广东省深圳市南山区育才二中2020年中考数学一模试卷及参考答案

合集下载

【中考数学】2024届广东省深圳市南山区模拟试题(一模)含答案

【中考数学】2024届广东省深圳市南山区模拟试题(一模)含答案

...A.35°A.甲、乙、丙A.2个二.填空题(共5小题,满分11.(3分)分解因式:第13题14.(3分)如图,在Rt第14题15.(3分)如图,在正方形ABCD第15题三.解答题(共7小题,满分16.(9分)解下列方程.18.(7分)为喜迎中国共产党第二十次全国代表大会的召开,某中学举行党史知识竞赛.团(4)(3分)若在这次竞赛中有A 、B 、C 、D 四人成绩均为满分,现从中抽取2人代表学校参加区级比赛,请用列表或画树状图的方法求出恰好抽到A 、C 两人同时参赛的概率.19.(7分)某商家准备销售一种防护品,进货价格为每件50元,并且每件的售价不低于进货价.经过市场调查,每月的销售量(件)与每件的售价(元)之间满足如图所示的函y x 数关系.(1)求每月的销售量(件)与每件的售价(元)之间的函数关系式;(不必写出自变量y x 的取值范围)(2)物价部门规定,该防护品每件的利润不允许高于进货价的.设这种防护品每月的30%总利润为(元),那么售价定为多少元可获得最大利润?最大利润是多少?w20.(8分)如图,AB 是的直径,CD 是的弦,,垂足是点,过点O e O e AB CD ⊥H 作直线分别与AB ,AD 的延长线交于点,,且.C E F 2ECD BAD ∠=∠(1)(4分)求证:CF 是的切线;O e (2)(4分)若,.求AE 的长.20AB =12CD =21.(9分)数形结合是解决数学问题的重要方法22.(9分)【问题】(1)(3分)如图点,以CE为边在CE的右侧作正方形(2)如图,四边形ABCD 是矩形,,,点是AD 边上的一个动点,3AB =6BC =E 【探究】(4分)①如图2,以CE 为边在CE 的右侧作矩形CEFG ,且,连接:1:2CG CE =DG 、BE ,求证:;DG BE ⊥【拓展】(3分)②如图3,以CE 为边在CE 的右侧作正方形CEFG ,连接DF 、DG ,则面积的最小值为______.DFG △,DMC BHC Q △≌△BCD ∠=,,MC HC ∴=DM BH =CDM ∠,90MBH ∴∠=︒90MCH ∠=︒,,,,1212DM MG BG a ∴++==1a ∴=3BG ∴=5MG =,,,MGC NGB ∠=∠Q 45MNG GBC ∠=∠=︒MGN CGB ∴△△∽,GC MGGB NG∴=.故1515CG NG BG MG ∴⋅=⋅=三.解答题(共7小题,满分55分)16.(1),(2)-214x =-21x =17.m18.50;144.319.【分析】(1)由图象可知每月销售量(件)与售价(元)之间为一次函数关系,设其y x 函数关系式为,用待定系数法求解即可;(0,50)y kx b k x =+≠≥(2)由题意得关于的二次函数,将其写成顶点式,根据二次函数的性质可得答案.w x 解:(1)由图象可知每月销售量(件)与售价(元)之间为一次函数关系,设其函数关y x 系式为,(0,50)y kx b k x =+≠≥将,代入,得:(60,600)(80,400)6060080400k b k b +=⎧⎨+=⎩解得:,101200k b =-⎧⎨=⎩每月销售(件)与售价(元)的函数关系式为;∴y x 101200y x =-+(2)由题意得:,(101200)(50)w x x =-+-210170060000x x =-+-210(85)12250x =--+,当时,随的增大而增大,100-<Q ∴85x ≤w x 该防护品的每件利润不允许高于进货价的30%,,即,Q 50(130%)x ∴≤⨯+65x ≤当时,取得最大值:最大值.∴65x =w 210(6585)122508250=-⨯-+=售价定为65元可获得最大利润,最大利润是8250元.∴20.(1)见解答;(2);45221.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数的图象,根据图象即可21(21)3y x =---+22.解:(1)结论:,DG BE =DG ⊥理由:延长GD 交BE 的延长线于,H 正方形ABCD ,,,Q CD CB ∴=90BCD ∠=︒正方形ECGF ,,,,Q CG CE ∴=90ECG ∠=︒90ECG BCD ∴∠=∠=︒DCG BCE∴∠=∠在和中,DCG △BCE △CD CB DCG BCECG CE =⎧⎪∠=∠⎨⎪=⎩,,(SAS)DCG BCE ∴△≌△DG BE ∴=CDG CBE∠=∠,,90CBE ABE ∠+∠=︒Q 90CDG EDH ∠+∠=︒ABE EDH ∴∠=∠,,AEB HED ∠=∠Q 90EHD A ∴∠=∠=︒DG BE∴⊥故,;DG BE =DG BE ⊥(2)①证明:如图2中,延长BE 、GD 相交于点.H 四边形ECGF 、四边形ABCD 都是矩形,,Q 90ECG BCD ∴∠=∠=︒,DCG BCE ∴∠=∠,,,:2:41:2CD CB ==Q :1:2CG CE =::CD CB CG CE ∴=,,DCG BCE ∠=∠Q DCG BCE ∴△△∽,,,12DG CG BE CE ∴==BEC DGC ∠=∠12DG BE ∴=四边形ECGF 是矩形,,Q 90FEC FGC F ∴∠=∠=∠=︒,,18090HEF BEC FEC ∴∠+∠=︒-∠=︒90FGH DGC ∠+∠=︒,.90H F ∴∠=∠=︒DG BE ∴⊥②设,DE x =,DFG DFE CDG CDE CEFG S S SS S =---△△△△正方形,12DFE CDG CEFG S SS +=Q △△正方形,,12DFGCDE CEFG S S S ∴=-△△正方形()22113322x x =+-⨯21327228x ⎛⎫=-+ ⎪⎝⎭当时,面积最小,最小面积是,32x =278故.278。

广东省深圳市南山区育才二中2020年中考数学一模试卷(含解析)

广东省深圳市南山区育才二中2020年中考数学一模试卷(含解析)

