《不等式与不等式组》教学反思

合集下载

4.1不等式教学反思

4.1不等式教学反思

4.1不等式教学反思
不等式教学是数学教学中的重要内容之一。

在教学过程中,我
们需要对不等式教学进行反思,以提高教学质量和学生的学习效果。

首先,我们需要反思教学方法。

不等式教学应该注重引导学生
从具体问题中抽象出不等式,培养学生的逻辑思维和推理能力。


们可以采用案例分析、实际问题引入等方式,让学生在实际问题中
感受不等式的应用,从而更好地理解和掌握不等式的性质和解题方法。

其次,我们需要反思教学内容。

不等式教学内容应该符合学生
的认知水平和学习需求,循序渐进地引入不等式的性质和解题方法,避免过于抽象或过于复杂的内容,确保学生能够逐步掌握不等式的
相关知识。

此外,我们还需要反思评价方式。

不等式教学的评价应该注重
考察学生对不等式知识的掌握程度和解决实际问题的能力,可以采
用开放性问题、综合性问题等方式进行评价,鼓励学生灵活运用不
等式知识解决问题。

总的来说,不等式教学反思需要从教学方法、教学内容和评价方式等多个角度进行,以期提高教学质量,激发学生学习的兴趣,提高他们的数学素养。

《不等式的性质》数学教学反思(通用7篇)

《不等式的性质》数学教学反思(通用7篇)

《不等式的性质》数学教学反思〔通用7篇〕《不等式的性质》数学教学反思〔通用7篇〕《不等式的性质》数学教学反思篇1这周我讲了《一元一次不等式》,在讲《不等式的性质》这一节课,一开场我的设计思路是复习不等式的概念及不等式的解,然而进展不等式的3个性质教学,在学完3个性质后马上讲不等式的解集及在数轴上表示不等式的解集,最后才进展稳固练习。

但我在第一个班教学过程中发现学生对不等式的解集的概念不理解,不知道如何在数轴上表示不等式的解集。

因此,我马上调整教学思路,在下个班让学生先复习不等式的概念及不等式的解,然后进展不等式的3个性质教学,讲完3个性质后马上让学生做3个性质的运用的相关练习,最后再讲不等式的解集及在数轴上表示不等式的解集。

通过这样调整教学思路,我发现学生进一步理解了不等式的概念及不等式的解,理解了不等式的3个性质并会运用这3个性质去解决有关的数学问题。

不等式的解集是一个比拟抽象的概念,但通过练习学生能理解什么是不等式的解集,因为不等式的解集是由学生自己解出来的,在学生理解不等式的解集的根底上再进一步让学生通过数轴表示不等式的解集,通过数形结合让学生加深对不等式的解集的认识,为下一节解不等式做铺垫。

我的反思和经历是:1、课前充分准备是保证。

从怎么引入怎么引导学生探究性质都进展充分的准备2、对性质3这个难度的教学不够。

学生以小组讨论的形式展开了对性质3的探究,但由于我对设计意图没有说清楚,导致有几个小组在不等式两边乘了不同的两个数来进展比拟;对于不等式两边同时除以同一个负数的教学完全回避了〔我以为除法都可以化作乘法来做,所以讲乘法就够了〕,结果学生在遇到这类的题目都卡住了。

3、用式子表示不等式的三条性质一笔带过,备课还需要加强。

我备课时认为这个知识点不重要,其实在这里可以训练学生的数学符号语言才能。

4、上课多注意学生的反响。

根据学生的课堂反响及时的调整教学思路。

《不等式的性质》数学教学反思篇2数学来于生活,又应用于生活。

不等式与不等式组教学反思6篇

不等式与不等式组教学反思6篇

不等式与不等式组教学反思6篇不等式与不等式组教学反思篇1本节课我采用使用导学案的教学方式,让学生朗读本节课的学习目标和学习重难点,让学生带着问题来学习本节课的知识点。

