二次函数讲解(比较详细)

合集下载

九年级二次函数全部知识点

九年级二次函数全部知识点

九年级二次函数全部知识点二次函数是数学中的一种重要的函数类型,它在实际生活中有着广泛的应用。

九年级是初中阶段的最后一年,二次函数是九年级数学的重要内容之一。

本文将介绍九年级二次函数的全部知识点,包括定义、图像、性质、解析式等,希望能够帮助同学们更好地掌握这一知识。

一、二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是常数,并且a ≠ 0。

二次函数中的自变量x是实数,函数值f(x)也是实数。

二次函数的定义域是所有实数集合。

二、二次函数的图像二次函数的图像是一个抛物线,对称轴是垂直于x轴的一条直线。

当a > 0时,抛物线开口朝上;当a < 0时,抛物线开口朝下。

三、二次函数的顶点及最值二次函数的顶点是抛物线的最高点或最低点,其坐标为(h,k),其中h是对称轴的横坐标,k是对称轴与抛物线的交点的纵坐标。

当a > 0时,k为函数的最小值;当a < 0时,k为函数的最大值。

四、二次函数的对称性二次函数的图像关于对称轴是对称的,即对称轴两侧的点关于对称轴上的点有对应关系。

这个对称性质使得我们可以通过观察对称轴两侧的点来了解抛物线的整体形态。

五、二次函数的零点二次函数的零点就是使得函数值等于零的横坐标。

要求二次函数的零点,可以使用因式分解、配方法和求根公式等方法。

六、二次函数和一次函数的关系一次函数是二次函数的特例,当a = 0时,二次函数就变成一次函数。

因此,可以说二次函数是一次函数的推广,二次函数的图像也可以视为一次函数图像的变形。

七、二次函数的解析式二次函数的一般形式是f(x) = ax² + bx + c,其中a、b、c是常数。

根据二次函数的性质,可以通过零点、顶点等信息来确定二次函数的解析式。

八、二次函数的平移和压缩二次函数的平移可以通过改变解析式中的常数来实现,例如改变c可以实现平移,改变a和b可以实现压缩或拉伸。

初中二次函数知识点详解

初中二次函数知识点详解

初中二次函数知识点详解二次函数是一种常见的函数形式,其数学定义为y=ax^2+bx+c,其中a、b、c是实数,且a≠0。

以下是关于二次函数的详细知识点解释:1.二次函数的图像:二次函数的图像一般是一个抛物线。

当a>0时,抛物线开口朝上,称为正抛物线;当a<0时,抛物线开口朝下,称为负抛物线。

2.二次函数的顶点:二次函数的顶点是抛物线的最低或最高点,表示为(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

