驻波管法测定吸声材料的吸声系数1
驻波管法测吸声系数实验报告

驻波管法测吸声系数实验报告1.引言1.1 概述驻波管法测吸声系数实验是一种常用的方法,用于评估材料对声波的吸声性能。
随着现代科技的不断发展,噪音污染问题日益突出,吸声材料的研究和应用变得尤为重要。
驻波管法测吸声系数实验通过测量材料对声波的吸收能力,来评估材料的吸声性能,并为吸声材料的筛选、设计和应用提供有力的依据。
本实验报告旨在详细介绍驻波管法测吸声系数的原理和方法,并给出实验的具体步骤和过程。
在实验中,我们使用了驻波管法来测量吸声材料的吸声系数,首先通过建立一个封闭的管道系统,利用声源发出特定频率的声波,然后引入待测材料,通过测量管道的输入输出声压,计算出材料的吸声系数。
在实验过程中,我们还控制了声波的频率和角度,以获得更具代表性和准确性的测量结果。
通过本实验,我们可以了解材料对声波的吸收特性,并评估它们在不同频率下的吸声能力。
这对于吸声材料的研究和开发有着重要的意义。
同时,通过分析实验结果,我们可以进一步探讨实验的局限性,并提出改进的方向。
这将有助于提高驻波管法测吸声系数实验的精确性和可靠性,进一步推动吸声材料领域的发展和应用。
1.2 文章结构本篇实验报告将按照以下结构进行阐述:第一部分是引言部分,主要包含概述、文章结构和目的。
在概述中,将简要介绍驻波管法测吸声系数实验的背景和相关理论知识。
接着,文章结构部分将列举出本文内容的大纲和组织结构,以便读者了解全文的框架和内容安排。
最后,明确报告的目的,指出撰写报告的目标和意义。
第二部分是正文部分,主要分为两个小节。
第一个小节是驻波管法测吸声系数的原理和方法,将详细介绍该实验方法的基本原理和具体步骤。
这包括吸声系数的定义、计算公式、实验装置和测量原理等内容。
第二个小节是实验过程和步骤,将按照实验流程一步一步地描述实验的具体操作过程,包括准备工作、实验参数设置、数据采集和处理等内容。
第三部分是结论部分,包括实验结果分析和实验的局限性和改进方向。
通过对实验数据的分析和讨论,总结出相关结论,并对实验过程中存在的局限性和改进方向进行说明和建议。
驻波管法测定材料的吸声系数实验

特性。吸声系数定义为材料吸收的声能与入射到材料上的总声
能之比:
α = Ea = Ei − Er = 1− r
Ei
Ei
式中Ei为入射声能,Ea为被材料或结构吸收的声能, Er为被
材料或结构反射的声能,r为反射系数。
实验一 驻波管法测定材料的吸声系数实验
式中Ei为入射声能,Ea为被材料或结构吸收的声能,Er为被材料 或结构反射的声能,r为反射系数。来自环境物理工程实验考核办法
应考核的综合素质点:
1) 对实验原理的理解掌握程度; 2) 实验仪器的使用及操作技能; 3) 实验报告撰写的规范性; 4) 对实验结果及分析讨论的针对性、科学性; 5) 实验中的应变、创新能力。
环境物理工程实验考核办法
成绩评定要素:
1) 实验准备15%; 2) 实验操作40%; 3) 实验报告45%。
基本性 实验
环境物理工程实验考核办法
序 实验名称 号
实验内容
实验 应运用的主要知识点 主要培养的技能点
性质
1) 室外不同功能区环境 1) 环境振动及其评
实 验 三
振动测量
环境振动 测量
2) 不同室内场所环境振 动测量
价量 2) 环境振动的影响 及危害
3) 环境振动的测定
1) 熟练掌握环境振 动的测量及评价方 法 2) 熟悉环境振动的 危害及控制方法
实验一 驻波管法测定材料的吸声系数实验
(2) 驻波管方法
驻波管为一根内壁光滑而坚硬的管子,管子的末端安 装吸声材料试件,试件可按使用要求紧贴末端刚性活 塞表面,也可留在空腔内。驻波管的另一端为由音频 (低频) 信号发生器通过扬声器向管内发出不同频率的 单频信号,相应频率的声波是平面声波。设入射声波 的声压为Pi,投射于材料时,必有相位相反的声波反 射指向声源,其反射声压为Pr,声波在管内多次来回 反射,即形成了驻波,管内出现了声压极大值Pmax和 极小值Pmin,通过探管可探测到声压极大值Pmax和极小 值Pmin,及离开材料表面的距离。
实验三-混响室法吸声材料无规入射吸声系数的测量