引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

课堂开始通过找规律引入课题,激发学生的学习兴趣以及积极性。

通过简单的问题引导学生通过探究得出不等式的性质 1.然后通过比较简单的不等式的变化,探究出不等式的性质2和3.在这一环节上,留给学生思考的时间有点少。

接下来的问题设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。

在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。

还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

练习的设计上以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。

同时使学生体会数学中的分类讨论思想。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。

在教学过程中,学生参与的积极性较高,课堂气氛活跃。

其中不存在不少问题。

比如探究的问题比较简单,在使学生体会类比思想以及分类讨论思想时,也可以通过问题设计体会数形结合的思想。

但是怕学生接受不了高难度的题目,因此在设计导学案时经过反复思考,终究没有选择类似的题目。

终究是不放心学生。

我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

不等式与不等式组教学反思篇2课后我把自己的课堂教学进行了冷静思考和总结,下面谈谈自己的收获和体会。

《不等式的基本性质》教学反思1

《不等式的基本性质》教学反思1

《不等式的基本性质》教学反思铜仁地区石阡县河坝中学 卢明生《不等式的基本性质》是义务教育课程标准实验教科书(湘教版)七年级上学期第五章第一节的内容。

本节课让学生在具体情景中感受到不等式是刻画现实世界的有效模型。

通过操作,分析可得出不等式的基本性质。

本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质的方法,引导学生自主探究,教给学生类比,猜想,验证的问题研究方法,培养学生善于观察、善于思考的学习习惯。

一、教材分析《一元一次不等式》是在学习了数轴、等式性质、解一元一次方程的基础上,从研究不等关系入手,展开对不等式的基本性质、不等式的解集、解一元一次不等式、一元一次不等式的研究学习。

本课题为七年级上学期第五章第一节的内容《不等式的基本性质》。

它在教材中起着承上启下的作用。

关于它的学习以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式的解法的重要理论依据,是学生后继学习的重要基础和必备技能。

二、教学目标知识目标:1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。

2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。

能力目标:1、培养学生类比、归纳、猜想、验证的数学研究方法。

2、发展学生的符号表达能力、代数变形能力。

3、培养学生自主探索与合作交流的能力。

情感目标:让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学 习的乐趣。

三、教学重点和难点重点:掌握不等式的基本性质并能正确运用将不等式变形难点:不等式基本性质的运用四、教学方法:“引导发现法”,“合作探索法五、教具:天平,砝码六、教学过程:1、回顾思考,引入课题观察下面两个推理,说出等式的基本性质(1)5+3=5+3 5-3=5-3(2)2110021100⨯=⨯ 21002100÷=÷学生活动:思考回答等式的基本性质。

(找同学起来回答)教师:首先肯定学生的回答,然后提出问题。

七年级数学下册不等式与不等式组教案人教新课标版

七年级数学下册不等式与不等式组教案人教新课标版

七年级数学下册不等式与不等式组教案人教新课标版一、教学目标:知识与技能:使学生掌握不等式的概念、性质和基本运算;学会解一元一次不等式及不等式组。

过程与方法:通过观察、实验、探究等活动,培养学生的逻辑思维能力和解决问题的能力。

情感态度与价值观:激发学生学习数学的兴趣,培养学生克服困难、自主学习的品质。

二、教学内容:第一课时:不等式的概念与性质1. 不等式的定义2. 不等式的性质第二课时:不等式的基本运算1. 不等式的加减法2. 不等式的乘除法第三课时:解一元一次不等式1. 一元一次不等式的解法2. 解不等式组的策略第四课时:不等式应用举例1. 应用不等式解决实际问题2. 不等式组在实际问题中的应用第五课时:复习与拓展1. 复习不等式、不等式组的解法及应用2. 拓展练习三、教学重点与难点:重点:不等式的概念、性质,解一元一次不等式及不等式组的方法。