顶点的横坐标为-h,纵坐标为k。

3.二次函数的对称轴:抛物线关于对称轴对称,对称轴是通过顶点的一条垂直线,表示为x=h。

4.二次函数的轴对称性:抛物线是关于对称轴对称的,即f(x)=f(2h-x)。

这意味着,如果(a,b)在抛物线上,则(2h-a,b)也在抛物线上。

5.二次函数的零点:二次函数零点是函数图像和x轴相交的点,即f(x)=0的解。

求二次函数的零点可以使用因式分解法、配方法或求根公式。

6. 二次函数的判别式:二次函数的判别式可以通过b^2-4ac来计算。

判别式的值可以用来判断二次函数的根的性质。

如果判别式大于0,函数有两个不相等的实根;如果判别式等于0,函数有两个相等的实根;如果判别式小于0,函数没有实根。

7.二次函数的最值:如果a>0,则二次函数的最小值为顶点的纵坐标k,不存在最大值;如果a<0,则二次函数的最大值为顶点的纵坐标k,不存在最小值。

8. 二次函数的图像平移:二次函数的图像可以通过改变顶点的横坐标和纵坐标来进行平移操作。

将二次函数y=ax^2+bx+c平移(h,k)个单位,得到y=a(x-h)^2+k。

9.二次函数的图像拉伸与压缩:二次函数的图像可以通过改变a的值来进行拉伸或压缩操作。

当,a,>1时,抛物线的开口会变窄,图像拉伸;当0<,a,<1时,抛物线的开口会变宽,图像压缩。

10.二次函数的应用:二次函数可以用来描述许多自然现象和物理问题,例如物体自由落体运动的高度和时间的关系、抛体运动的轨迹等等。

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b / 2a 。

抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。

三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。

函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。

2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。

函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。

五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。

向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。

向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。

六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。

二次函数的相关知识点总结

二次函数的相关知识点总结

二次函数的相关知识点总结一、二次函数的概念。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。

- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。

二、二次函数的图象。

1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

2. 抛物线的顶点坐标。

- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。

根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。

3. 抛物线的对称轴。

- 对称轴方程为x =-(b)/(2a)。

4. 抛物线的开口方向。

- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。

三、二次函数的性质。

1. 增减性。

- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。

- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。

2. 最值。

- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。

解析二次函数

解析二次函数

解析二次函数二次函数在数学中是一种基本的二次多项式函数,也是一种常见的函数类型。

它的一般形式是 f(x) = ax² + bx + c,其中 a、b 和 c 都是实数,且a ≠ 0。

二次函数具有许多重要的性质和应用,以下将对其进行详细分析和解释。

一、二次函数的基本性质1. 对称轴:二次函数的对称轴是 x = -b/(2a)。

对称轴将函数图像分为左右对称的两部分,该点也是二次函数的极值点。

2. 开口方向:当 a > 0 时,二次函数的图像开口向上;当 a < 0 时,二次函数的图像开口向下。

3. 零点:二次函数的零点是函数与 x 轴相交的点,它可以通过求解二次方程 ax²+bx+c=0 来求得。

4. 极值点:当 a > 0 时,二次函数的极小值为 y = c - b²/(4a),极小值点横坐标为 -b/(2a);当 a < 0 时,二次函数的极大值为 y = c - b²/(4a),极大值点横坐标为 -b/(2a)。

5. 单调性:当 a > 0 时,二次函数在对称轴左侧单调递减,在对称轴右侧单调递增;当 a < 0 时,二次函数在对称轴左侧单调递增,在对称轴右侧单调递减。

二、二次函数的图像及其变化二次函数是一个连续光滑的函数,在平面直角坐标系中其图像是一个开口向上或向下的抛物线。

对于二次函数 f(x)=ax²+bx+c,可以通过改变 a、b 或 c 的值来改变该函数的图像。

1. 改变 a 的值:在不改变 b 和 c 的值的情况下,改变 a 的值,可以改变二次函数图像的开口方向,当a 增大(变正)时,图像向上开口;当 a 减小(变负)时,图像向下开口。

2. 改变 b 的值:在不改变 a 和 c 的值的情况下,改变 b 的值,可以改变二次函数图像的左右位置,当 b 增大时,图像向左移动;当 b 减小时,图像向右移动。

二次函数知识点总结(详细)

二次函数知识点总结(详细)

2.已知二次函数 的图象如图所示, 有以下结论: ① ;② ;③ ;④ ;⑤ 其中所有正确结论的序号是( ) A. ①②B. ①③④C. ①②③⑤D. ①②③④⑤3.二次函数 的图象如图所示, 则下列关系式中错误的是( ) A. a <0 B. c >0 C. >0 4、D. >0图12为二次函数 的图象, 给出下列说法:① ;②方程 的根为 ;③ ;④当 时, y 随x 值的增大而增大;⑤当 时, . 其中, 正确的说法有 .(请写出所有正确说法的序号)5.已知=次函数y =ax +bx+c 的图象如图. 则下列5个代数式: ac, a+b+c, 4a -2b+c, 2a+b, 2a -b 中, 其值大于0的个数为( ) A. 2B 3C 、4D 、5四、二次函数解析式的确定 例4.求二次函数解析式:(1)抛物线过(0, 2), (1, 1), (3, 5);(2)顶点M (-1, 2), 且过N (2, 1);(3)已知抛物线过A (1, 0)和B (4, 0)两点, 交y 轴于C 点且BC =5, 求该二次函数的解析式。

(1) 练习: 根据下列条件求关于x 的二次函数的解析式 当x=3时, y 最小值=-1, 且图象过(0, 7)图象过点(0, -2)(1, 2)且对称轴为直线x=图象经过(0, 1)(1, 0)(3, 0)五、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)11 1 Oxy已知抛物线y=x2-2x-8,(1)求证: 该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B, 且它的顶点为P, 求△ABP的面积。

