一次函数的概念过关练习题

合集下载

第1讲 一次函数的概念及图像(练习)原卷版

第1讲 一次函数的概念及图像(练习)原卷版

第1讲 一次函数的概念及图像(练习)夯实基础一、单选题1.下列函数中,一次函数是( )A .21y x =-B .23y x =+C .3y x =D .y k b =+(k 、b 是常数)2.下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数3.函数y =12x ﹣3的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.直线21y x =-的截距是( )A .1B .1-C .2D .2-5.一次函数y kx k =+的图象可能是( )A .B .C .D .6.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0二、填空题7.若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________.8.已知一次函数()32f x x =+,那么()1f -=______.9.如果23(2)2m y m x -=-+是一次函数,那么m 的值是__________.10.已知某汽车油箱中剩余油量y (升)与汽车行驶里程数x (千米)是一次函数关系,油箱中原有油100升,行驶60千米后的剩余油量为70升,那么行驶120(千米)后油箱中剩余油量为_______.11.把直线y =2x ﹣3沿y 轴方向向上平移4个单位后,所得直线的表达式_____.12.若正比例函数y kx =(k 是常数,0k ¹)的图象经过第二、四象限,则的值可以是_______(写出一个即可).13.已知一次函数y =kx +b 的图象经过点(0,3),则截距为_____.三、解答题14.如图,是甲、乙两种机器人根据电脑程序工作时各自工作量y 关于工作时间x 的函数图像,线段OA 表示甲机器人的工作量1y (吨)关于时间x (时)的函数图像,线段BC 表示乙机器人的工作量2y (吨)关于时间x (时)的函数图像.根据图像信息回答下列填空题.(1)甲种机器人比乙种机器人早开始工作 小时;甲种机器人每小时的工作量是 吨;(2)直线BC 的表达式为 ;当乙种机器人工作5小时后,它完成的工作量是 吨.能力提升一、单选题1.下列函数关系式:①y =2x ;②y =2x +11;③y =3﹣x ;④y =2x.其中一次函数的个数是( )A .1个B .2个C .3个D .4个2.下列函数中图象不经过第三象限的是( )A .y =﹣3x ﹣2B .yC .y x +1D .y =3x +23.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .4.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定5.已知正比例函数y kx =(k 是常数,0k ¹)的函数值y 随x 的增大而减小,则一次函数y x k =-+的图象大致是( )A .B .C .D .6.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( )A .B .C .D .7.如图,已知一次函数y =kx+b 的图象经过A 、B 两点,那么不等式kx+b >0的解集是( )A .x >3B .x <3C .x >5D .x <5二、填空题8.已知点A (2,0)和C (4,0),点P 在正比例函数2y x =上,且A C P S =4,D 则点P 的坐标是__________9.已知:y=(m ﹣1)x |m|+4,当m= _________ 时,图象是一条直线.10.(1)已知函数y =3+(m ―3)x m 是一次函数,则m=________.(2)若函数y =(k +2)x +(k 2―4)是正比例函数,则k =_________.11.我们知道:当2x =时,不论k 取何实数,函数(2)3y k x =-+的值为3,所以直线(2)3y k x =-+一定经过定点(2,3);同样,直线(2)3y k x k =-+一定经过的定点为______.12.已知点()11,x y ,()22,x y 是直线4y kx =-上的两点,且当 1x <2x 时,1y >2y ,则该直线经过______________象限.13.已知,一次函数y kx b =+的图像经过点A (2,1)(如下图所示),当1y ³时,x 的取值范围是______14.己知(),4P a 是直线2y x =+上的一个点,点M 在坐标轴正半轴上,当PM=5时,那么点M 的坐标是___________三、解答题15.已知点A (﹣1,1)是直线y =kx +3上的一点,若该直线和x 轴相交于点B ,求点B 的坐标.16.已知一次函数y=(1-2m)x+m+1(m ≠12),函数值y 随自变量x 值的增大而减小.(1)求m 的取值范围;(2)在平面直角坐标系xOy 中,这个函数的图象与x 轴的交点M 位于x 轴的正半轴还是负半轴?请简述理由.17.已知正比例函数图象经过(﹣2,4).(1)如果点(a ,1)和(﹣1,b )在函数图象上,求a ,b 的值;(2)过图象上一点P 作y 轴的垂线,垂足为Q ,S △OPQ =154,求Q 的坐标.18.一次函数图像经过点(4,-1),且与直线122y x =+平行,求一次函数解析式和这个函数图像与两坐标轴围成的三角形的面积.19.如图,直线3y kx =+与x 轴、y 轴分别相交于E F 、.点E 的坐标为()40-,,点P 是线段EF 上的一点.(1)求k 的值;(2)若OPE D 的面积为2,求点P 的坐标.。