难点:不等式的性质,解一元一次不等式,不等式组在实际问题中的应用。

四、教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。

五、教学过程:第一课时:1. 导入新课:通过生活中的实例引入不等式概念。

2. 讲解不等式的性质。

3. 练习不等式的基本运算。

第二课时:1. 讲解不等式的加减法运算。

2. 讲解不等式的乘除法运算。

3. 练习不等式的基本运算。

第三课时:1. 讲解一元一次不等式的解法。

2. 讲解解不等式组的策略。

3. 练习解一元一次不等式及不等式组。

第四课时:1. 举例讲解应用不等式解决实际问题。

2. 举例讲解不等式组在实际问题中的应用。

3. 练习不等式及不等式组在实际问题中的应用。

第五课时:1. 复习不等式、不等式组的解法及应用。

2. 拓展练习。

六、教学评价:采用课堂练习、课后作业、小组讨论、个人总结等方式进行教学评价。

重点关注学生对不等式及不等式组的掌握程度,以及在实际问题中的应用能力。

七、教学策略:1. 采用多媒体课件辅助教学,直观展示不等式的性质和运算过程。

人教版七年级下册数学第九单元本章复习教案与教学反思

人教版七年级下册数学第九单元本章复习教案与教学反思

第九章不等式与不等式组李度一中陈海思本章复习【知识与技能】1.了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.2.通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.3.了解解一元一次不等式的基本目标(使不等式逐步转化为x>a或x<a的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴含的化归思想.4.了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.【过程与方法】用提问法引导学生复习本章所有知识点,再通过典型题、热点题的剖析与训练提高学生的解题能力.【情感态度】通过一些经典的、现实的、有意义的、富有挑战性的题型的训练,培养学生主动学习、探究学习、互相交流等学习品质,激发学生的学习兴趣.【教学重点】一元一次不等式(组)的解法及列不等式(组)解应用问题.【教学难点】与一元一次不等式(组)有关的综合型问题,应用型问题.一、知识框图,整体把握1.利用不等式(组)解决实际问题的基本过程2.本章知识安排的前后顺序二、回顾思考,梳理知识1.不等式的三个性质:不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.2.一元一次不等式的解法与一元一次方程的解法基本相同,只是在系数化为1时,若两边同乘(或除以)同一个负数,不等号的方向要改变,解未知数为x 的不等式,就是将不等式逐步变成x>a(或x<a)的形式.3.解一元一次不等式组的关键是求不等式的公共解集.4.设未知数、列不等式(组)是解有关应用题的关键步骤,解相关应用题时,必须根据问题中的相关信息,将问题数学化,进而对其中的数量关系进行梳理,有条理地、逐步深入地考虑如何寻求解决问题的方法.三、典例精析,复习新知例1(山东临沂中考)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下,最多还能搭载____捆材料.分析:本题不等关系是:210+会议材料重量≤1050.设还可搭载x捆材料,则:210+20x≤1050,解得x≤42.故最多还能搭载42捆材料.例2 当m为何值时,方程组解:先解关于x,y的方程组,再由列出关于m的不等式组,解不等式组便可求出m的范围.解方程组得例3某商店积压了100件某种商品,为使这批货物飞快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作三次降价处理:第次降低30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.三次降价处理销售结果如下表:问:(1)跳楼价占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部售完,哪一种方案更盈利.解:(1)设原价为x元,则2.5×0.73x÷x=85.75%;(2)原价销售额为100x元,新价销售额为2.5×10×0.7x+2.5×0.72x×0+0.8575x×50=109.375x元,因109.375x>100x,故新方案销售更盈利.