2020年中考数学一模试卷一、选择题1.与的积为1的数是()A.2B.C.﹣2D.2.《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾.其票房突破56亿元(5600000000元),5600000000用科学记数法表示为()A.5.6×109B.5.6×108C.0.56×109D.56×1083.下列运算正确的是()A.B.C.3a+5b=8ab D.3a2b﹣4ba2=﹣a2b4.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17B.22C.13D.17或225.下列立体图形中,主视图是矩形的是()A.B.C.D.6.下列各数中,为不等式组解的是()A.﹣1B.0C.2D.47.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.8.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°9.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间(小时)5678人数2652则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A.6,7B.7,7C.7,6D.6,610.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣111.已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x 轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.B.C.D.12.如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN分别垂直AB、AC,垂足为M、N,交与点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD.正确结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共4个小题,每小题3分,共12分)13.若分式的值为0,则x的值为.14.把多项式am2﹣9a分解因式的结果是.15.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.16.如图,正方形ABCO的边长为,OA与x轴正半轴的夹角为15o,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b﹣k =.三、解答题17.计算(﹣π)0﹣3tan30°+()﹣2+|1﹣|18.先化简:,再从﹣3、2、3中选择一个合适的数作为a的值代入求值.19.某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?捐款人数0~50元51~100元101~150元151~200元6200元以上420.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)21.六一儿童节,某玩具经销商在销售中发现:某款玩具若以每个50元销售,一个月能售出500个,销售单价每涨1元,月销售量就减少10个,这款玩具的进价为每个40元,请回答以下问题:(1)若月销售利润定为8000元,且尽可能让利消费者,销售单价应定为多少元?(2)由于资金问题,在月销售成本不超过10000元、且没有库存积压的情况下,问销售单价至少定为多少元?22.如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,,且CA∥y轴.(1)若点C在反比例函数的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.23.如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x轴和y轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q是线段BC上一点,且CQ=,点M是y轴上一个动点,求△AQM的最小周长.参考答案一、选择题:(本大题共12个小题,每小题3分,共36分.)1.与的积为1的数是()A.2B.C.﹣2D.【分析】根据乘积是1的两数互为倒数,进行求解.解:∵的倒数是2,∴与乘积为1的数是2,故选:A.2.《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾.其票房突破56亿元(5600000000元),5600000000用科学记数法表示为()A.5.6×109B.5.6×108C.0.56×109D.56×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:5600000000=5.6×109,故选:A.3.下列运算正确的是()A.B.C.3a+5b=8ab D.3a2b﹣4ba2=﹣a2b【分析】分别根据有理数的混合运算法则,幂的定义,合并同类项法则逐一判断即可.解:A,故本选项不合题意;B.,故本选项不合题意;C.3a与5b不是同类项,所以不能合并,故本选项不合题意;D.3a2b﹣4ba2=﹣a2b,正确.故选:D.4.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17B.22C.13D.17或22【分析】本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.5.下列立体图形中,主视图是矩形的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解:A.此几何体的主视图是等腰三角形;B.此几何体的主视图是矩形;C.此几何体的主视图是等腰梯形;D.此几何体的主视图是圆;故选:B.6.下列各数中,为不等式组解的是()A.﹣1B.0C.2D.4【分析】分别求出两个不等式的解集,再找到其公共部分即可.解:,由①得,x>,由②得,x<4,∴不等式组的解集为<x<4.四个选项中在<x<4中的只有2.故选:C.7.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.【分析】根据勾股定理求出AC,根据余弦的定义计算即可.解:由勾股定理得,AC===则sin B==,故选:C.8.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°【分析】根据平行线的性质求出∠B,根据圆内接四边形的性质求出∠D,根据圆周角定理解答.解:∵AD∥BC,∴∠B=180°﹣∠DAB=132°,∵四边形ABCD内接于圆O,∴∠D=180°﹣∠B=48°,由圆周角定理得,∠AOC=2∠D=96°,故选:B.9.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间(小时)5678人数2652则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A.6,7B.7,7C.7,6D.6,6【分析】根据中位数和众数的定义分别进行解答即可.解:∵共有15个数,最中间的数是8个数,∴这15名同学一周在校参加体育锻炼时间的中位数是6;6出现的次数最多,出现了6次,则众数是6;故选:D.10.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣1【分析】利用一元二次方程的定义和根的判别式的意义得到k≠0且△=(﹣2)2﹣4×k ×(﹣1)≥0,然后求出两不等式的公共部分后找出非正整数即可.解:根据题意得k≠0且△=(﹣2)2﹣4×k×(﹣1)≥0,解得k≥﹣1且k≠0,∵k为非正整数,∴k=﹣1.故选:D.11.已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x 轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.B.C.D.【分析】设直线l的解析式为y=kx+b,列方程组求得y=x+1,根据已知条件得到点C (4,3),设反比例函数表达式为y=,把C的坐标代入即可得到结论.解:设直线l的解析式为:y=kx+b,∵直线l经过点A(﹣2,0)和点B(0,1),∴,解得:,∴直线l的解析式为:y=x+1,∵点A(﹣2,0),∴OA=2,∵OM=2OA,∴OM=4,∴点C的横坐标为4,当x=4时,y=3,∴点C(4,3),设反比例函数表达式为y=,∴m=12,∴反比例函数表达式为y=,故选:B.12.如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN分别垂直AB、AC,垂足为M、N,交与点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD.正确结论有()A.1个B.2个C.3个D.4个【分析】由三个角是直角的四边形是矩形,先判定四边形AMFN是矩形,再证明AM=AN,从而可判断①;利用SAS可判定△ABE≌△ACD,从而可判断②;在没有∠DAE =45°时,无法证得DE'=DE,故可判断③;由∠DAE=∠C,∠ADE=∠CDA可判定△ADE∽△CDA,从而可判定④.