八年级数学代数式的求值复习题
初中数学整式的加减代数式的求值合并同类项练习题(附答案)

初中数学整式的加减代数式的求值合并同类项练习题一. 单选题1•下列图形中,是中心对称图形但不是轴对称图形的是()A.2•若x = 0是一元二次方程F+7T二+沪-9 = 0的一个根,则b的值是()A.9 B・一3 C. ±3D・ 33•如图,在△ABC中,仙=4, AC = 3, BAC = 30。
,将△ABC绕点按逆时针旋转60。
得到连接BC“则的长为()A. 3 B・4 C・5 D・64.平移抛物线y = -(A-l)(A + 3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位B.向上平移3个单位C.向右平移3个单位D.向下平移3个单位5.若关于x的一元二次方程(7H +1)X2+2A-1= 0有实数根,则加的取值范围是()A. m>—2B. 一2C. m>—2且mh—1D.加》一2 且〃?h —16.二次函数y = ax2 + bx + c(a 0)的图象如图所示,其对称轴为直线x = -1,与x轴的交点为(几0)、(兀,0),其中0<丙<1,有下列结论:①“处>0;②一3<勺<-2;③电一” + cv-l;④当加为任意实数时,a-b va加2+/?/”◎若点(-0.5,y x)9(-2.y2)均在抛物线上,则牙>y2;@)“> 1 •其中J匸确结3◎ B (it) C ◎7•计算一2/+/的结果为()A. -3aB. 一a8.下列计算正确的是() A. 5a + 2l} = lab9•已知一个多项式与3x 2 +9x 的和等于5X 2+4X -1 >则这个多项式是( A. 8疋 + 13/-1 C. 8X 2-5X +110•下列计算正确的是() A. 5a 2b-3ab 2=2ab B ・ 2a 1- a 2=aC. 4.v*"2.v~—2D. — 2.x )—5x =— 3x 11. 下列运算正确的是()A. 3m 2 -2m 2 =1B. 5/zz 4 -2nr = 3mC. 7;/2/?-//?7?2=0 D. 3m-2m = tn 12. 下面计算正确的是() A. 3x 2— x ,= 3 B. 3cr +2/ =5/ C. 3+x = 3xD. -0.25i/Z? +—ba = 0 13•下列运算中,正确的是() A. 3a + 2b = Sab B 2ci 3+ 3a 2= 5a 5C. —4crb + 3ba 2= —a 2b D . 5/ —4/ = 114. 某天数学课上老师讲了整式的加减运算,小颖回到家后拿岀自己的课堂笔记,认頁•地复习老师 在课堂上所讲的内容,她突然发现一道题目:(2a 2+3ab-b 2)-(~3a 2+ ah + 5h 2) =5a 2-6b 2,空格的地方被墨水弄脏了,请问空格中的一项是() A.+2db B ・+3d" C.+4ab D.-ab15. 如果 A = 3m 2-m + tB = 2m 2-m-l f 且 A-B+C = 0,则C=() A.-nr -8B.-nr 一2m-6C.nr +8D.5nr 一2m — 6二. 解答题16. (1)解方程:(x-2)(x+3) = 6:(2) 已知抛物线y = x 2+bx + c 经过A(-1.0).B(3.0)两点,求该抛物线的顶点坐标.1 求证:CE=BD ;C. _3/—2・「+ 5x +1 2宀5尤一1B. 5 ci —3/ =2a17•已知关于兀的一元二次方程F_(2k + l)x + 4—3 = 0.(1) 求证:无论k 取何值,该方程总有两个不相等的实数根:(2) 若△ABC 的斜边c = E 且两宜角边"和b 恰好是这个方程的两个根,求k 的值. 18•请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1) 如图1,抛物线1与兀轴交于4 B 两点,与y 轴交于点C, CDUx 轴交抛物线于点D, 作出抛物线的对称轴EF:(2) 如图2,抛物线厶,4交于点P 且关于直线M/V 对称,两抛物线分别交x 轴于点A, B 和点C, D,作出直线MN.19.如图,在△4BC 中,AC=AB,把△ABC 绕点A 顺时针旋转得到△4DE (点B 、C 分别对应点D 、 E) , BD 和CE 交于点F ・(1) 求出抛物线的解析式;02(2)点P为x轴上一点,当的周长最小时,求岀点P的坐标・21 •在平而直角坐标系中,WC的位置如图所示:(每个小方格都是边长为1个单位长度的正方(2)将ZkABC绕着点逆时针旋转90°,画出旋转后得到的(3)请利用格点图,仅用无刻度的宜尺画出AC边上的高3D (保留作图痕迹);(4)P为轴上一点,且△/%(?是以BC为直角边的直角三角形.请直接写出点P的坐标.22.某服装店销售一批衬衣,每件进价250元,开始以每件400元的价格销售,每星期能卖岀20 件,后来因库存积压,决左降价销售,经过两次降价后每件售价为324元,每星期能卖出172件.