例4(1)若不式组 2x-3a<7b,6b-3x<5a 的解集是5<x<22.求a,b的值.(2)已知不等式组的解集为x>2,求a的范围.解:(1)原不等式组可化为依题意,得1/3(6b-5a)<x<1/2(3a+7b).又由题意知,该不等式组的解集为5<<22.所以解得(2)原不等式组可化为.依题意,知x>2,所以a≤2.例5 若关于x的不等式-3x+m>0有5个正整数解,求m的取值范围.解:解不等式得x<m/3,因为它有5个正整数解,所以x的正整数解是x =1,2,3,4,5.而x<5的正整数解为1,2,3,4,不符合题意,所以m/3比5大,而x<6的正整数解为1,2,3,4,5,符合题意,所以m/3不超过6,上5<m/3≤6.所以15<m≤18.想一想,若关于x的不等式-3x+m≥0有5个正整数解,则m的取值范围又如何呢?(答案:15≤m<18)例6 某食堂在开晚餐前有a名学生在食堂排队等候就餐,开始卖晚餐后,仍有学生前来排队买晚餐,设学生前来排队买晚餐的人数按固定的速度增加,食堂每个窗口卖晚餐的速度也是固定的.若开放一个窗口,则需要40分钟才使排队等候的学生全部买到晚餐;若同时开放两个窗口,则需15分钟就可使排队的学生全部买到晚餐.(1)写出开放一个窗口时,开始卖晚餐后窗口卖晚餐的速度y(人/分钟)与每分钟新增加的学生人数x(人)之间的关系.(2)食堂为了提高服务质量,减少学生排队的时间,计划在8分钟内让排队等候的学生全部买到晚餐,以使后到的学生能随到随买,求至少要同时开放几个窗口?(2)设至少要同时开放n个窗口.依题意得由①得x=a/60.代入②得即a+8×a/60≤8n×a/24,即n≥17/5.n取不小于17/5的最小正整数,所以n=4.∴至少要同时开放4个窗口.例7 某校七年级春游,现有36座和42座两种客车可供选择.若只租36座客车若干辆,则正好坐满;若只租42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人.已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校七年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.解:(1)设租36座的车x辆.据题意得:解得:由题意x应取8,参加春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元);方案②:租42座车7辆的费用:7×440=3080(元);方案③:因为42×6+36×1=288,租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元).所以方案③:租42座车6辆和36座车1辆最省钱.例8 大别山中学七年级的(1)(2)(3)(4)(5)五个班分在同一小组进行单循环的篮球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,(1)班的积分为9分,你知道(1)班的成绩是几胜,几平,几负吗?如果(4)班积10分,它能出线吗?解:(1)设(1)班积9分时胜x场,平y场,则解得5/2≤x<4.又x为正整数,所以x=3,y=0.故可知(1)班的成绩是3胜0平1负.(2)设(4)班积10分时胜x场,平y场,则解得3≤x<4.又x为整数,所以x=3,y=1.故(4)班3胜1平0负.经分析易知另外四个班中最多只有一个班,也能达到3胜1平0负,即积分为10分,又因小组中名次在前的两个队出线,故(4)班一定出线.【教学说明】例1~例5可让学生自主探究,交流,达成共识,得出结论;例7~例8是关于一元一次不等式组解决实际问题的综合应用,有一定的典型性与难度,教师要引导学生分析题意中隐含的相等关系与不等关系,并将其转化为数学式.四、师生互动,课堂小结一元一次不等式(组)的解法及应用是中考的必考知识点,不仅在所有的题型中都可出现,而且还渗透到其它知识点之中实行考查,所以同学们一定要重视本节的基础知识及综合演练,只有这样,才能确保后续学习顺利进行.1.布置作业:从教材“复习题9”中选取.2.完成练习册中本课时的练习.本课时的重点是让学生在充分交流的基础上建立本章的知识框架图,并反思如何运用一元一次不等式及一元一次不等式组来解决实际问题,引导学生在练习中体验本章知识的运用.【素材积累】1、只要心中有希望存摘,旧有幸福存摘。

2.2不等式的基本性质(教案)