解:∵DM、EN分别垂直AB、AC,垂足为M、N,∴∠AMF=∠ANF=90°,又∵∠BAC=90°,∴四边形AMFN是矩形;∵△ABC为等腰直角三角形,∴AB=AC,∠ABC=∠C=45°,∵DM⊥AB,EN⊥AC,∴△BDM和△CEN均为等腰直角三角形,又∵BD=CE,∴△BDM≌△CEN(AAS),∴BM=CN∴AM=AN,∴四边形AMFN是正方形,故①正确;∵BD=CE,∴BE=CD,∵△ABC为等腰直角三角形,∴∠ABC=∠C=45°,AB=AC,∴△ABE≌△ACD(SAS),故②正确;如图所示,将△ACE绕点A顺时针旋转90°至△ABE',则CE=BE',∠E'BA=∠C=45°,由于△BDM≌△CEN,故点N落在点M处,连接ME',则D、M、E'共线,∵∠E'BA=45°,∠ABC=45°,∴∠DBE'=90°,∴BE'2+BD2=DE'2,∴CE2+BD2=DE'2,当∠DAE=45°时,∠DAE'=∠DAM+∠EAN=90°﹣45°=45°,AE=AE',AD=AD,∴△ADE≌△ADE'(SAS),∴DE'=DE,∴在没有∠DAE=45°时,无法证得DE'=DE,故③错误;∵AB=AC,∠ABD=∠C,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∴当∠DAE=45°时,∠ADE=∠AED=67.5°,∵∠C=45°,∴∠DAE=∠C,∠ADE=∠CDA,∴△ADE∽△CDA,∴=,∴AD2=DE•CD,故④正确.综上,正确的有①②④,共3个.故选:C.二、填空题(本大题共4个小题,每小题3分,共12分)13.若分式的值为0,则x的值为2.【分析】根据分式的值为0的条件和分式有意义条件得出4﹣x2=0且x+2≠0,再求出即可.解:∵分式的值为0,∴4﹣x2=0且x+2≠0,解得:x=2,故答案为:2.14.把多项式am2﹣9a分解因式的结果是a(m+3)(m﹣3).【分析】直接提取公因式a,再利用平方差公式分解因式得出答案.解:am2﹣9a=a(m2﹣9)=a(m+3)(m﹣3).故答案为:a(m+3)(m﹣3).15.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长4cm.【分析】根据平行四边形的性质得到AB=CD=2cm,AD=BC=4cm,AO=CO,BO =DO,根据勾股定理得到OC=3cm,BD=10cm,于是得到结论.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC==6cm,∴OC=3cm,∴BO==5cm,∴BD=10cm,∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm,故答案为:4.16.如图,正方形ABCO的边长为,OA与x轴正半轴的夹角为15o,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b﹣k =2﹣.【分析】连接OB,过点B作BE⊥x轴于点E,根据正方形的性质可得出∠AOB的度数及OB的长,结合三角形外角的性质可得出∠BDO=∠DBO,利用等角对等边可得出OD =OB,进而可得出点D的坐标,在Rt△BOE中,通过解直角三角形可得出点B的坐标,由点B,D的坐标,利用待定系数法可求出k,b的值,再将其代入(b﹣k)中即可求出结论.解:连接OB,过点B作BE⊥x轴于点E,如图所示.∵正方形ABCO的边长为,∴∠AOB=45°,OB=OA=2.∵OA与x轴正半轴的夹角为15o,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴点D的坐标为(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴点B的坐标为(,1).将B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案为:2﹣.三、解答题17.计算(﹣π)0﹣3tan30°+()﹣2+|1﹣|【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.解:原式=1﹣3×+4+﹣1=1﹣+4+﹣1=4.18.先化简:,再从﹣3、2、3中选择一个合适的数作为a的值代入求值.【分析】根据分式的加法和除法可以化简题目中的式子,然后在﹣3、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.解:===a+2,当a=﹣3时,原式=﹣3+2=﹣1.19.某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?捐款人数0~50元51~100元101~150元151~200元6200元以上4【分析】(1)根据捐款200元以上的人数和所占的百分比,可以求得本次共有多少人捐款;(2)根据(1)中的结果和扇形统计图中的数据,统计表中的数据,可以计算出捐款51~100元的有多少人.解:(1)4÷8%=50(人),答:共有50人捐款;(2)50﹣50×﹣50×32%﹣6﹣4=50﹣10﹣16﹣6﹣4=14(人)答:捐款51~100元的有14人.20.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)【分析】(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.解:延长PQ交直线AB于点E,如图所示:(1)∠BPQ=90°﹣60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°,∴∠BPE=30°,在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=9米,则x﹣x=9,解得:x=.则BE=米.在直角△BEQ中,QE=BE=米.∴PQ=PE﹣QE=﹣=9+3(米).答:电线杆PQ的高度为(9+3)米.21.六一儿童节,某玩具经销商在销售中发现:某款玩具若以每个50元销售,一个月能售出500个,销售单价每涨1元,月销售量就减少10个,这款玩具的进价为每个40元,请回答以下问题:(1)若月销售利润定为8000元,且尽可能让利消费者,销售单价应定为多少元?(2)由于资金问题,在月销售成本不超过10000元、且没有库存积压的情况下,问销售单价至少定为多少元?【分析】(1)根据“销售单价每涨1元,月销售量就减少10件”,可知:月销售量=500﹣(销售单价﹣50)×10,然后根据月销售利润=每件的利润×销售的数量列出方程并解答;(2)设销售单价定为a元,根据“在月销售成本不超过10000元”列出不等式,并解答.解:(1)设销售单价应定为x元,由题意,得(x﹣40)[500﹣10(x﹣50)]=8000,解得x1=60,x2=80,∵尽可能让利消费者,∴x=60.答:消费单价应定为60元.(2)设销售单价定为a元,由题意,得40[500﹣10(a﹣50)]≤10000,解得a≥75答:销售单价至少定为75元.22.如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,,且CA∥y轴.(1)若点C在反比例函数的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.【分析】(1)如图1中,作CD⊥y轴于D.首先证明四边形OACD是矩形,利用反比例函数k的几何意义解决问题即可.(2)如图2中,作BD⊥AC于D,交反比例函数图象于N,连接CN,AN.求出D2你的坐标,证明四边形ABCN是菱形即可.(3)如图3中,连接PB,PA,OP.设P(a,).可得S四边形OAPB=S△POB+S△POA =×1×a+××=a+=(﹣)2+,由此即可解决问题.解:(1)如图1中,作CD⊥y轴于D.∵CA∥y轴,CD⊥y轴,∴CD∥OA,AC∥OD,∴四边形OACD是平行四边形,∵∠AOD=90°,∴四边形OACD是矩形,∴k=S矩形OACD=2S△ABC=2,∴反比例函数的解析式为y=.(2)如图2中,作BD⊥AC于D,交反比例函数图象于N,连接CN,AN.∵△ABC是等边三角形,面积为,设CD=AD=m,则BD=m,∴×2m×m=,∴m=1或﹣1(舍弃),∴B(0,1),C(,,2),A(,0),∴N(2,1),∴BD=DN,∵AC⊥BN,∴CB=CN,AB=AN,∵AB=BC,∴AB=BC=CN=AN,∴四边形ABCN是菱形,∴N(2,1).(3)如图3中,连接PB,PA,OP.设P(a,).S四边形OAPB=S△POB+S△POA=×1×a+××=a+=(﹣)2+,∴当a=时,四边形OAPB的面积最小,解得a=或﹣(舍弃),此时P(,).23.如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x轴和y轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q是线段BC上一点,且CQ=,点M是y轴上一个动点,求△AQM的最小周长.【分析】(1)求得点A的坐标,根据抛物线过点A、B、C三点,从而可以求得抛物线的解析式;(2))△ABP为直角三角形时,分别以三个顶点为直角顶点讨论:根据直角三角形的性质和勾股定理列方程解决问题;(3)求出点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,求出QG+AQ的值即可得出答案.解:(1)∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=;(2)设P(4,y),∵B(6,0),C(0,6),∴BC2=62+62=72,PB2=22+y2,PC2=42+(y﹣6)2,当∠PBC=90°时,BC2+PB2=PC2,∴72+22+y2=42+(y﹣6)2,解得:y=﹣2,∴P(4,﹣2);当∠PCB=90°时,PC2+BC2=PB2,∴42+(y﹣6)2+72=22+y2,解得:y=10,∴P(4,10);当∠BPC=90°时,PC2+PB2=BC2.∴42+(y﹣6)2+22+y2=72,解得:y=3.∴P(4,3+)或P(4,3﹣).综合以上可得点P的坐标为(4,﹣2)或(4,10)或(4,3+)或P(4,3﹣).(3)过点Q作QH⊥y轴于点H,∵B(6,0),C(0,6),∴OB=6,OC=6,∴∠OCB=45°,∴∠CQH=∠HCQ=45°,∵CQ=,∴CH=QH=,∴OH=6﹣,∴点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,∴AQ==,QG==,∴AQ+QG=,∴△AQM的最小周长为4.。