(1)已知两次降价的百分率相同,求每次降价的百分率:(2)喜欢研究数学的店长在降价的过程中发现,适当的降价可增加销售又可增加收入,且每件衬衣售价每降低1元,销售疑会增加2件,若店长想要每星期获利11000元,为了让顾客得到更大的实惠,应把售价左为多少元?23.若二次函数y=kx2 + (3k + 2)兀 + 2R + 2 .(1)求证:抛物线与x轴有交点.(2)经研究发现,无论k为何值,抛物线经过某些特左的点,请求岀这些泄点.(3)若x=2x + 2,在-2<x<-l范围内,请比较片y的大小.24.某数学兴趣小组在探究函数y = .F-21知+3的图象和性质时,经历了以下探究过程:3m = , n = (2)描点并在图中画出函数的大致图象:3 根据函数图象,完成以下问题:①观察函数y = x2-21x1+3的图象,以下说法正确的有__________ (填写正确的序号)A.对称轴是直线x = l:B.函数y = 21x1+3的图象有两个最低点,其坐标分别是(-1,2)、(1.2);C.当-1<円时,y随A-的增大而增大:D.当函数〉,=工-21尤1+3的图象向下平移3个单位时,图象与兀轴有三个公共点;E.函数,y = (x-2)2-2lx-2l+3的图象,可以看作是函数y = F _2lxl+3的图象向右平移2个单位得到.②结合图象探究发现,当加满足 __________ 时,方程X2-2I X I+3=/K有四个解.③设函数y = F-21x1+3的图象与并对称轴相交于P点,当直线y = “和函数y = F_2lxl+3图象只有两个交点时,且这两个交点与点P所构成的三角形是等腰直角三角形,则n的值为25.(1)如图①,在等边三角形ABQ内,点到顶点,,的距离分別是3, 4, 5,则ZAPB=__________ ,由于朋,PB,PC不在同一三角形中,为了解决本题,我们可以将ZMBP绕点逆时针旋转60°到/MCP处,连接PP,此时,,就可以利用全等的知识,进而将三条线段的长度转化到一个三角形中,从而求岀ZVIBP的度数:(2)请你利用第(1)题的解答方法解答:如图②,ZVIBC中,ZG4B = 90°, AB = AC,.为上的点,且 ZmE = 45。
八年级数学代数式求值

(一)整体代入法例1. 已知,则分式的值是多少?x x x x x =+----12229241522分析:由条件变形得,再两边平方得,将x x x x =+-=-=122122272分式,于是将整体代入即可求出其值。
x x xx x x xx x x 2222229241529221527----=-----=()()解:由变形得:x =+122 x -=122两边平方得:x x 227-=∴×x x x x x x x x 22222924152922157927152----=----=--=()()(二)变形代入法 例2. 如果,,那么等于多少?a bb cc a+=+=+11212分析:可由,得出,再由得出,再代入a ba b bb cc b+==-+==-1112121c a+2即可。
解:依题意知a ≠0且b ≠1 又由得a b a b b+==-111∴221a b b =-由得2121c b c b =-=- ∴c a bb b +=-+-22121=---=--=--=21212212112b bb b bb b()(三)参数法例3. 若,≠,则代数式43602700522310222222x y z x y z xyz x y zx y z--=+-=+---()的值等于多少?分析:可将z 看作参数,把4x -3y -6z =0和x +2y -7z =0转化成y =2z ,x =3z 代入所求代数式即可求出其值。
解:由4360270x y z x y z --=+-=⎧⎨⎩可得x zy z==⎧⎨⎩32将其代入代数式得: 原式××××=+---=-592429341013222222z z zz z z(四)特殊值法例4. 若,则的值是多少?()314432x ax bx cx dx e a b c d e +=++++-+-+ 分析:此题可采用特殊法解,可令x =-1,即可求出代数式的值。
初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。
已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。
一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。
【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。
例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。
【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。
【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。
初中数学代数式求值综合测试卷(含答案)

初中数学代数式求值综合测试卷
一、单选题(共7道,每道10分)
1.化简的结果为( )