2.2不等式的基本性质(教案)
-难点2:乘法性质中负数的处理。当c<0时,乘法性质与加法性质不同,不等号的方向会改变。
-举例:若a>b且c<0,则ac<bc。需要通过具体的例子和练习,让学生掌握负数在乘法性质中的影响。
-难点3:将不等式性质应用于实际问题。学生需要能够从实际问题中抽象出不等关系,并正确应用基本性质。
-举例:在解决实际问题时,如购物预算问题,学生需要将预算限制转化为不等式,并利用性质进行求解。
2.2不等式的基本性质(教案)
一、教学内容
本节课选自八年级数学下册第二章“不等式与不等式组”中的2.2节“不等式的基本性质”。教学内容主要包括以下几点:
1.不等式的定义及其表示方法;
2.不等式的基本性质:
(1)传递性:如果a>b且b>c,那么a>c;
(2)对称性:如果a>b,那么b<a;
(3)加法性质:如果a>b,那么a+c>b+c(c为任意实数);
实践活动环节,分组讨论和实验操作进行得相当顺利。学生们能够将不等式的基本性质应用到解决实际问题中,这让我很欣慰。但在小组讨论中,我也注意到有的学生在表达自己的观点时不够自信,这可能是因为他们对知识点的掌握还不够熟练。我会在以后的课堂中多给予这些学生鼓励和支持。
学生小组讨论的环节让我看到了学生们的思维火花。他们在讨论不等式在实际生活中的应用时,提出了很多有趣的观点和问题。但在引导讨论的过程中,我发现自己对一些开放性问题的设计还不够精准,有时会导讨论更加高效。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示不等式的基本性质。

基本不等式教学反思9篇

基本不等式教学反思9篇

基本不等式教学反思9篇基本不等式教学反思1在教学活动中,我有以下活动觉得比较好的:建立知识结构,进行新课的引入和知识的迁移.上课伊始,我书写了等式(方程)一章的部分知识结构,并且有由等式的有关概念到不等式的有关概念的类比线路图,从而引入课题,开始检查前置学习的情况.这样处理,学生对这个知识内容的整体把握就能够高屋建瓴,数学学习的能力意识就能够形成。

前置学习检查的任务明确.数学教学中很为重要的新知识引入在课堂之前的前置学习完成,为此,新知识的形成过程老师就没有办法把握了,这就要求数学教师很好地在前置学习检查方面动脑筋,在“不等式的性质”这堂课上,由同学们交流检查前置学习的情况,提出三条交流任务:不等式的性质是什么?不等式的性质是怎么研究得到的?不等式的性质与等式的性质有什么区别和联系?学生的交流和讨论就有了明确的方向,后面就有了学生很好的回报:性质的回答情况与以往一样比较到位,更有同学回答了不等式的性质是由等式的性质联想得到的,有同学回答了不等式的性质是我们通过由特殊到一般研究得到的(学案中安排了由具体例子到一般规律的总结),在与等式性质区别和比较之后,学生得出“在不等式两边同时乘以或除以一个数时一定要考虑这个数是正数还是负数”这样的注意点.因此学生前置学习是富有成效的,前置学习检查也是前置学习的补充和完善.课堂设问、提问精心研究.在利用不等式的性质进行不等式的变形时(问题是以填空不等号的形式拟题的),提问:“各小题的结果是什么?怎样由已知的不等式变形得到的?理论依据是什么”,这样设问便于学生研究,便于学生回答;提升学习内容,问题有难度,思考有深度,在学生回答五道判断题对错后,连续追问,有问为什么的,有问反例是什么的,有问成立的条件是什么的,有问怎样改变结论使命题成立,怎样改变条件试命题成立.提问学生回答问题形式多样,多数情况,学生举手回答,还有依座次回答,点学号回答,同学推荐回答等等,全班学生整堂课处于积极的参与状态.课堂内容的处理详略得当.利用性质进行不等式的变形是性质的理解和掌握,难度不大,学生口答一挥而就;分类讨论虽是难题,三种情况一经点破,旋即解决;提升判断实是难点,反复讨论,多角度思考,多方位研究,一题多变化,用足力气;用不等式的性质解不等式,变形后的形式要明白、怎样变形要清楚、变形依据要对号、书写格式要规范,同时这又是后面解一元一次不等式的预演,移项法则由此产生,所以,安排了例题老师示范、安排了学生上黑板板演、安排了学生在上面点评.本课全部完成了预设的教学任务,用了八分钟时间进行了很充分的小结.基本不等式教学反思2根据新课标的要求,本节的重点是应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程,难点是用基本不等式求最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式与不等式组》教学反思
教不等式这一章,起步时总会小看它,认为只要加强和等式及方程的类比,学好这一章应该是易如反掌的事情。