2020年深圳市中考数学一模试题

2020年深圳市中考数学一模试题

2020年广东省深圳市南山区育才二中中考数学一模试卷副标题一、选择题(本大题共12小题,共36.0分)1.与12的积为1的数是()A. 2B. 12C. -2 D. −122.《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾.其票房突破56亿元(5600000000元),5600000000用科学记数法表示为()A. 5.6×109B. 5.6×108C. 0.56×109D. 56×1083.下列运算正确的是()A. 17×(−7)+(−17)×7=1 B. (−35)2=95C. 3a+5b=8abD. 3a2b-4ba2=-a2b4.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A. 17B. 22C. 13D. 17或225.下列立体图形中,主视图是矩形的是()A. B. C. D.6.下列各数中,为不等式组{2x−3>0x−4<0解的是()A. -1B. 0C. 2D. 47.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A. √155B. 14C. √154D. 138.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A. 48°B. 96°C. 114°D. 132°9.则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A. 6,7B. 7,7C. 7,6D. 6,610.已知关于x的一元二次方程kx2-2x-1=0有实数根,若k为非正整数,则k等于()A. 12B. 0C. 0或-1D. -111.已知:如图,直线l经过点A(-2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A. y=24x B. y=12xC. y=3xD. y=6x12.如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN分别垂直AB、AC,垂足为M、N,交与点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD.正确结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.若分式4−x2x+2的值为0,则x的值为______.14.把多项式am2-9a分解因式的结果是______.15.如图,在▱ABCD中,AB=2√13cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长______cm.16.如图,正方形ABCO的边长为√2,OA与x轴正半轴的夹角为15o,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b-k=______.三、计算题(本大题共1小题,共5.0分)17.先化简:a2−4a−3÷(1+1a−3),再从-3、2、3中选择一个合适的数作为a的值代入求值.四、解答题(本大题共6小题,共47.0分))-2+|1-√3|18.计算(√5-π)0-3tan30°+(1219.某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?20.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)21.六一儿童节,某玩具经销商在销售中发现:某款玩具若以每个50元销售,一个月能售出500个,销售单价每涨1元,月销售量就减少10个,这款玩具的进价为每个40元,请回答以下问题:(1)若月销售利润定为8000元,且尽可能让利消费者,销售单价应定为多少元?(2)由于资金问题,在月销售成本不超过10000元、且没有库存积压的情况下,问销售单价至少定为多少元?22.如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,S△ABC=√3,且CA∥y轴.(k≠0)的图象上,求该反比例函数的解析式;(1)若点C在反比例函数y=kx(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.23.如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x轴和y轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是直角三角形?若存在请直接写出P点坐标,不存在请说明理由;(3)如图2,点Q是线段BC上一点,且CQ=10√2,点M是y轴上一个动点,求△AQM3的最小周长.。