A. B.
C.9m-2
D.-9m-2
答案:D
试题难度:三颗星知识点:整式的加减
2.若关于x的多项式的值与x无关,则m2-2m2-2(2m-4)+4m的值为( )
A.-28
B.28
C.-32
D.44
答案:A
试题难度:三颗星知识点:整式的加减;化简求值
3.已知a-b=1,则代数式2a-2b-3的值是()
A.-1
B.1
C.-5
D.5
答案:A
试题难度:三颗星知识点:整体代入
4.已知代数式的值是8,那么代数式的值为()
A.1
B.2
C.3
D.4
答案:B
试题难度:三颗星知识点:整体代入
5.当x=2时,代数式ax3+bx+1的值为6,那么当x=-2时这个式子的值为()
A.-4
B.1
C.5
D.6
答案:A
试题难度:三颗星知识点:整体代入
6.一个三位数,中间的数字为a,个位上的数字比十位上的数字大2,百位上的数字比个位上的数字小3,用代数式表示这个三位数为()
A.3a+1
B.111a-98
C.111a+199
D.111a-298
答案:B
试题难度:三颗星知识点:数位表示
7.若a表示一个两位数,b也表示一个两位数,要把b放在a的右边,那么所组成的四位数应表示为()
A.100a+b
B.100a+10b
C.100b+a
D.1000b+10a
答案:A
试题难度:三颗星知识点:数位表示。
代数式求值经典题型1-(含详细答案)

.
第
已知 x-y=2
10
题
求代数式 x3-6xy-y3
.
. .
.
解
x3-6xy-y3
=2(x-y)² . 把 x-y=2 代入上式 .
=( x3 - y3)-6xy
=2(2)²
第
=(x-y)(x2+xy+y2)-6xy
=2×4
10
题
. 把 x-y=2 代入上式 .
=8
=2(x2+xy+y2)-6xy
第 6
1
4
=10×(x² + x²)------(1)
题
【第 2 步】
已知 x² -2x -2=0,两边同时除以 x,得
2 x -2 - x =0 把-2 移到等号右边,得
.
2 x - x =2,两边同时平方,得
4 x² - 4 + x² =4,把-4 移到等号右边,
4 x² + x² = 8--------(2)
. 把-6xy 移到括号里 .
=2(x2+xy+y2-3xy) =2(x2-2xy+y2)
答案: 8
.
.
第
11
已知 3x²-x-1 =0,
题
求代数式 6x3+7x²-5x-2018
.
. .
.
