常用统计分布三个常用分布
统计学三大分布的应用

统计学三大分布的应用
统计学三大分布是指正态分布、t分布和卡方分布。
这些分布在统计学中应用广泛,下面将分别介绍其应用。
正态分布是自然界中最常见的分布之一,常用于描述连续性变量。
例如,身高、体重、智商等连续性变量都可以用正态分布来描述。
在假设检验、置信区间估计和回归分析等统计学方法中,正态分布也是一个非常重要的理论基础。
t分布是由威廉·塞德威克·高斯特(W.S.Gosset)于1908年提
出的,用来解决小样本量的问题。
t分布的形状与正态分布非常接近,但是在样本量较小的情况下,t分布的尾部更宽一些,因此在小样本量的情况下,使用t分布进行假设检验和置信区间估计更为合适。
卡方分布是概率论中一个重要的分布,通常应用于描述计数数据。
例如,在卡方检验中,卡方分布常常用来处理分类数据,如调查中统计“喜欢”或“不喜欢”某种产品或服务的人数。
卡方分布也常用于多项式回归和逻辑回归等模型中。
综上所述,正态分布、t分布和卡方分布在统计学中应用非常广泛,是统计学的重要组成部分。
对于从事统计学研究或相关领域的人员来说,深入理解和熟练运用这些分布是非常重要的。
- 1 -。
不确定度统计学常用的分布

不确定度统计学常用的分布
在统计学中,有几个常用的分布被广泛用于表示不确定度。
以下是其中几个常见的分布的介绍。
1. 正态分布(Normal Distribution):也被称为高斯分布,是统计学中最常见和最重要的分布之一。
它的概率密度函数具有钟形曲线形状,以其对称性和很好的性质而受到广泛应用。
2. t分布(t-distribution):t分布是对应于小样本情况下的正态分布的统计分布。
它的形状类似于正态分布,但具有更宽的尾部。
t分布在小样本情况下通常用于估计总体平均值的置信区间。
3. F分布(F-distribution):F分布是用于比较两个总体方差是否相等的统计分布。
它具有正偏斜和右尾较长的特点。
在方差分析和回归分析中,F分布被广泛用于检验模型的显著性。
4. 卡方分布(Chi-square distribution):卡方分布是由多个独立标准正态随机变量的平方和构成的分布。
它具有非负的偏斜和右尾较长的特性。
卡方分布在统计推断中被广泛用于检验分布的拟合度和估计总体方差。
5. 二项分布(Binomial distribution):二项分布是描述一系列独立的二元试验中成功次数的分布。
它的概率质量函数呈现出一个钟形,它在统计推断和贝叶斯统计学中经常用于建模离散型数据的不确定性。
这些分布都是在统计学中常见的用于表示不确定度的工具。
根据具体的问题和需求,我们可以选择适当的分布来进行数据建模和分析。
统计学 三种常用分布

以其中二只死亡的概率是多少为例,则3只 白鼠中2只死亡的概率为上述概率之和
引出
P=3×π2(1-π)= C32? 2 (1? ? )
?? ?? ?? P( X ? k) ? Cnk k (1 ?
)n?k
?
?n?
? ?
k
? ?
k (1 ?
)n?k ?
n!
k!(n ? k)!
k (1 ?