2024年广东省深圳市南山区初三一模数学试题含答案解析

2024年广东省深圳市南山区初三一模数学试题含答案解析

2024年广东省深圳市南山区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.−2023C.12023D.−12023【答案】B【分析】根据数轴的定义求解即可.【详解】解;∵数轴上点A表示的数是2023,OA=OB,∴OB=2023,∴点B表示的数是−2023,故选:B.【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.2.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是().A.B.C.D.【答案】D【分析】根据中心对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,故此选项不合题意;B.不是中心对称图形,故此选项不合题意;C. 不是中心对称图形,故此选项不合题意;D. 是中心对称图形,故此选项符合题意;【点睛】本题考查的是中心对称图形.中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A .0.186×105B .1.86×105C .18.6×104D .186×103【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:将数据186000用科学记数法表示为1.86×105;故选B【点睛】本题主要考查科学记数法,熟练掌握科学记数法的表示方法是解题的关键.4.一技术人员用刻度尺(单位:cm )测量某三角形部件的尺寸.如图所示,已知∠ACB =90°,点D 为边AB 的中点,点A 、B 对应的刻度为1、7,则CD =( )A .3.5cmB .3cmC .4.5cmD .6cm 【答案】B【分析】本题考查直角三角形性质,涉及直角三角形斜边上的中线等于斜边的一半,读懂题意,直接利用直角三角形性质求解即可得到答案,熟记直角三角形斜边上的中线等于斜边的一半是解决问题的关键.【详解】解:由题意可知,AB =7−1=6cm ,在△ABC 中,∠ACB =90°,点D 为边AB 的中点,则CD =12AB =62=3cm ,故选:B .5.一元一次不等式组x−2>1x <4的解集为( )A .−1<x <4B .x <4C .x <3D .3<x <4【答案】D第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:x−2>1①x<4②解不等式①得:x>3结合②得:不等式组的解集是3<x<4,故选:D.【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.6.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45°B.50°C.55°D.60°【答案】C【分析】利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵AB∥OF,∴∠1+∠BFO=180°,∴∠BFO=180°−155°=25°,∵∠POF=∠2=30°,∴∠3=∠POF+∠BFO=30°+25°=55°;故选:C.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.7.下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形的其中一个内角是72°D.单项式πab2的次数是43【答案】B【分析】本题考查命题真假的判断,涉及同位角定义与性质、菱形定义与性质、正五边形内角与外角、单项式定义等知识,根据相关定义与性质逐项验证即可得到答案,熟记同位角定义与性质、菱形定义与性质、正五边形内角与外角、单项式定义等知识是解决问题的关键.【详解】解:A、根据同位角定义与性质,当两条直线平行时,同位角才相等,故选项说法错误,不是真命题,不符合题意;B、根据菱形定义与性质,菱形的四条边相等,故选项说法正确,是真命题,符合题意;=72°,从而由正多边形外角与其C、由正五边形外角和为360°,则每一个外角均为360°5相应内角和为180°即可得到正五边形的其中一个内角是180°−72°=108°,故选项说法错误,不是真命题,不符合题意;D、单项式πab2的次数是3而不是4,故选项说法错误,不是真命题,不符合题意;3故选:B.8.某校篮球队有20名队员,统计所有队员的年龄制成如下的统计表,表格不小心被滴上了墨水,看不清13岁和14岁队员的具体人数.年龄(岁)12岁13岁14岁15岁16岁人数(个)283在下列统计量,不受影响的是()A.中位数,方差B.众数,方差C.平均数,中位数D.中位数,众数【答案】D【分析】根据频数表可知,年龄为13岁与年龄为14岁的频数和为7,即可知出现次数最多的数据及第10、11个数据的平均数,可得答案.【详解】解:由表可知,年龄为13岁与年龄为14岁的频数和为20−2−8−3=7,故该组数据的众数为15岁,总数为20,按大小排列后,第10个和第11个数为15,15,则中位数为:15+152=15岁,故统计量不会发生改变的是众数和中位数,故选:D.【点睛】本题考查频数分布表及统计量的选择,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.9.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,驽马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.x240=x+12150B.x240=x150−12C.240(x−12)=150x D.240x=150(x+12)【答案】D【分析】设快马x天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x天可追上慢马,由题意得240x=150(x+12)故选:D.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.10.在平面直角坐标系xoy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为直线x=t.若m<n<c,则t的取值范围是()A.32<t<2B.1<t<3C.0<t<1D.12<t<1【答案】A【分析】本题考查二次函数的性质,二次函数图象上点的坐标特征,根据m<n<c,可得出a+b+c<9a+3b+c<c,解得3a<−b<4a,进而可确定t的取值范围,函数图象上点的坐标满足函数解析式是解题的关键.【详解】解:∵m<n<c,二、填空题11.若a2=3b,则ab=.【答案】6【分析】本题考查比例性质,交叉相乘即可得到答案,熟记比例性质是解决问题的关键.【详解】解:∵a2=3b,∴ab=2×3=6,故答案为:6.12.已知一元二次方程x2−5x+2m=0有一个根为2,则另一根为.【答案】3【分析】本题考查一元二次方程根与系数的关系,根据题意,设另一个根为a,则由根与系数的关系得到a+2=5,解得a=3,熟练掌握一元二次方程根与系数的关系是解决问题的关键.【详解】解:∵一元二次方程x2−5x+2m=0有一个根为2,设另一个根为a,∴a+2=5,解得a=3,故答案为:3.13.如图,一束光线从点A(−2,5)出发,经过y轴上的点B(0,1)反射后经过点C(m,n),则2m−n的值是.由题意知,∠ABG=∠CBF ∴△AGB∼△CFB∴BF CF =BGAG∵A(−2,5),B(0,1)∴AG=2,BG=5−1=4∴BF CF =BGAG=214.如图,在直角坐标系中,⊙A与x轴相切于点B,CB为⊙A的直径,点C在函数y=kx (k>0,x>0)的图象上,D为y轴上一点,△ACD的面积为6,则k的值为.【详解】解:设C a,∵⊙A 与x 轴相切于点B ,∴BC ⊥x 轴,15.如图,在四边形ACBD 中,对角线AB 、CD 相交于点O ,∠ACB =90°,BD =CD 且sin ∠DBC =35,若∠DAB =2∠ABC ,则AD AB 的值为 .设∠ABC=α,∠ABD=β,∴∠DAB=2∠ABC=2α,∠DBC ∵BD=CD,DE⊥BC,三、解答题16.计算:|−3|−(4−π)0−2sin60°+.【答案】4【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】=4.【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.先化简x−1−÷x2−4,然后从−1,1,−2,2中选一个合适的数代入求x2+2x+1值.【答案】x+1,2【分析】本题考查分式化简求值,涉及通分、因式分解、分式加减乘除混合运算、约分、分式有意义的条件等知识,先将分式分子分母因式分解、再由分式加减乘除混合运算法则,利用通分、约分化简,再根据分式有意义的条件取得x的值,代值求解即可得到答案,熟练掌握分式加减乘除混合运算法则,根据分式有意义的条件取值是解决问题的关键.