20.1 一次函数的概念(作业)原卷版

20.1 一次函数的概念(作业)原卷版

20.1 一次函数的概念(作业)一、单选题1.(2019·上海普陀区·八年级期末)下列函数中,一次函数是( ).A .y x =B .y kx b =+C .11y x =+D .22y x x=-2.(2020·上海市静安区实验中学八年级课时练习)下列说法中不成立的是( )A .在y=3x ﹣1中y+1与x 成正比例B .在y=﹣2x 中y 与x 成正比例C .在y=2(x+1)中y 与x+1成正比例D .在y=x+3中y 与x 成正比例3.(2020·上海市南汇第四中学八年级月考)下列函数:(1)2y x =-;(2)8y x=-;(3)22y x =;(4)1y x =-+;(5)21y x =+,(6)y kx b =+(k 是常数),其中一次函数的个数是( )A .0个B .1个C .2个D .3个4.(2019·上海市敬业初级中学八年级月考)下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数5.(2020·上海市静安区实验中学八年级课时练习)若函数y=(2m+6)x 2+(1﹣m )x 是正比例函数,则m 的值是( )A .m=﹣3B .m=1C .m=3D .m >﹣3二、填空题6.(2018·上海民办浦东交中初级中学八年级月考)己知一次函数2 4y x =-+的图像经过(),8m ,则m =_______.7.(2019·上海八年级课时练习)把2x ﹣y=3写成y 是x 的函数的形式为 _________ .8.(2019·上海八年级课时练习).如果函数y=(a ﹣2)x+3是一次函数,那么a _________9.(2019·上海八年级课时练习)关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。

一次函数基础训练题

一次函数基础训练题

一次函数基础训练题一、一次函数的定义与表达式1. 题目下列函数中,是一次函数的是()A. y = (1)/(x)+1B. y = x^2+1C. y = 2x 1D. y=√(x)+1解析一次函数的一般形式为y = kx + b(k,b为常数,k≠0)。

选项A,y=(1)/(x)+1是反比例函数与常数函数的和,不是一次函数,因为反比例函数y = (1)/(x)不符合一次函数形式。

选项B,y = x^2+1是二次函数,因为自变量x的次数是2,不符合一次函数自变量次数为1的要求。

选项C,y = 2x 1符合一次函数y = kx + b的形式,其中k = 2,b=-1。

选项D,y=√(x)+1,自变量x在根号下,不是一次函数。

所以答案是C。

2. 题目已知一次函数y=(m 1)x+3,求m的取值范围。

解析因为一次函数的一般形式为y = kx + b(k≠0),在函数y=(m 1)x+3中,k = m 1。

要使函数为一次函数,则m 1≠0,解得m≠1。

二、一次函数的图象与性质1. 题目一次函数y = 2x+1的图象经过哪几个象限?解析对于一次函数y = kx + b(k,b为常数,k≠0),当k>0,b>0时,图象经过一、二、三象限。

在函数y = 2x+1中,k = 2>0,b = 1>0,所以图象经过一、二、三象限。

2. 题目已知一次函数y=-3x + b的图象经过点(1, -1),求b的值,并判断函数图象的单调性。

解析因为函数y=-3x + b的图象经过点(1,-1),将x = 1,y=-1代入函数可得:-1=-3×1 + b-1=-3 + b移项可得b=-1 + 3=2。

对于一次函数y = kx + b,这里k=-3<0,所以函数y=-3x + 2的图象是单调递减的,即y随x的增大而减小。

三、一次函数的应用1. 题目某汽车油箱中原有油100升,汽车每行驶50千米耗油9升,求油箱剩余油量y(升)与汽车行驶路程x(千米)之间的函数关系式。

一次函数的概念练习题

一次函数的概念练习题

一次函数的概念练习题一、选择题1. 下列哪个函数是一次函数?()A. y = 2x^2 + 1B. y = 3x 5C. y = √x + 2D. y = 4/x2. 一次函数y = 3x + 2的斜率是()A. 3B. 3C. 2D. 23. 一次函数y = kx + b中,当k > 0时,函数的图像经过()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 一次函数y = x + 4的截距是()A. 4B. 4C. 0D. 1二、填空题1. 一次函数的一般形式是_________。