)n?k
Bernoulli试验的三个条件
?注意:单双侧
正态分布法
百分位数法
双侧
单侧
双侧
单侧
%
下限 上限
下限 上限
90 x ? 1.64 x ? 1.28s x ? 1.28 s P5~P95
P10
P90
95 x ? 196s x ? 1.64s x ? 1.64s P2.5~P9.75 P5
P95
99 x ? 2.58s x ? 2.33s x ? 2.33s P0.5~P99.5 P1
x 第一只白鼠 第二只白鼠 第三只白鼠 发生的概率
0 存活 1 死亡
存活
存活 存活 死亡
存活 存活 存活
P=(1-π)3 P=π(1-π)2 P=π(1-π)2
存活
存活
死亡
P=π(1-π)2
2 死亡 死亡 存活
3 死亡
死亡 存活 死亡 死亡
存活 死亡 死亡 死亡
P=π2(1-π) P=π2(1-π) P=π2(1-π) π3
? 每一次试验结果,只能是两个互斥的结果之一 (成功与失败)
? 每次试验成功的概率不变 ? 各次试验相互独立
如果服从以上三个条件,那么n次试验中, 成功次数X服从二项分布。记为X~B(n,? )
6.2数理统计中几种常用的分布

一、 2 分布
二、t 分布
三、F分布
1
一、 2 分布
2分布是由正态分布派生出来的一种分布.
定义: 设 X1, X2, , Xn 相互独立, 都服从正态 分布N(0,1), 则称随机变量:
2
X12
X
2 2
Xn2
所服从的分布为自由度为 n 的 2 分布.
记为 2 ~ 2 (n)
2 0.05
(10
),
2 0.1
(20
)。
解:从附表 5查得
2 0.05
(10
)
18
.307
,
2 0.1
(20
)
28
.412,
5
二、t 分布 定义: 设X~N(0,1) , Y~ 2(n), 且X与Y相互
独立,则称变量 T X Yn
所服从的分布为自由度为 n的 t 分布.
记为T~t(n).
6
t分布的分位点
F F1 (n1, n2 )
所以 P{ 1
1 }
F F1 (n1, n2 )
又因为 1/ F ~ F(n2,n1), 所以 F
即 F1 (n1, n2 ) 例: F0.95(12,9)
1 F (n12 , n1) F0.05 (9,12)
1 (n2,n1) F1 (n1, 1 0.357
2.80
2
由 2分布的定义,不难得到:
1. 设X1, X2, , Xn 相互独立, 都服从正态分布
N (, 2 ), 则
2
1
2
n
(Xi
i 1
)2
~ 2 (n)
2. 设X1 ~ 2 (n1), X 2 ~ 2 (n2 ),且X1,X2相互
三大抽样分布及常用统计量的分布

随(1机) 样XX本132,试XX2问42 下; 列(2统) 计n量n各1XX服i21从; 什(么3)分(n3布?n1)Xi31i2
X
2 i
.
i2
i4
n
续解 (2) 因为X1~N(0,1),
X
2 i
~
2(n
1)
故
i2
n 1X1
n
n
X1
~t(n-1).
X
2 i
X
2 i
(n 1)
i2
i2
例1 设总体X~N(0,1), X1,X2,…,Xn为简单
项是独立的.所以(4.1)式的自由度是n-1.
定理3: 设(X1,X2,…,Xn)为来自正态总体
X~N( , 2)的样本,则
(1) 样本均值 X与样n本方差S 2相互独立;
(2)
(n 1)S 2
2
(Xi
i 1
2
X)2
~
2(n 1)
(4.1)
与以下补充性质的结论比较:
性质 设(X1,X2,…,Xn)为取自正态总体
f(x)
其中f(x)是 2-分布的概率密度. O
图5-5 2(n) x
显然,在自由度n取定以后,2(n)的值只与有关.
例如,当n=21,=0.05时,由附表3(P254)可查得,
02.05(21) 32.67 即 P 2(21) 32.67 0.05.
二、t分布
定义3 设随机变量X~N(0,1),Y~ 2(n) ,
(4.1)
(4.1)式的自n 由度为什么是n-1?