【详解】18.2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x分为如下四组(A:x<70;B:70≤x<80;C:80≤x<90;D:x≥90,单位:分钟)进行统计,绘制了如下不完整的统计图.根据以上信息,解答下列问题:(1)本次抽取的学生人数为______人,扇形统计图中m的值为______;(2)补全条形统计图;(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?(4)若D组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.【详解】(1)解:根据题意得,本次抽取的人数为:5÷10%=50人,∵B组人数为15人,∴15÷50×100%=30%,故答案为:50;30;(2)解:C组人数为:50-10-15-5=20人,补全统计图如图所示:(3)(4)【点睛】题目主要考查条形统计图与扇形统计图,列表法或树状图法求概率,用样本估计总体等,理解题意,综合运用这些知识点是解题关键.19.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?【答案】(1)甲型自行车利润为150元,一台乙型自行车利润为100元(2)最少需要购买10台甲型自行车【分析】本题考查二元一次方程组及一元一次不等式解实际应用题,涉及解二元一次方程组、解一元一次不等式等知识,读懂题意,准确列出方程组及不等式求解是解决问题的关键(1)设一台甲型自行车利润为x元,一台乙型自行车利润为y元,读懂题意,找准等量关系列二元一次方程组求解即可得到答案;(2)设最少需要购买x台甲型自行车,则乙型自行车购买(20−x)台,读懂题意,找到不等关系列不等式求解即可得到答案.【详解】(1)解:设一台甲型自行车利润为x元,一台乙型自行车利润为y元,由题意可得3x+2y=650x+2y=350,解得x=150y=100,∴甲型自行车利润为150元,一台乙型自行车利润为100元;(2)解:设最少需要购买x台甲型自行车,则乙型自行车购买(20−x)台,则由题意可得500x+800(20−x)≤13000,解得x≥10,∴最少需要购买10台甲型自行车.20.研究发现课堂上进行当堂检测效果很好,每节课40分钟,假设老师用于精讲的时间x(单位:分钟)与学生学习收益y1的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y2的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于当堂检测的时间不超过用于精讲的时间.(1)老师精讲时的学生学习收益y1与用于精讲的时间x之间的函数关系式为________;(2)求学生当堂检测的学习收益y2与用于当堂检测的时间x的函数关系式;(3)问“高效课堂”模式如何分配精讲和当堂检测的时间,才能使学生在这40分钟的学习收益总量W最大?(W=y1+y2)【答案】(1)y1=2x(0≤x≤40)(2)y2=−x 2+16x(0≤x≤8) 64(8<x≤20)(3)精讲33分钟,当堂检测7分钟【分析】本题考查了待定系数法求一次函数的解析式的运用,二次函数的运用,顶点式求二次函数的最大值的运用,解答时求出二次函数的解析式是关键.(1)由图设该函数解析式为y1=kx,即可依题意求出y与x的函数关系式.(2)本题涉及分段函数的知识,需要注意的是x的取值范围依照分段函数的解法解出即可.(3)设学生当堂检测的时间为x分钟(0≤x≤20),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40−x)分钟,用配方法的知识解答该题即可.【详解】(1)解:设y1=kx,把(1,2)代入,得k=2,∴y1=2x,自变量的取值范围为0≤x≤40,故答案为:y1=2x(0≤x≤40);(2)解:当0≤x≤8时,设y2=a(x−8)2+64,把(0,0)代入,得64a+64=0,解得a=−1.∴y2=−(x−8)2+64=−x2+16x.当8<x≤20时,y2=64,∴y2=−x 2+16x(0≤x≤8) 64(8<x≤20);(3)设学生当堂检测的时间为x分钟(0≤x≤20),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40−x)分钟.当0≤x≤8时,w=−x2+16x+2(40−x)=−x2+14x+80=−(x−7)2+129.∴当x=7时,W最大=129.当8<x≤20时,W=64+2(40−x)=−2x+144.∵W随x的增大而减小,∴当x=8时,W最大=128,综合所述,当x=7时,W最大=129,此时40−x=33.即老师在课堂用于精讲的时间为33分钟,学生当堂检测的时间为7分钟时,学习收益总量最大.21.陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.如图是从正面看到的一个“老碗”,其横截面可以近似的看成是如图(1)所示的以AB为直径的半圆O,MN为台面截线,半圆O与MN相切于点P,连结OP与CD相交于点E.水面截线CD=63cm,MN∥CD,AB=12cm.(1)如图(1)求水深EP;(2)将图(1)中的老碗先沿台面MN向左作无滑动的滚动到如图(2)的位置,使得A、C 重合,求此时最高点B和最低点P之间的距离BP的长;(3)将碗从(2)中的位置开始向右边滚动到图(3)所示时停止,若此时∠BOP=75°,求滚动过程中圆心O运动的路径长.【分析】本题考查圆的实际应用,涉及垂径定理、勾股定理、全等三角形的判定与性质、勾股定理、弧长公式等知识,熟练掌握圆的性质是解决问题的关键.(1)连结OC ,如图所示,由垂径定理及勾股定理求解即可得到答案;(2)过B 点作AD 的平行线,与PO 的延长线相较于点F ,如图所示,利用三角形全等的判定与性质,结合勾股定理求解即可得到答案;(3)根据题意可知,滚动过程中圆心O 运动的路径长为AC 的长度,求出弧对的圆心角带入公式求解即可得到答案.【详解】(1) ∴CE =12CD =33cm ,在Rt △OCE 中,由勾股定理可得∴EP =OP−OE =6−3=3cm (2)解:过B 点作AD 的平行线,与PO 的延长线相较于点F ,如图所示:∵AD ∥BF ,∴∠OAE =∠OBF ,在△AOE 和△BOF 中,∠OAE =∠OBF AO =BO ∠AOE =∠BOF,∴△AOE≌△BOF (ASA),(3)由(1)可知OE=3cm,OC在Rt△COE中,∠COE=60°∵∠BOP=75°,∴∠AOC=180°−60°−75°=由题意可得,圆心O运动的路径长为22.“转化”是解决数学问题的重要思想方法,通过构造图形全等或者相似建立数量关系是处理问题的重要手段.(1)【问题情景】:如图(1),正方形ABCD中,点E是线段BC上一点(不与点B、C重合),连接EA.将EA绕点E顺时针旋转90°得到EF,连接CF,求∠FCD的度数.以下是两名同学通过不同的方法构造全等三角形来解决问题的思路,①小聪:过点F作BC的延长线的垂线;②小明:在AB上截取BM,使得BM=BE;请你选择其中一名同学的解题思路,写出完整的解答过程.(2)【类比探究】:如图(2)点E是菱形ABCD边BC上一点(不与点B、C重合),∠ABC=α,将EA绕点E顺时针旋转α得到EF,使得∠AEF=∠ABC=α(a≥90°),则∠FCD的度数为______(用含α的代数式表示)(3)【学以致用】:如图(3),在(2)的条件下,连结AF,与CD相交于点G,当α=120°时,若DGCG =12,求BECE的值.【详解】解:(1)任选一个思路求解即可,下面两种思路求解如下:小聪解题思路:过点F作FG⊥BC交BC的延长线于点G,如图1,∵将EA绕点E顺时针旋转90°得到EF,∴AE=EF,∠AEF=90°,∵FG⊥BC,∴∠G=90°=∠B=∠AEF,∴∠BAE+∠AEB=90°=∠AEB+∠FEC,∴∠BAE=∠FEC,∴△ABE≌△EGF(AAS),∴BE=CF,AB=EG,∵AB=BC,∴BC=EG,∴BE=CG,∴CG=FG,∴∠FCG=45°,∴∠FCD=45°;小慧解题思路:在AB上截取BM,使得BM=BE,连接EM,如图所示:∵BM=BE,AB=BC,∴∠BME=∠BEM=45°,AM=EC,∴∠AME=135°,又∵AE=EF,∠BAE=∠FEC,∴△AME≌△ECF(SAS),∴∠AME=∠ECF=135°,∴∠DCF=45°;(2)在AB上截取BM,使得BM=BE,连接EM,如图2,∵四边形ABCD是菱形,∠ABC=α,∴AB=BC,∠BCD=180°−α,∵BM=BE,∴AM=CE,∵将EA绕点E顺时针旋转α得到EF,∴AE=EF,∠AEF=∠B=α,∵∠AEC=∠AEF+∠FEC=∠B+∠BAE,∴∠BAE=∠CEF,∴△AEM≌△EFC(SAS),由(2)可知,△ANE≌△ECF,∴NE=CF,【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,等腰直角三角形,旋转性质,正方形的性质,菱形的性质,相似三角形的判定和性质,解直角三角形等知识,添加恰当辅助线构造全等三角形或相似三角形是解题的关键.试题21。