实验三 混响室法吸声材料无规入射吸声系数的测量一、实验目的驻波管法测得的吸声系数仅反映了声波垂直入射到材料外表的声吸收,但实际使用中声波入射到材料外表的方向是随机的。
因此,通过此实验,我们要理解实际工程应用中常常采用的混响室法测量材料的无规入射吸声系数的方法。
二、实验原理声源在封闭空间启动后,就产生混响声,而在声源停顿发声后,室内空间的混响声逐渐衰减,声压级衰减60dB 的时间定义为混响时间。
当房间的体积确定后,混响时间的长短与房间内的吸声才能有关。
根据这一关系,吸声材料或物体的无规入射吸声系数就可以通过在混响室内的混响时间的测量来进展。
在混响室中未安装吸声材料前,空室时的总的吸声量1A 表示为:111155.34VA mV c T =+ 在安装了面积为S 的吸声材料后,总的吸声量2A 可表示为:V m T c VA 222243.55+=式中:1A 、2A 为空室时和安装材料后室内总的吸声量,m 2;1T 、2T 为安装材料前后混响室的混响时间,s ;V 为混响室体积,m 3;1c 、2c 为安装材料前后测量时的声速,m/s ; 1m 、2m 为安装材料前后室内空气吸收衰减系数;假设两次测量的时间间隔比较短或室内温度及湿度相差较小,可近似认为c c c ==12,m m m ==12。
由此计算出被测试件的无规入射吸声系数s α为〔其中S 为被测试件面积,m 2〕:⎪⎪⎭⎫ ⎝⎛-=12113.55T T cSV s α三、实验仪器AWA6290A 型多通道噪声与振动频谱分析仪,AWA 吸声系数测量软件包,十二面发声体。
混响室应具有光滑坚硬的内壁,其无规入射吸声系数应尽量地小,壁面常用瓷砖、水磨石、大理石等材料。
混响室要具有良好的隔声和隔振性能。
按标准要求,混响室体积应大于200m 3。
四、实验步骤1.安装测试系统,测试空室混响时间。
2.将测试传声器放置在第一个测点,翻开信号源并调整到所需测试的频率范围,调整功率放大器使得在室内获得足够声级。
驻波管法吸声系数与声阻抗率测量规范

更新规范 中华人民共和国国家标准驻波管法吸声系数与声阻抗率测量规范GBJ 88-85主编单位:同济大学批准部门:中华人民共和国国家计划委员会施行日期:1986年6月1日关于发布《驻波管法吸声系数与声阻抗率测量规范》的通知计标〔1986〕04号根据原国家建委(81)建发设字第546号通知的要求,由全国声学标准化技术委员会负责归口组织,具体由同济大学会同有关单位编制《驻波管法吸声系数与声阻抗率测量规范》,已经全国声学标准化技术委员会会审。
现批准《驻波管法吸声系数与声阻抗率测量规范》GBJ88—85为国家标准,自一九八六年六月一日起施行。
本规范具体解释等工作由同济大学负责。
国家计划委员会1985年12月31日编制说明本规范是根据原国家基本建设委员会(81)建发设字546号文的要求,由全国声学标准化技术委员会委托同济大学负责编制的。
在本规范的编制过程中,编制单位调查研究了国内有关单位的实践经验和研究成果,收集并分析了国外同类测量标准及有关技术资料,对一些重要内容作了较系统的对比试验以及相应的理论分析,提出了规范征求意见稿。
广泛征询了国内各有关单位的意见,并召开了座谈会,经反复修改提出了送审稿。
经全国声学标准化技术委员会建筑声学分委员会讨论同意,最后由全国声学标准化技术委员会审查定稿。
本规范共五章及七个附录。
内容包括:测量设备、测量方法、测量范围和测量要求。
在本规范施行过程中,希各单位注意积累资料,认真总结经验,如发现有需要修改或补充之处,请将意见和有关资料寄交同济大学声学研究所,以供今后修订时参考。
同济大学1985年12月更新规范 第一章 总则第 1.0.1条 为了统一驻波管测量,便于测量数据的相互比较,特制订本规范。
第1.0.2条 本规范适用于吸收空气声的吸声材料和吸声构件。
采用驻波管测量法向入射时的吸声系数和法向声阻抗率。
更新规范 第二章 测量基本设备第一节 测量装置第2.1.1条 驻波管测量的设备,应由驻波管、声源系统、探测器及输出指示装置等部分所组成,如图2.1.1所示。
阻抗管工作原理和使用-测量吸声系数和传声损失

