仕铅业2014.xls”,双击,显 示“sheet1$”,选中,点击“添加”
克里金插值法
4、点击“文件”“添加数据”“添加XY数据(A)”, 数据表选“Sheet1$”,X字段选JD,Y字段选WD,Z字段 可不选,坐标系选WGS-1984,点击“确定”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为相应的观测值。区域化变量在 x0 处的值 z* x0
可采用一个线性组合来估计:
n
z*x0 i zxi i 1
无偏性和估计方差最小被作为 选取的标准 i
无偏 E Zx0 Z * x0 0 最优 Var Zx0 Z * x0 min
2、直方图:直方图显示数据的概率分布特征以及概括 性的统计指标。从图中可观察分析数据是否为正态分布。克
里格方法对正态数据的预测精度最高,而且有些空间分析方法特 别要求数据为正态分布。
3、正态QQ Plot图: 检查数据的正态分布情况。作图原理是用分位图
思想。直线表示正态分布,从图中可以看出数据很接 近正态分布
j
E
Z *x0 Zx0 2
2
n

j


0,
i1
j 1, , n
Z*(x0)
1、数据检查,即空间数据探索分析。此功能主要通过 Explore Data菜单中实现。扩展模块提供了多种分析工具, 这些工具主要是通过生成各种视图,进行交互性分析。 如直方图、QQ plot图、半变异函数/协方差图等。
(3)趋势分析图。 蓝线表示南北方向,呈近似水平,可见南北方向无
趋势。绿线表示东西方向,呈倒"U"形,可用二阶曲线 拟合,在后面进行表面预测时将会去除。
4、半变异函数/协方差函数。 该图可以反应数据的空间相关
程度,只有数据空间相关,才有必要进行空间插值法。图表的横 坐标表示任两点的空间距离,纵标表示该两点的半变异函数值。 根据距离越近越相似的原理,因而x值越小,y值应该越小。
克里金插值
克里金方法(Kriging), 是以南非矿 业工程师D.G.Krige (克里格)名字命名的一 项实用空间估计技术,是地质统计学 的重 要组成部分,也是地质统计学的核心。
简单克里金(SK) 普通克里金(OK) 泛克里金(UK) 协同克里金(CK) 贝叶斯克里金(BK)指示克里金(IK)
克里金值方法
空间数据的插值分析-以克里
金插值法为例
浙江大学环资学院遥感所2014级硕士胡碧峰
空间插值
空间插值常用于将离散点的测量数据转换为连续 的数据曲面,它包括内插和外推两种算法。前者是 通过已知点的数据计算同一区域内其他未知点的数 据,后者则是通过已知区域的数据,求未知区域的 数据。
主要的内插方法有:
反距离加权(Inverse Distance Weighted) 全局多项式(Global Polynomial Interpolation) 全局多项式(Local Polynomial Interpolation) 径向基函数(Radial Basis Funtions) 克里格内插( Kriging )
Z*(x0)
(1)无偏条件
从本征假设出发, 可知 EZx 为常数,有
EZ * x0 Zx0
E n i Z xi Z x0
i1

n i m m 0 i1
(在搜寻邻域内为常数, 不同邻域可以有差别)
n
z* x0 i zxi i 1 (普通克里金)
•不仅考虑待估点位置与
已知数据位置的相互关 系,而且还考虑变量的 空间相关性。
(应用随机函数理论)
井眼 地震
克里金估值的基本思路
----以普通克里金为例
设x1, , xn 为区域上的一系列观测点,zx1 , , zxn
空间插值的理论假设是:空间位置上越靠近的点,越可能 具有相似的特征值,而距离越远的点,其特征值相似的可能 性越小。空间插值方法正是依据该假设设计的,分为整体插 值方法和部分插值方法两类。
整体插值:用研究区域所有采样点的数据进行全区域 特征拟合,如边界内插法、趋势面分析等。 部分插值:仅仅用邻近的数据点来估计未知点的值, 如最邻近点法(泰森多边形方法)、移动平均插值方法 (距离倒数插值法)、样条函数插值方法、空间自协方差 最佳插值方法(克里金插值)等。
可得到关系式:
n
i 1
i 1
Z*(x0)
(2)估计方差最小
k 2 E Z *x0 Zx0 EZ *x0 Zx0 2 E Z *x0 Zx0 2
min
应用拉格朗日乘数法求条件极值

在ArcGIS中进行常规克里格插值 的基本操作流程
调入“地统计分析“工具
2.
分析图层及属性设置
参 数 设 置
插值 方式
3.参数设置
误差 统计
图例调整
输入级 别间距
选择分 级数目
选择手工 输入方式
最后点 OK
相关文档
最新文档