2024年广东省深圳市南山区育才教育集团中考数学一模试卷及答案解析

2024年广东省深圳市南山区育才教育集团中考数学一模试卷及答案解析

2024年广东省深圳市南山区育才教育集团中考数学一模试卷一、选择题(本题有10小题,每题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用2B铅笔填涂在答题卡上)1.(3分)实数P在数轴上对应的点如图所示,下列各数中比实数P小的是()A.﹣3B.﹣1C.0D.2.(3分)积木有助于开发智力,有利于数学概念的早期培养.某积木配件如图所示,则它的左视图为()A.B.C.D.3.(3分)人才是深圳城市发展的重要基因,深圳人才公园是全国第一个人才主题公园,占地面积约770000平方米.数据770000用科学记数法表示为()A.0.77×104B.7.7×105C.77×103D.7.7×106 4.(3分)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.B.C.D.5.(3分)下列运算正确的是()A.5a﹣2a=3a2B.a2•a3=a6C.(b+1)2=b2+1D.(﹣2a)3=﹣8a36.(3分)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45°B.50°C.55°D.60°7.(3分)榫卯是古代中国建筑、家具及其他器械的主要结构方式.如图,在某燕尾榫中,榫槽的横截面ABCD是梯形,其中AD∥BC,AB=DC,燕尾角∠B=α,外口宽AD=a,榫槽深度是b,则它的里口宽BC为()A.+a B.+a C.b tanα+a D.2b tanα+a 8.(3分)明代《算法纂要》书中有一题:“牧童分杏各争竞,不知人数不知杏.三人五个多十枚,四人八枚两个剩.问有几个牧童几个杏?”题目大意是:牧童们要分一堆杏,不知道人数也不知道有多少个杏.若3人一组,每组5个杏,则多10个杏.若4人一组,每组8个杏,则多2个杏.有多少个牧童,多少个杏?设共有x个牧童,则下列方程正确的是()A.3×5x+10=4×8x+2B.C.D.9.(3分)如图,矩形ABCD中,AB=4,BC=8,点E在BC边上,连接EA,EA=EC.将线段EA绕点A逆的针旋转90°,点E的对应点为点F,连接CF,则cos∠ACF的值为()A.B.C.D.10.(3分)已知二次函数y=ax2﹣2ax+1(a≠0)经过点(﹣1,m)、(1,n)和(3,p),若在m,n,p这三个实数中,只有一个是正数,则a的取值范围为()A.B.a<﹣1C.﹣<a<0D.﹣1≤a<0二、填空题(本题有5小题,每题3分,共15分,把答案填在答题卡上)11.(3分)因式分解2a2﹣4a+2=.12.(3分)“每天一节体育课”成深圳中小学生标配,某校九年级三班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.则这组数据的中位数为.13.(3分)如图所示的网格中,每个小正方形的边长均为1,点A,B,C均在小正方形的顶点上,且点D在上,∠BCD=30°,则的长为.14.(3分)如图,在平面直角坐标系中,等腰△ABC的底边BC在x轴的正半轴上,顶点A在反比例函数y=(x>0)的图象上,延长AB交y轴于点D,若OC=4OB,△BOD的面积为,则k的值为.15.(3分)如图,在正方形ABCD的对角线AC上取一点E,使得AE=2CE,连接BE,将△BCE沿BE翻折得到△BFE,连接DF.若BC=4,则DF的长为.三、解答题(本题共7小题,共55分)16.(5分)计算:.17.(7分)先化简,再从不等式组﹣1≤x<3中选择一个适当的整数,代入求值.18.(8分)科学教育是提升国家科技竞争力、培养创新人才、提高全民科学素质的重要基础,某学校计划在八年级开设“人工智能”“无人机”“创客”“航模”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为50名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“创客”课程的学生占%,所对应的圆心角度数为;(3)若该校八年级一共有1000名学生,试估计选择“航模”课程的学生有多少名?19.(8分)某社区采购春节慰问礼品,购买了甲、乙两种类型的粮油套装.甲种粮油套装单价比乙种粮油套装单价多30元,用1200元购买甲种粮油套装和用900元购买乙种粮油套装的数量相同.(1)求甲、乙两种粮油套装的单价分别是多少元?(2)社区准备再次购买甲种和乙种粮油套装共40件,购买乙种粮油套装不超过甲种粮油套装的3倍,且商家给出了两种粮油套装均打八折的优惠.问购买甲种和乙种粮油套装各多少件时花费最少?最少花费是多少元?20.(8分)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,过点D作DG ⊥BC于点G.交BA的延长线于点H.(1)下列条件:①D是AC边的中点;②D是的中点;③BA=BC.请从中选择一个能证明直线HG是⊙O的切线的条件,并写出证明过程;(2)若直线HG是⊙O的切线,且HA=2,HD=4,求CG的长.21.(9分)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),科研人员测量出小钢球离地面高度h(米)与其运动时间t(秒)的几组数据如表:运动时间t(秒)0123456…高地面高度h(米)0356075807560…(1)在如图平面直角坐标系中,描出表中各组对应值为坐标的点,并用平滑的曲线连接;科研人员发现,小钢球离地面高度h(米)与其运动时间t(秒)成二次函数关系,请求出h关于t的函数关系式(不要求写出自变量的取值范围).(2)在弹射小钢球的同一时刻,无人机开始保持匀速竖直上升,无人机离地面高度h(米)与小钢球运动时间t(秒)之间的函数关系式为h1=5t+30.①在小钢球运动过程中,当无人机高度不大于小钢球高度时,无人机可以采集到某项相关性能数据,则能采集到该性能数据的时长为秒;②弹射器间隔3秒弹射第二枚小钢球,其飞行路径视为同一条抛物线.当两枚小钢球处于同一高度时,求此时无人机离地面的高度.22.(10分)如图1,菱形ABCD中,∠B=α,BC=2,E是边BC上一动点(不与点B,C 重合),连接DE,点C关于直线DE的对称点为C′,连结AC′并延长交直线DE于点P,F是AC的中点,连接DC′,DF.(1)填空:DC′=,∠APD=(用含α的代数式表示);(2)如图2,当α=90°,题干中其余条件均不变,连接BP.求证:BP=AF.(3)在(2)的条件下,连接AC.①若动点E运动到边BC的中点处时,△ACC′的面积为.②在动点E的整个运动过程中,△ACC′面积的最大值为.2024年广东省深圳市南山区育才教育集团中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分。