思考
已知 3x²-x-1 =0 故 3x²-x=1 ,
=2x+9x2-5x-2018 =9x2-3x-2018
7y² x=2x+5y 两边同时乘以 2x+5
第
13
2x²+5xy=7y²,把 7y²移到等号左边,
初中数学代数式化简求值练习题(含答案)

初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。
2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。
3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。
4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。
5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。
7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。
8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。
10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。
11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。
12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。
13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。
中考数学专题测试卷:代数式的化简及求值

2021年江西省中考数学专题测试卷:代数式的化简及求值一、选择题1.下列运算正确的是( )A.(2a2)3=6a6B.-a2b2·3ab3=-3a2b5C.ba b-+ab a-=-1 D.21aa-·11a+=-12.计算:2225631x x xx x x-+-÷-+,其结果是( )A.(1)2x xx--B.(2)1x xx--C.2(1)xx x--D.1(2)xx x--3.当x=2时,多项式ax5+bx3+cx-10的值为7,则当x=-2时,这个多项式的值是() A.-3B.-27C.-7D.74.当a=14,b=198时,式子6a2-2ab-2(3a2-12ab)的值是()A.-17B.17C.-7 D.75.若x2+4x-4=0,则3(x-2)2-6(x-1)(x+1)的值为( ) A.-6 B.6 C.18 D.306.若a+b+c=0,则111111()()()a b cb c c a a b+++++的值等于( )A.0 B.1 C.-1 D.-37.已知多项式ax+3与bx2-6x+9的乘积中不含x2与x的项,则a、b的值为( ) A.a=2,b=0 B.a=1,b=1 C.a=0,b=0 D.a=2,b=4二、填空题8.若(2a+3b)2=(2a-3b)2+A,则A=______.9.计算:(m-2n+3)(m+2n-3)=________.10.化简:(23aa-+93a-)÷3aa+=______.11.已知x2+x-5=0,则代数式(x-1)2-x(x-3)+(x+2)(x-2)的值为______.12.若1(21)(21)n n-+=2121a bn n+-+,对任意自然数n都成立,则a=______,b=______;计算:m=113⨯+135⨯+157⨯+…+11921⨯=______.三、解答题13.已知x,y满足方程组52,25 1.x yx y-=-⎧⎨+=-⎩①②求代数式(x-y)2-(x+2y)(x-2y)的值.14.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y .15.先化简,再求值:(a +1-451a a --)÷(11a --22a a-),其中a =-1.16.先化简(22221x x x +--2221x x x x --+)÷1x x +,然后解答下列问题: (1)当x =3时,求原代数式的值;(2)原代数式的值能等于-1吗?为什么?参考答案1.C2.B3.B[解析]依题意,得25a+23b+2c-10=7.即25a+23b+2c=17.当x=-2时,原式=-25a-23b-2c-10=-(25a+23b+2c)-10=-17-10=-27.故选B.4.A[解析]原式=6a2-2ab-6a2+ab=-ab.当a=14,b=198时,原式=-14×198=-17.故选A.5.B[解析]原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12-6x2+6 =-3x2-12x+18=-3(x2+4x)+18.∵x2+4x-4=0,∴x2+4x=4.原式=-3×4+18=6.故选B.6.D [解析]原式=a cb++a bc++b ca+=bb-+cc-+aa-=-37.D [解析](ax+3)(bx2-6x+9)=abx3-6ax2+9ax+3bx2-18x+27=abx3-(6a-3b)x2+(9a-18)x+27.依题意可得630,9180.a ba-=⎧⎨-=⎩解得2,4.ab=⎧⎨=⎩8.24ab9.m2-4n2+12n-910.a[解析]原式=(23aa--93a-)÷3aa+=293aa--÷3aa+=(a+3)·3aa+=a.11.2[解析]原式=x2-2x+1-x2+3x+x2-4=x2+x-3.因为x2+x-5=0,所以x2+x=5.所以原式=5-3=2.12.12,-12;1021[解析]∵1(21)(21)n n-+=2121a bn n+-+=(21)(21)(21)(21)a nb nn n++--+=2()()(21)(21)a b n a bn n++--+,∴对任意自然数n,等式2(a+b)n+a-b=1都成立.∴0,1.a ba b+=⎧⎨-=⎩解得a=12,b=-12.∴m=12(1-13+13-15+…+119-121)=12(1-121)=1021.13.解:原式=x2-2xy+y2-x2+4y2=-2xy+5y2.①+②得:3x=-3,即x=-1.把x=-1代入①,求得y=15.所以原式=-2×(-1)×15+5×(15)2=25+15=35.14.解:原式=x2-y2-2x2+4y2=-x2+3y2.当x=-1,y时,原式=-1+1=0.15.解:原式=21(45)1a a a ----÷2(1)a a a --=2(2)1a a --·(1)2a a a --=a 2-2a . 当a =-1时,原式=(-1)2-2×(-1)=3.16.解:(1)原式=[2(1)(1)(1)x x x x +-+-2(1)(1)x x x --]•1x x + =(21xx --1xx -)•1x x + =1x x -•1x x +=11x x +-.当x =3时,原式=3131+-=2;(2)如果11x x +-=-1,那么x +1=-x +1.解得x =0.当x =0时,除式1xx +=0,原式无意义.故原代数式的值不能等于-1.。