从表面上看, (Xi X)2是n个正态随机变量 Xi X 的平方和,
但实际上它们不i是1 独立的,它们之间有一种线性约束关系:
常见的数学分布

常见的数学分布
常见的数学分布
一. 离散分布
1. 伯努利分布
伯努利分布是研究单个成功/失败事件(二元变量)概率的基本
概率分布,只有两种结果,成功/失败,因此伯努利分布也称为二项
分布。
2. 贝叶斯分布
贝叶斯分布主要用于分析估计连续变量,它是基于贝叶斯概率理论,关于一个未知参数的不确定性状况,以后新的观测信号被观测后,这种参数的不确定性会发生变化。
3. 几何分布
几何分布是离散概率分布的一种,主要用于研究成功/失败事件
发生次数的概率分布,即最少要经历多少次失败才能够获得一次成功。
4. 泊松分布
泊松分布是一种离散概率分布,属于参数为λ的二项分布,也叫泊松二项分布,用来描述一段时间内事件发生次数的概率分布,是一种常用的概率分布。
二. 连续分布
1. 正态分布
正态分布是连续概率分布的一种,也叫高斯分布,是最常用的一类概率分布,可以用来描述不同变量的概率分布情况,它的曲线呈现
出钟形,最大值位于均值处。
2. 对数正态分布
对数正态分布又叫做极大似然估计分布,属于一种连续概率分布,可以用来描述变量值的概率分布情况,表现为对数公式,又称为对数正态分布。
3. t 分布
t 分布是一种特殊的正态分布,也叫做学生的 t 分布,它可以
用来描述变量值的概率分布情况,它的曲线呈现出椭圆形。
4. 卡方分布
卡方分布是一种连续概率分布,常用于统计学分析中,它可以用来描述自由度为 k 的某个统计量的概率分布,其图形呈现出单峰形状。
概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。
因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。
关键词:二项分布;Poisson 分布;正态分布;定义;性质一、二项分布二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生这种分布的重要现实源泉是所谓的伯努利试验。
(一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布)1.泊努利试验在许多实际问题中,我们感兴趣的是某事件A 是否发生。
例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。
在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。
为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = ()q p A P =-=1。
2.泊努利分布定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数,则⎪⎪⎭⎫⎝⎛ξp q 10~,称ξ服从参数为)10(<<p p 的Bernoulli 分布或两点分布,记为:),1(~p B ξ。
(二)二项分布[Binomial distribution]把一重Bernoulli 试验E 独立地重复地进行n 次得到n 重Bernoulli 试验。
定义:在n 重Bernoulli 试验中,设(),()1P A p P A q p ===-若以ξ记事件A 发生的次数,则ξ为一随机变量,且其可能取值为n ,,2,1,0 ,其对应的概率由二项分布给出:{}k n kk n p p C k P --==)1(ξ,n k ,,3,2,1,0 =,则称ξ服从参数为)10(,<<p p n 的二项分布,记为),(~p n B ξ。
统计学常用分布

统计学常用分布一、引言在统计学中,分布是描述数据变化规律和概率的重要工具。
不同的数据类型和问题背景需要采用不同的分布来描述。
本篇文章将介绍统计学中常用的几种分布,包括正态分布、二项分布与泊松分布、指数分布与对数正态分布、卡方分布与t分布等。
二、正态分布正态分布是最常见的连续概率分布之一,它在自然现象、工程技术和社会科学等领域都有广泛的应用。
正态分布的曲线呈钟形,数据值集中在均值附近,随着远离均值,概率逐渐减小。
正态分布在统计学中具有重要地位,许多统计方法和模型都以正态分布为基础。
三、二项分布与泊松分布1.二项分布:二项分布是用来描述伯努利试验中的随机事件的概率分布,其中每次试验只有两种可能的结果,并且每次试验都是独立的。