每每都没有忘记采用二者类比的方法来进行教学,岂不都还算顺利,而进行到不等式的应用,解决不等式中的参数问题和不等式组与实际问题时,学生总会出现比较大面积的学困现象,平时学习不错的孩子,一考试也会成绩平平。

往往是老师讲得激情澎湃,以为把解决问题的方法和思考问题的规律都很透彻地讲清楚了,谁知学生并没有明白。

什么原因,这里面肯定出了什么问题。

首先,教师总是主观上认为学生应该学好了等式性质,能很熟练解一元一次方程,能熟练地用方程解决实际问题了,其实,很多学生淡忘了,或者学方程时根本就没有学好,由于没有坚实的“一”,老师希望能从二者的类比中反出“三”来,显然为难了学生,必然会出现让老师失望的结果。

其次,老师心情过于急切,总想一下子把自己多年的经验积累尽快传授给学生,往往会在学生缺少足够的训练,缺少自己对问题规律性的感性认识的基础上,教者就急匆匆地将解不等式、解不等式组、求特殊解,解决参数问题,解决实际问题的方法抛了出来,变成了活生生地灌输,往往教师课堂讲得多,学生实践少,好学的也只是生硬记住了方法和规律,老师希望学生能结合具体问题情境灵活应用,谈何容易?更何况,大批学生对灌注的方法理论还没留下多少痕迹呢?
其三,课堂教学和考试在标高上出现了较大差异,所学到的解决比较浅显的问题的经验,一下子解决问题条件更隐蔽,信息更复杂,知识考查更灵活,难度更深的问题显得力不从心,总会造成思考中这样或者那样的失误,考不出好成绩自在情理之中了。

其实,不等式这一章主要目标是要求学生会解决以下几类问题,教师在教学中,从第一节课起,就要结合新课讲授,有意识进行相关问题的范例讲授,并要有意识地安排针对训练,不要指望学生自己能利用基本的知识去悟到解决问题的办法。

一是不等式性质的应用。

关键点都明白是性质三的理解和应用,怎样将这一重点和难点强化肯定要讲究方法。

我想不管有多么多的方法,有效途径无外乎强化记忆,针对性强化训练,尤其是对含有字母的不等式进行变形的能力训练。

数字向字母的拓展在哪一个数学内容的学习上都是一个难点,老师说字母就是表示数的,和数字一样的处理,课学生就是认为太不一样了。

常常是具体数字的问题一学就会,一变成字母就傻眼。

知识传授时及时对规律进行字母化的符号表示,多组织几轮训练可能对问题突破有一定帮助。

字母的抽象性是一道横在小学和初中学习过渡中一道坎。

这个问题怎样突破很有研究的价值,我目前是没有找到很好的解决这一难点的好方法。

二是不等式和不等式组的解法和求它们的特殊解。

这个属于纯粹的解法问题,求特殊解只是在求出解集后将特殊对象罗列出来即可,这一类问题主要看计算功底,是全章学习的基础,要不厌其烦地进行当堂当面的过关训练,力求人人过关,计算能力薄弱的要贯穿始终,
甚至可以不分白天黑夜专门突破,解法不能过关,谈其他问题都是空谈,即使方法会了,下笔一算就错,也做不出有效工来。