初中数学代数式求值精选练习题及答案

初中数学代数式求值精选练习题及答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;2、已知2m6+ m4= 3,求m的值;3、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2的值;4、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;5、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;6、已知m a=2,m a+b=14,求代数式√m a + m b的值;7、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;8、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;9、已知x=√2+√3,求代数式x2−2√3x-4的值;10、已知m +n =-5,求代数式m2- 10n- n2的值。
参考答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;解:已知3a-b+2c=7将上式变换一下,得b=3a+2c-7---------------①将①代入5a+4b-3c=6,得5a+4(3a+2c-7)-3c =6整理,得17a+5c=34---------------②代数式a+11b-12c将①代入=a+11(3a+2c-7)-12c=34a+10c-77=2(17a+5c)-77将②代入=2×34-77=-92、已知2m6+ m4= 3,求m的值;解:2m6+ m4= 32(m2)3+ (m2)2= 3令m2=t,原式则为2t3 + t2 =32t3 + t2 -3 =02t3 + t2 -2-1 =0(2t3 - 2)+(t2 -1)=02(t3 -1)+(t2 -1)=02(t-1)(t2 +t+1)+(t+1)(t-1)=0 (t-1)〔2(t2 +t+1)+(t+1)〕=0(t-1)(2t2 +3t+3)=0因为2t2 +3t+3 =2(t+34)2+ 158>0所以2t2 +3t+3≠0故:只有t-1=0即t=1又m2=t所以m2=1,得m=±1故:m的值为±13、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2解:x2 −3x−27=0x2 −3x−27−1= -1x2 −3x−28= -1(x+4)(x-7)= -1等号两边同时除以(x+4),得X -7= −1x+4等号两边同时乘以-1,得7-x = 1x+4-----------------①代数式1(x+4)2+(x+4)2=(1x+4)2+2×1x+4×(x+4)+(x+4)2-2=〔1x+4+(x+4)〕2-2将①带入,用7-x替换1x+4=〔(7−x)+(x+4)〕2-2 =(11)2-2=1094、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;解:xy=28-------------------①yz=48-------------------②xz=84-------------------③三个等式相乘,得(xyz)2= 28*48*84=(4*7)*(4*12)*(7*12)(xyz)2=(4∗7∗12)2因为x,y,z为正数所以xyz =4∗7∗12 -----④④÷①,得:z=12④÷②,得:x=7④÷③,得:y=4代数式x+2y+3z将x=7,y=4,z=12代入=7+2*4+3*12=515、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;解:a= 2b−3等式两边同时乘以b-3,得ab-3a=2上式变换一下,得ab=3a+2--------------①代数式6ab+3a(2-3b)+3a+7=6ab+6a-9ab+3a+7=-3ab+9a+7将①代入=-3(3a+2)+9a+7=-9a-6+9a+7=16、已知m a=2,m a+b=14,求代数式√m a + m b的值;解:m a+b=14m a×m b=14已知m a=2--------------①即:2 ×m b=14m b= 7-------------②代数式√m a + m b将①②代入=√2+7=37、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;解:因为x,y,z为整数且x2+ y2+z2=5若其中一个数为±3,它的平方为9,显然大于5所以:x,y,z只能取±2,±1, 0 -------------------①(A)设x= -2,因为x+y+z=3,所以y+z=5,这时y或z必定有一个取±3或±4或±5,不符合①,所以舍去;(B)设x= 2因为x+y+z=3,所以y+z=1即:y=1-z--------------------------②又x2+ y2+z2=5,所以y2+z2=1-------③将②代入③(1−z)2+z2=12z2-2z=0解得:z=0,或z=1对应的y=1或0整理得:{x=2y=0x=1或{x=2y=1z=0求代数式(x3+y3+ z3)-10=(23+03+ 13)-10=-1(C)设x= -1因为x+y+z=3,所以y+z=4,因为x,y,z只能取±2,±1, 0所以,这时只能是:y=z=2整理得:{x=−1 y=2 x=2求代数式(x3+y3+ z3)-10=(−13+23+ 23)-10=5(D)设x= 1因为x+y+z=3,所以y+z=2,即y=2- z又x2+ y2+z2=5,所以y2+z2=4将y=2- z代入(2−z)2+z2=4化简,得2z2-4z=0解得:z=0,或z=2对应y=2或y=0整理得:{x=1y=0x=2或{x=1y=2z=0求代数式(x3+y3+ z3)-10=(13+23+ 03)-10= -1(E)设x= 