二项分布适用于计数数据,尤其在生物实验和可靠性工程等领域有广泛应用。
2.泊松分布:泊松分布是二项分布在伯努利试验次数趋于无穷时的极限形式,常用于描述单位时间内随机事件的次数。
泊松分布在概率论和统计学中具有重要地位,广泛应用于保险、通信和生物医学等领域。
四、指数分布与对数正态分布1.指数分布:指数分布描述的是随机事件之间的独立间隔时间或者随机变量的概率分布。
指数分布常用于描述寿命测试和等待时间等问题,例如电话呼叫的间隔时间和电子元件的寿命等。
2.对数正态分布:对数正态分布在统计学中用于描述那些其自然对数呈正态分布的随机变量。
许多生物学、经济学和社会科学中的数据都服从对数正态分布,例如人的身高、体重以及股票价格等。
五、卡方分布与t分布1.卡方分布:卡方分布在统计学中主要用于描述离散型概率分布。
卡方分布是通过对两个独立的随机变量进行平方和运算得到的,常用于拟合检验和置信区间的计算。
2.t分布:t分布在统计学中广泛应用于样本数据的参数估计和假设检验。
相比于正态分布,t分布在数据量较小或参数偏离正态性时具有更好的稳定性。
t分布在金融、生物医学和可靠性工程等领域有广泛应用。
六、结论在统计学中,不同的数据类型和问题背景需要采用不同的分布来描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
1 n
n i1
Xi
1 n
n i1
E( Xi )
1 n
n
D(
X
)
D
1 n
n i1
X
i
1 n2
n
D(Xi )
i1
1 n2
n 2
2
n
设样本( X1, X2, , Xn) 是来自总体X , 而
X ~ N (, 2),
则样本均值
X
1 n
i
n 1
X
i
~
N (,
2 / n),
2. 2分布(卡方分布)
第3节 抽样分布
一、常见分布 二、概率分布的分位数 三、小结
一、常见分布
1.X的分布
设总体X的均值为,方差为 2,分布形式可以
是未知的,( X1, X 2, , X n ) 为一样本,则X1, X 2, , X n 独立且与总体X同分布,因而有
EXi , DXi 2 (i 1, 2 n)
从而E(X )
其中
Sw2
(n1 1)S12 (n2 1)S22 n1 n2 2
,
Sw
Sw2 .
2
S1
和S22
分别是来自两个总体样本的样本方差.
证 由定理知
X
Y
~
N
(1
2,
2
n1
2)
n2
U
(X
Y ) (1 2 ) 11
~
N (0,1),
n1 n2
由
(n1 1)S12
2
~ 2 (n1 1),
(n2 1)S22
Xi nX
i 1
n
i 1
Xi
X
1
n
(
i 1
Xi
nX )
1
0
0.
例1
设X
1
,
X
2
,
,
X
为
6
来
自
正
态
总
体N
(0,1)的
一组ຫໍສະໝຸດ 样本,求C1
,
C
使
2
得
Y C1( X1 X 2 )2 C2( X 3 X4 X5 X6 )2
服 从 2分 布.
解
X1
X2
~
N (0,2), 则
X1 X2 2
(Xi
i 1
X )2 ~
2(n 1)
其中S 2是样本方差.
(2) X 与 S 2 独立.
注
1
2
n
(Xi X )2
i1
n ( Xi X )2
i1
~
2(n 1),
减少一个自由度的原因:
自由度减少一个!
{ Xi X }(i 1,2, n)不相互独立.
n
事实上,它们受到一个条件的约束:
X
2 3
X
2 4
4. F分布
定义 设 X ~ 2 (n1), Y ~ 2 (n2 ), 且X , Y 独立,
则称随机变量
F
X Y
/ n1 / n2
服从自由度为
(n1,
n2 ) 的
F
分布, 记为 F ~ F (n1, n2 ).
其中 n1 , n2 分别表示F分布的自由度
F (n1, n2 )分布的概率密度为
X ~ N (, 2),
则 X ~ t(n 1) S/ n
定理
设总体
X
~
N
(
1
,
2 1
),
Y
~
N
(
2
,
2 2
),
X与Y相互独立. 样本( X1, X2 , , Xn1 )
与 (Y1, Y2, , Yn2 ) 分别来自总体X和Y,则
T
(X
Y Sw
)
(1
11 n1 n2
2 )
~
t(n1
n2
2),
并
且
2 i
(i
1, 2,, m) 相互
m
独立, 则
2 i
~
2 (n1
n2
nm
).
i 1
性质2 若 2 ~ 2(n), 则 E( 2 ) n, D( 2 ) 2n.