建筑装饰材料的吸声系数如何计算

建筑装饰材料的吸声系数如何计算来源:网络收集如何计算建筑装饰材料的吸声系数测量材料吸声系数的方法有两种,一种是混响室法,一种是驻波管法。
混响室法测量声音无规入射时的吸声系数,即声音由四面八方射入材料时能量损失的比例,而驻波管法测量声音正入射时的吸声系数,声音入射角度仅为90度。
两种方法测量的吸声系数是不同的,工程上最常使用的是混响室法测量的吸声系数,因为建筑实际应用中声音入射都是无规的。
在某些测量报告中会出现吸声系数大于1的情况,这是由于测量的实验室条件等造成的,理论上任何材料吸收的声能不可能大于入射声能,吸声系数永远小于1。
任何大于1的测量吸声系数值在实际声学工程计算中都不能按大于1使用,最多按1进行计算。
在房间中,声音会很快充满各个角落,因此,将吸声材料放置在房间任何表面都有吸声效果。
吸声材料吸声系数越大,吸声面积越多,吸声效果越明显。
用ANSYS来计算样品吸声系数驻波管法(主要部分是一根圆柱形钢管),管内径9.5cm,管外径10cm,管长100cm,管的一端内放置被测样品(一种吸声材料,形状制成圆柱状,恰好可放入管内,样品厚8cm),管的另一端有一声源(喇叭),向管内发射某一频率的声波,声波经管内空气传播到样品表面,一部分声波被样品吸收,另有一部分声波被反射回来,反射声波与入射声波的传播方向相反,互相叠加后,在管内形成驻波,波腹处形成声压极大值,波节处形成声压极小值,实验中测得距样品最近的声压极大值和极小值,可由公式算出样品的吸声系数。
吸声是声波撞击到材料表面后能量损失的现象,吸声可以降低室内声压级。
描述吸声的指标是吸声系数a,代表被材料吸收的声能与入射声能的比值。
理论上,如果某种材料完全反射声音,那么它的a=0;如果某种材料将入射声能全部吸收,那么它的a=1。
事实上,所有材料的a介于0和1之间,也就是不可能全部反射,也不可能全部吸收。
不同频率上会有不同的吸声系数。
人们使用吸声系数频率特性曲线描述材料在不同频率上的吸声性能。
实验三驻波管法吸声材料垂直人射吸声系数的测量

实验三 驻波管法吸声材料垂直人射吸声系数的测量一、实验目的本实验可以加深对垂直入射吸声系数的理解,了解人耳听觉的频率范围,获得对一些频率纯音的感性认识。
有关本实验详细内容和要求,请参照国家标准GBJ88-85《驻波管法吸声系数与声阻抗率测量规范》。
二、实验原理驻波管法测试原理在驻波管中传播平面波的频率范围内,声波入射到管中,再从试件表面反射回来,入射波和反射波叠加后在管中形成驻波。
由此形成沿驻波管长度方向声压极大值与极小值的交替分布。
用试件的反射系数r 来表示声压极大值与极小值,可写成: max 0(1)p p r =+ (4-1)min 0(1)p p r =− (4-2)根据吸声系数的定义,吸声系数与反射系数的关系可写成:201r α=− (4-3)定义驻波比S 为: min maxp S p = (4-4) 吸声系数可用驻波比表示为:024(1)S S α=+ (4-5) 因此,只要确定声压极大和极小的比值,即可计算出吸声系数。
如果实际测得的是声压级的极大值和极小值,计两者之差为p L ,则根据第二章中介绍的声压和声压级之间的关系,可由下式计算吸声系数:(20)0(20)2410(110)pp L L α×=+ (4-6) 三、实验内容1. 测试装置描述典型的测量材料吸声系数用的驻波管系统如图4-1所示。
其主要部分是一根内壁坚硬光滑,截面均匀的管子(圆管或方管),管子的一端用以安装被测试材料样品,管子的另一端为扬声器。
当扬声器向管中辐射的声波频率与管子截面的几何尺寸满足式(4-7)或式(4-8)的关系时,则在管中只有沿管轴方向传播的平面波。
图4-1 驻波管结构及测量装置01.84c f Dπ<(圆管) (4-7) 02c f L < (方管) (4-8) 式中:D ——圆管直径,m ;L ——方管边长,m ;0c ——空气中声速,m/s 。
平面声波传播到材料表面被反射回来,这样入射声波与反射声波在管中叠加而形成驻波声场。
驻波管法测定材料的吸声系数实验