2. 一次函数y = 5x 3的斜率为_________,截距为_________。

3. 当x = 0时,一次函数y = 2x + 1的值为_________。

4. 已知一次函数的图像经过点(2, 3)和(4, 7),则该函数的表达式为_________。

三、解答题1. 判断下列各小题中,哪些是一次函数,并说明理由:(1)y = 4(2)y = 2x 3x + 1(3)y = 1/x + 22. 已知一次函数的图像经过点(1, 2)和(1, 4),求该一次函数的表达式。

3. 一次函数y = kx + b的图像经过点(0, 3)和(2, 7),求k和b 的值。

4. 设一次函数y = kx + b的图像与x轴和y轴的交点分别为A和B,若|OA| = 3,|OB| = 4,求该一次函数的表达式。

四、判断题1. 一次函数的图像是一条直线,这条直线可以与坐标轴相交。

()2. 一次函数的斜率表示函数图像的倾斜程度,斜率越大,图像越陡峭。

()3. 所有的一次函数图像都会经过原点(0, 0)。

()4. 如果两个一次函数的斜率相同,那么它们的图像一定是平行的。

()五、匹配题将下列一次函数与其对应的图像特点进行匹配:A. y = 2x + 1B. y = x 2C. y = 3xD. y = 3x + 41. 图像经过第一、二、三象限2. 图像经过第二、三、四象限3. 图像经过第一、三象限,且与y轴相交于正半轴4. 图像经过第一、四象限,且与x轴相交于负半轴六、作图题1. 在坐标纸上画出一次函数y = 2x 3的图像。

20.1一次函数的概念(4种题型基础练+提升练)(原卷版)

20.1一次函数的概念(4种题型基础练+提升练)(原卷版)

20.1一次函数的概念(4种题型基础练+提升练)
题型一:识别一次函数
题型二:根据一次函数的定义求参数
题型三:求一次函数自变量或函数值
一、单选题
1.(2023下·上海·八年级专题练习)已知点()1,2A 在一次函数3y x m =-的图象上,则m 等于( )A .3
-B .2-C .0D .1
二、填空题
题型四:列一次函数解析式并求值
一、填空题
二、解答题
一、单选题
二、填空题
三、解答题
(1)求A,C坐标;
(2)若点Q(a,2a﹣6)位于第一象限内,问点
若能,请求出此时a的值,若不能,请说明理由.
(1)当△ABC是以BC为底的等腰三角形时,求点A的坐标;
(2)当△ABC的面积为4时,求点A的坐标;
(3)在直线l上是否存在点A,使∠BAC=90°?若存在,求出点A的坐标;若不存在请说明理由.。

一次函数专题训练题

一次函数专题训练题

一次函数专题训练题以下是一些关于一次函数的专题训练题,希望能帮助学生更加深入地理解和掌握一次函数的知识。

1.已知函数f(x) = ax + b中,a为正数,b为负数。

当x = 2时,f(x) = 5,求a和b的值。

解:根据已知条件,我们有f(2)=5,代入函数表达式,得到5=a(2)+b。

我们可以进一步整理方程,得到2a+b=52.已知函数g(x)=3x-1,求函数g(x)的自变量x为多少时,函数值等于10。

解:根据已知条件,我们要求g(x)=10,代入函数表达式,得到10=3x-1、我们可以进一步整理方程,得到3x=11,解得x=11/33.已知函数h(x)=-4x+7,求函数h(x)的自变量x为多少时,函数值等于0。

解:根据已知条件,我们要求h(x)=0,代入函数表达式,得到0=-4x+7、我们可以进一步整理方程,得到4x=7,解得x=7/44.已知函数p(x)=2x+3,求函数p(x)的自变量x为多少时,函数值等于-1解:根据已知条件,我们要求p(x)=-1,代入函数表达式,得到-1=2x+3、我们可以进一步整理方程,得到2x=-4,解得x=-25.已知函数q(x)=5-6x,求函数q(x)的自变量x为多少时,函数值等于-8解:根据已知条件,我们要求q(x)=-8,代入函数表达式,得到-8=5-6x。

我们可以进一步整理方程,得到6x=13,解得x=13/66.已知函数r(x)=-3x+2,求函数r(x)的自变量x为多少时,函数值等于-5解:根据已知条件,我们要求r(x)=-5,代入函数表达式,得到-5=-3x+2、我们可以进一步整理方程,得到-3x=-7,解得x=-7/-3=7/37.已知函数s(x) = kx + 4,当x = 7时,函数值为15,求k的值。