性质3 设样本( X1, X2, , Xn) 是来自总体X , 而
X ~ N (, 2),
则(1)
(n 1)S 2
2
1
2
n
t2 n
n1 2
,
t
t分布的概率密度曲线如图
显然图形是关于
t 0对称的.
当n充分大时, 其图
形类似于标准正态
变量概率密度的图
形.
因为lim h(t) n
1
t2
e 2,
2π
所以当n足够大时t分布近似于N (0,1)分布,
但对于较小的 n, t分布与N (0,1)分布相差很大.
例2
设X
T X1 X2 的分布为?
X
2 3
X
2 4
解
X1 X2 ~ N (0,2 2 ),
于是 X1 X2 ~ N (0,1)
2 2
X3 与 X4 独立同分布于N (0,1),于是
2 2
X
2 3
2
X
2 4
2
~
2(2)
由t分 布 的 定 义
X1 X2
2 2 ~ t(2)
X
2 3
X
2 4
2 2
即 X1 X2 ~ t(2)
1 ( n )
n 1 x
x2 e 2
2
x0
0
其它
2 (n)分布的概率密度曲线如图.
2 分布的性质
性质1 ( 2 分布的可加性)
设 12 ~ 2(n1 ),
2 2
~
2(n2 ),
并且
2 1
,
2 2
独
立,
则 12
2 2
~
2 (n1
n2 ).
(此性质可以推广到多个随机变量的情形)
设
2 i
~
2(ni ),
定义、设 X1, X 2 , , X n 相互独立,同服从 N (0, 1)
分布, 则称统计量
n2=X12
X
2 2
X
2 n
服从自由
度为 n 的 2分布, 记为 n2 ~ 2 (n).
自由度 :
指
n2
X
2 1
X
2 2
X
2 n
中右端包含独立
变量的个数.
定理 2(n)分布的概率密度为
f
(x)
n 22
2
~
2 (n2
1),
且它们相互独立, 故由 2 分布的可加性知
V
(n1 1)S12
2
(n2
1)S
2 2
2
~ 2(n1 n2 2),
由于 U 与V 相互独立,按 t 分布的定义
T
U
V /(n1 n2 2)
(X
Y Sw
) (1
11 n1 n2
2)
~
t ( n1
n2
2).
例3 设X1, X2 , X3 , X4来自总体N (0, 2 ),则统计量
3. t 分布 定义 设 X ~ N (0, 1), Y ~ 2 (n), 且 X , Y
独立,则称随机变量 T X 服从自由度为 n Y /n
的 t 分布, 记为T ~ t(n).
t 分布又称学生氏(Student)分布. t(n) 分布的概率密度函数为
h(t)
n
2
1
πn
n 2
1
~
N
(
,
2
),
Y
2
~
2 (n),且X ,Y相互独立,
试求 T X 的概率分布.
Yn
解 因为X ~ N(, 2),所以 X ~ N(0,1)
又Y
2
~
2 (n),且X ,Y独立,则
X
与Y
2
独立,
由定理得
T (X ) / X ~ t(n) (Y / 2) / n Y n
定理 设样本( X1, X2, , Xn) 是来自总体X , 而
~
N (0,1)
同理
X3
X4
X5
X6
~
N (0,4), 则
X3
X4
X5 4
X6
~
N (0,1)
且 X1 X 2 与 X3 X 4 X5 X6 相互独立
2
4
所以( X1 X 2 )2 ( X 3 X 4 X 5 X 6 )2 ~ 2 (2)
2
4
则C1 1 2 ,C2 1 4 .