2、1.二次函数y=x2-2x-3图象与x轴交点之间的距离为如图所示, 二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C,则△ABC的面积为( )A.6B.4C.3D.13.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方, 则m 的取值范围是六、直线与二次函数的问题例6 已知: 二次函数为y=x2-x+m, (1)写出它的图像的开口方向, 对称轴及顶点坐标;(2)m为何值时, 顶点在x轴上方, (3)若抛物线与y轴交于A, 过A作AB∥x轴交抛物线于另一点B, 当S△AOB=4时, 求此二次函数的解析式.1.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。

二次函数知识归纳与总结

二次函数知识归纳与总结

二次函数知识归纳与总结二次函数是数学中的重要内容,具有广泛的运用。

下面对二次函数的知识进行归纳与总结。

一、定义与特点二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数。

二次函数的图像呈现抛物线状,开口方向由a的正负决定。

二次函数有以下特点:1.抛物线的开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2.抛物线的对称轴:对称轴的方程为x=-b/2a,对称轴平分抛物线,并且抛物线上的任意点关于对称轴对称。

3.抛物线的顶点:顶点坐标为(-b/2a,f(-b/2a)),其中f(-b/2a)是抛物线上的最值(最大值或最小值)。

4.解析式中的系数:a决定了抛物线的开口方向和抛物线的坡度;b决定了对称轴的位置;c决定了抛物线与y轴的交点。

二、图像与性质1.抛物线的图像:当a>0时,抛物线的图像开口向上,顶点位于y轴上方;当a<0时,抛物线的图像开口向下,顶点位于y轴下方。

2.抛物线的最值:当a>0时,抛物线的最小值为f(-b/2a);当a<0时,抛物线的最大值为f(-b/2a)。

3. 零点与交点:抛物线与x轴的交点称为零点,即解方程ax²+bx+c=0的解;抛物线与y轴的交点坐标为(0,c)。

4.纵轴交点:设抛物线与y轴交于点A,若点A的纵坐标为c>0,则a>0;若点A的纵坐标为c<0,则a<0。

三、解析式的变形与性质1.完全平方:二次函数的解析式中,可通过完全平方的方法将二次项变形为平方项。

例如,x²+4x=0可变形为(x+2)²-4=0。

2. 方程与不等式的解:二次方程ax²+bx+c=0的解可通过因式分解、配方法、求根公式等方法求得。

二次不等式ax²+bx+c>0或ax²+bx+c<0的解可通过图像法分析得到。

3. 判别式:二次函数的判别式Δ=b²-4ac可以判断二次方程的根的情况。

《二次函数》知识点解读

《二次函数》知识点解读

《二次函数》知识点解读
二次函数是指通过变量x的二次多项式来表示函数y的数学函数。


次函数的公式为:
y = ax2 + bx + c
其中a、b与c为常数,a≠0。

一、定义
二次函数就是定义在实数集上的函数,它的定义域上的每个点都与一
个唯一的实数满足一个关系式,而这个关系式则是一个二次多项式的形式。

二、形式形状
二次函数的图像以一条曲线来表示。

其中,当a>0时,曲线的下方为
凹形,当a<0时,曲线的下方为凸形。

其中,凹曲线是由下边界(负无穷)到极值点,再到上边界(正无穷)的缓慢的U型曲线;而凸曲线是由上边
界(正无穷)到极值点,再到下边界(负无穷)的缓慢的倒U型曲线。

三、极值
二次函数有极值点,即极值点是曲线在给定的区间内,曲线上最高点
或最低点。

极值点的左右两边在曲线上的夹角是相等的,我们称极值点是
对称的,极值点位于曲线的最低点,我们称极值点是极小值点,极值点位
于曲线的最高点,我们称极值点是极大值点。

极值点的横坐标x0可以通过求导法计算出来,公式如下:
x0=-b/2a
四、夹点
二次函数的夹点是指曲线在其中一区间内有两个相邻的极值点,而这两极值点之间的区间上不存在极值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中二次函数讲解(比较详细)
定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。

IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。


则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的函数
二次函数的三种表达式
①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k
③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)
以上3种形式可进行如下转化:
①一般式和顶点式的关系
对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交点式的关系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。

抛物线的性质
1.抛物线是轴对称图形。

对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
7.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax^2
y=a(x-h)^2
y=a(x-h)^2+k
y=ax^2+bx+c
顶点坐标
(0,0)
(h,0)
(h,k)
(-b/2a,sqrt[4ac-b^2]/4a)
对称轴
x=0
x=h
x=h
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k 的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k 的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确
定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.。

相关文档
最新文档