样品参数:直径95mm,厚1cm。 驻波峰值、谷值测定数据见表1。 材料二:镀锌钢板共振穿孔板吸声材料。 样品参数:直径100mm,板厚1cm,腔深5cm,穿孔率 1.37%,孔径1.2mm,孔距7mm。 驻波峰值、谷值测定数据见表2。
实验一 驻波管法测定材料的吸声系数实验
表 1 材料一数据记录
频率
751 942
110.2 85.8
796 941
average
峰
谷
121.9 80.2
--
--
131.3 91.9
--
--
126.8* 92.85
--
--
127.0 95.7
--
--
110.2 85.3
--
--
实验一 驻波管法测定材料的吸声系数实验
表 1 材料一数据记录 (续)
频率
800Hz 1234mV 900Hz 3456mV 1000Hz 1000mV 1400Hz 2000mV 2000Hz 2500mV
基本性 实验
环境物理工程实验考核办法
序 实验名称 号
实验内容
实验 应运用的主要知识点 主要培养的技能点
性质
1) 室外不同功能区环境 1) 环境振动及其评
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
驻波管法测定吸声材料的吸声系数
【实验目的】
(1)了解人耳听觉得频率范围,获得对一些频率纯音得感性认识。
(2)加深对垂直入射吸声系数得理解,熟悉驻波管法是测定材料的吸声系数的方法。
【实验原理】
测量装置
1测试车2导轨3声源箱4驻波管(分低、高频两种)
测量原理
驻波管为一金属(塑料)直管,它的一端可以用夹具安装试件,另一端接好扬声器,声频讯号由声频发生器产生,经放大器进行放大,由扬声器发出单频声波,声波在驻波管内传播,由于管径较小,与音频声波的波长相比,可近似将声波面看作为平面入射波,沿管内直线传播;当入射到试件后,进行反射,由于反射波与入射波传递的方向和相位相反,声压产生叠加,干涉而形成驻波,并在管内某个位置上形成声压极大值Pmax(2
N),t和声压极较小值Pmin,其间距
/m
为l/4波长。
11E E r
-=-=γα
式中:α —————吸声系数
γ—————反射系数
Eo —————入射声能(W)
Er —————反射声能(W)
令n P P =min max / 称为驻波比..................(1) 故有:24/(1)n n α=+ (2)
一般频谱分析仪或声级计,测试的标称值是声压级,而不是声压P 值,根据声压和声压级的关系,吸声系数可如下计算。
n P P L L L lg 20m in/lg 20m ax /lg 20m in m ax 00=Φ-Φ=-=∆
20
2
204*10(110
)
P
P
L L a =
+ (3)
【测量方法】
(1) 电路接线正确后,信号发生器等电子仪器电源接通。
(2) 将试件按照要求装在试件筒内,并用凡士林将试件与筒壁接触处的缝隙填
塞,使之严密,然后再用夹具将试件筒固定在驻波管上。
(3) 调节声频发生器的频率,依次发出200、250、315、400、500、630、
800、1000、1250、1600、2000Hz 不同的声频。
在设置仪器输出信号的频率时,测量到的声压级波峰值不超过136分贝,声压级波谷值不低于50分贝。
(4) 将滑块移到最远处,,移动仪器屏幕上的光标,到所测量的频率的第一个峰
值位置(1/4波长)缓慢移动滑块,同时读取光标位置显示的声压级,并记录滑块所在位置的刻度,按F7自动计算吸声系数。
(5) 移动屏幕上的光标,到所要测量的频率的第一个波谷位置,缓慢移动滑块同
时读取光标位置显示的声压级,并记录滑块所在位置的刻度。
按F7自动计算吸声系数。
(6) 移动仪器屏幕的光标,到所要测量的频率的第二个波峰、波谷位置,重复(4)、
(5)操作,可得到第二个波峰、波谷的值。
(7)重复(4)、(5)、(6)的操作,可得到不同频率的吸声系数。
【注意事项】
(1)使用过程中信号线与信号接地线不能短接,以免烧坏仪器。
(2)关机前请按F10退出测试软件,以便保存仪器的测试状态。
附:
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。