三是求参数的值或者参数取值范围的问题。

常见的类型主要是三种,一是方程(组)和不等式的联姻问题。

常常是已知一个含有字母系数的方程(组)的解满足什么不等关系,求其中字母的取值范围或者字母的特殊值;它的解决是套路化的,先解方程(组),然后由题意列不等式(组),解之可得结果。

这里的难点依然是对字母的处理问题,学生往往不会解字母系数的方程(组),导致第一步就进行不下去,在这里老师要分散难点,专门进行一下这类方程的解法指导和专项训练。

二是告诉含有字母系数的不等式(组)的解集,求字母参数的值,让学生明白其中的相等关系就行了。

举几个例子,针对练习一下,这个容易解决。

三是已知含有字母系数的不等式组有几个整数解,求参数的取值范围。

这里面涉及数形结合理解题意,确定出整数解,然后在确定出解集左端点或者右端点的范围,进而列出不等式求出解集。

当含有参数的不等式解出来,解集是一个比较复杂的代数式,这就要求学生能把它看成一个字母,也就是要有整体思想,这个有点难,总是会受到原不等式未知数取值范围的影响,这是不等式问题中的一个难点。

一般的解题规律是,由于此类问题中不等式组解集的数轴表示一定是一条线段,并且一般会告诉你左端点或者右端点,另一个端点值用所含参数表示,如果是是求右端点的范围,不等式的最大整数解是a,那么右端点值得范围就在a和a+1之间,只能等于其中的一个值,如果是实心点则等于a,是空心点则包含a+1,这个值可
以通过验证的方法确定,从而列出关于不等式组求出参数的取值范围,结果一定是一个半开半闭区间。

同样,如果是是求左端点值的范围,不等式的最小整数解是a,那么右端点值得范围就在a和a-1之间,只能等于其中的一个值,如果是实心点则等于a,是空心点则包含a-1,这个值可以通过验证的方法确定,从而列出关于不等式组求出参数的取值范围,结果也一定是一个半开半闭区间。

解决这一问题需要学生会解含有参数的不等式,会确定整数解的对象,能准确确定所列不等式中那个该包含等号。

四是不等式(组)和实际问题,这是全掌知识学习的落脚点,也是不等式知识应用价值的最佳体现。

常见类型有不等式的应用,常常问题中只有一个不等关系,如选择消费方式更省钱问题,考试分数达标问题,只要能列出代数式表示相关量,读懂表示不等关系的关键词的意思,不能解决,当然检验时别忘了结合实际确定所设对象自己的取值要求,以免造成疏漏。

其次是不等式组的应用问题。

两种材料生产两种产品问题、两种运输工具运送两种货物问题、两不等关系限制问题如两种商品进价不超过多少,获利不少于多少,数量又怎样的不等关系,这样的问题一般都会有两个或以上的不等关系;分物品问题,就是要辨析清楚关键句的含义,一般情况下,分得的物品个数只能是自然数,只要是说“不到或不足a个”就含有个数大于或等于零的隐含条件,往往学生会在等号上面纠结。

其三是方程和不等式的混合组问题,涉及二元一次不等式时,一定要善于利用两个未知数之间的相
等关系进行消元处理转化为一元一次不等式来解决,这就要求学生能够将二元一次方程组的知识进行有效迁移。

应用问题有一个根子上的问题,就是能熟练用含有所设的未知数的代数式表示问题中相关的量,而这个问题显然在整式这一章没引起足够的重视,训练力度欠缺,不能讲实际问题中的文字语言用数学式子“翻译”成为很多不会解应
用题学生的共同障碍。

不等式这一章难度比较大,需要教师做好充分准备后再去上课,因为课本明显高度不够,宽度也不够,需要教师在心中有数的情况下,进行有效拓展,力求讲解不含糊,归类要明晰,方法要具体,可操作性强,只要指导得法,难点是可以有效突破的。

相关文档
最新文档