0因为x+y+z=3,所以y+z=3,即y=3- z又x2+ y2+z2=5,所以y2+z2=5将y=3- z代入(3−z)2+z2=5化简,得2z2-6z+4=0,即z2-3z+2=0即(z-2)(z-1)=0解得:z=2或z=1对应:y=1或y=2整理得:{x=0y=2x=1或{x=0y=1z=2求代数式(x3+y3+ z3)-10=(03+23+ 13)-10= -18、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;解:m2-n2=12(m +n)(m -n)=12两边同时平方,得(m + n)2(m−n)2=144将(m+n)2= 16代入16*(m−n)2=144(m−n)2=9等号左边展开:m2-2mn + n2=9------------①又(m+n)2= 16等号左边展开:m2+2mn + n2=16-----------②②-①,得4mn=7代数式8mn+9=2*4mn+9=2*7+9=239、已知x=√2+√3,求代数式x2−2√3x-4的值;解:x=√2+√3x= √2−√3(√2+√3)(√2−√3)= √2−√32−3=√2−√3−1=√3-√2--------------①x2 = (√3 − √2)2 =3+2-2√6=5-2√6---------------------②代数式x2−2√3x−4将①②代入=(5-2√6)-2√3(√3-√2)+4=5-2√6-6+2√6+4=310、已知m +n =-5,求代数式m2- 10n- n2的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国初中(初二)数学竞赛辅导
第六讲代数式的求值
代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.
1.利用因式分解方法求值
因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.
分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.
解已知条件可变形为3x2+3x-1=0,所以
6x4+15x3+10x2
=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1
=(3x2+3x-1)(2z2+3x+1)+1
=0+1=1.
说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.
例2 已知a,b,c为实数,且满足下式:
a2+b2+c2=1,①
求a+b+c的值.
解将②式因式分解变形如下
即
所以
a+b+c=0或bc+ac+ab=0.
若bc+ac+ab=0,则
(a+b+c)2=a2+b2+c2+2(bc+ac+ab)
=a2+b2+c2=1,
所以 a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:
即
前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.
2.利用乘法公式求值
例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.
解因为x+y=m,所以
m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,
所以
求x2+6xy+y2的值.
分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.
解 x2+6xy+y2=x2+2xy+y2+4xy
=(x+y)2+4xy
3.设参数法与换元法求值
如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.
分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.
x=(a-b)k,y=(b-c)k,z=(c-a)k.
所以
x+y+z=(a-b)k+(b-c)k+(c-a)k=0.
u+v+w=1,①
由②有
把①两边平方得
u2+v2+w2+2(uv+vw+wu)=1,
所以u2+v2+w2=1,
即
两边平方有
所以
4.利用非负数的性质求值
若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.
例8 若x2-4x+|3x-y|=-4,求y x的值.
分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.
因为x2-4x+|3x-y|=-4,所以
x2-4x+4+|3x-y|=0,
即 (x-2)2+|3x-y|=0.
所以 y x=62=36.
例9 未知数x,y满足
(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y 的值.
分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.
将已知等式变形为
m2x2+m2y2-2mxy-2mny+y2+n2=0,
(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.
5.利用分式、根式的性质求值
分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.
例10 已知xyzt=1,求下面代数式的值:
分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.
解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.
同理
分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是
分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)
将①,②代入原式有
练习六
2.已知x+y=a,x2+y2=b2,求x4+y4的值.
3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.
5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.
8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.。