解:根据已知条件,我们有s(7)=15,代入函数表达式,得到15=k(7)+4、我们可以进一步整理方程,得到7k=11,解得k=11/78.已知函数t(x)=6x-5,当函数t(x)的自变量x为多少时,函数值为0?解:根据已知条件,我们要求t(x)=0,代入函数表达式,得到0=6x-5、我们可以进一步整理方程,得到6x=5,解得x=5/69.已知函数u(x)=-2x+k,当函数u(x)的自变量x为多少时,函数值等于k?解:根据已知条件,我们要求u(x)=k,代入函数表达式,得到k=-2x+k。

一次函数概念课堂练习

一次函数概念课堂练习

一次函数的概念课堂练习1.下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x ( 5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个2.已知点(-4,y 1),(2,y 2)都在直线y=- 12x+2上,则y 1 y 2大小关系是( ) (A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较3、判断下列变化过程中,两变量存在函数关系的是( )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间.4、下列函数关系式:①x y -=;②;112+=x y ③x x y +=2;④xy 1=.其中一次函数的个数是( )A. 1个B.2个C.3个D.4个5.已知一次函数y=3x -b 的图象经过点P(1,1),则该函数图象必经过点( )A.(-1,1)B.(2,2)C.(-2,2)D.(2,-2)6、已知一次函数y=2x+4的图像经过点(m ,8),则m =________。

7.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是8.已知一次函数y=kx+5的图象经过点(-1,2),则k= .9.在一次函数35-=x y 中,已知0=x ,则=y ;若已知2=y ,则=x ;10.当自变量x时,函数4y的值大于0;当x时,函5+=x数4y的值小于0。

=x5+11.已知一次函数y=kx-k+4的图象与y轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

12.已知一次函数y=2x+4的图像经过点(m,8),则m=________。

13.若函数y=mx-(4m-4)的图象过原点,则m=_______,此时函数是__ _ ___•函数.14.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=____,此时函数是__ __函数.15.点M(-2,k)在直线y=2x+1上,求点M到x轴的距离d=16.已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a。

一次函数经典例题20题

一次函数经典例题20题

一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。

本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。

一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。

在这个函数中,x 的次数为 1,因此称为一次函数。

其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。

二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。

在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。

当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。

2.截距截距是指函数图像与坐标轴的交点。

在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。

当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。

3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。

当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。

三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。

解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。

2.已知函数 y=-x+7,求当 x=5 时的函数值。

解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。

3.已知函数 y=3x-2,求函数的斜率。

解:函数的斜率是 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与正比例函数练习题
一.填空题.
1. 有下列函数:①3x y =-; ②8y x -=; ③28(18)y x x x =+-; ④6y x =+; ⑤34y x =-; ⑥235y x =-;其中是正比例函数的有 ,是一次函数 的有 (填代号即可).
2. (1)把等式3y-6x=2化为y kx b =+的形式为 .
(2)已知函数(2)5y m x m =-+-,如果它是一次函数,则m ;若此函数为正比例 函数,则m .
3. (1)已知函数()m
x m y 33-+=是一次函数,则m= . (2)若函数2(2)(4)y k x k =++-是正比例函数,则k = .
4. 一个长为120m,宽为100m 的矩形场地要扩建成一个正方形的场地,设长增加x(m),宽增
加y(m),则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.
5. 根据图中的程序,当输入x=-3时,输出结果y = .
二.选择题.
1. 下列函数:①3y x =;②1y x =-;③213
x y +=;④1y x =.其中一次函数有( ) A.①② B.③④ C.①③ D.②④
2. 一次函数3y kx =+中,当2x =时,y 的值为5,则k 的值为( )
A.1
B.-1
C.5
D.-5
3. 已知两个变量x 和y ,它们之间的3组对应值如下表所示:则y 与x 之间的函数关系式可
能是( )
A.y x =
B.21y x =+
C.21y x x =++
D.3y x
=
4. 下列说法中不正确的是( )
A. 一次函数不一定是正比例函数;
B. 不是一次函数就一定不是正比例函数
C. 正比例函数是特殊的一次函数;
D. 不是正比例函数就不是一次函数
三.解答题.
1.等腰三角形的周长为40 cm ,底边长为y cm ,腰长为x cm.写出y 与x 的函数关系式,并写出函数自变 量的取值范围.
2. 现有400本图书借给学生阅读,每人10本,求余下的书数y (本)和学生人数x (人)之间的函数关 系式,并求自变量x 的取值范围.
3.(1)已知()
()32422--+-=x m x m y 是一次函数,求m 的值。

(2)当k 为何值时,函数52+=k x
y 是一次函数?
(3)当m 为何值时,函数3)1(2-+=m x m y 是一次函数?。

相关文档
最新文档