2020年广东省深圳市中考数学模拟试卷一解析版

2020年广东省深圳市中考数学模拟试卷一解析版

2020年广东省深圳市中考数学模拟试卷一一、选择题(本部分共12小题,每题3分,共36分)1.(3分)的立方根是()A.﹣4B.±4C.±2D.﹣22.(3分)国务院总理李克强在《2017年国务院政府工作报告》中提到,2016年新增第四代移动通信用户3.4亿,数据“3.4亿”用科学记数法表示为()A.3.4×106B.3.4×108C.34×107D.3.4×1093.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.4.(3分)关于x的一元二次方程kx2﹣4x+1=0有两个不相等的实数根,则k的取值范围是()A.k>4B.k<4C.k<4且k≠0D.k≤4且k≠0 5.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70B.1.65、1.75C.1.70、1.75D.1.70、1.70 6.(3分)平面直角坐标系中,已知A(1,2)、B(3,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.87.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=48.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C.D.9.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°10.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个B.2个C.3个D.4个11.(3分)如图,将正方形ABCD折叠,使点A与CD边上的点H重合(H不与C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD 周长为m,△CHG周长为n,则为()A.B.2C.D.12.(3分)如图,点A、B在双曲线(x<0)上,连接OA、AB,以OA、AB为边作▱OABC.若点C恰落在双曲线(x>0)上,此时▱OABC的面积为()A.B.C.D.4二、填空题(本部分共4小题,每题3分,共12分)13.(3分)因式分解:﹣2x2+4xy+30y2=.14.(3分)若关于x的分式方程=的解为非负数,则a的取值范围是.15.(3分)如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B 的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为.16.(3分)如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.三、解答题(本部分共7小题,共52分)17.(5分)计算:18.(6分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.19.(7分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.20.(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?21.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.22.(8分)如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?23.(10分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP=S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.参考答案与试题解析一、选择题(本部分共12小题,每题3分,共36分)1.(3分)的立方根是()A.﹣4B.±4C.±2D.﹣2【分析】首先根据立方根的定义计算出的结果,然后利用立方根的定义求解即可.【解答】解:∵=﹣8∴﹣8的立方根是﹣2,∴的立方根是﹣2.故选:D.2.(3分)国务院总理李克强在《2017年国务院政府工作报告》中提到,2016年新增第四代移动通信用户3.4亿,数据“3.4亿”用科学记数法表示为()A.3.4×106B.3.4×108C.34×107D.3.4×109【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3.4亿=3.4×108.故选:B.3.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.【分析】根据俯视图中每列正方形的个数,再画出从正面,左面看得到的图形即可.【解答】解:该几何体的左视图是:.故选:D.4.(3分)关于x的一元二次方程kx2﹣4x+1=0有两个不相等的实数根,则k的取值范围是()A.k>4B.k<4C.k<4且k≠0D.k≤4且k≠0【分析】根据一元二次方程kx2﹣4x+1=0有两个不相等的实数根,知△=b2﹣4ac>0,然后据此列出关于k的不等式,解不等式即可.【解答】解:∵kx2﹣4x+1=0有两个不相等的实数根,∴△=16﹣4k>0,且k≠0,解得,k<4且k≠0.故选:C.5.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70B.1.65、1.75C.1.70、1.75D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.6.(3分)平面直角坐标系中,已知A(1,2)、B(3,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【分析】由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【解答】解:∵点A、B的坐标分别为(1,2)、B(3,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(B点除外),即(﹣1,0)、(2+,0)、(0,2﹣),即满足△ABC是等腰三角形的C点有3个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个.综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有7个.故选:C.7.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=4【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选:D.8.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C.D.【分析】观察图形,根据各图形中“●”个数的变化可找出变化规律“a n=n(n+2)”,再将其代入(+++…+)中即可求出结论.【解答】解:观察图形,可知:a1=2+1=3=1×3,a2=2+3+2+1=8=2×4,a3=2+3+4+3+2+1=15=3×5,a4=2+3+4+5+4+3+2+1=24=4×6,…,∴a n=n(n+2),∴+++…+=+++…+,=×(1﹣+﹣+﹣+…+﹣),=×(1+﹣﹣),=×,=.故选:A.9.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°【分析】先根据EC=EA.∠CAE=30°得出∠C=30°,再由三角形外角的性质得出∠AED的度数,利用平行线的性质即可得出结论.【解答】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选:D.10.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【解答】解:据图象可知a>0,c<0,b>0,∴<0,故④错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1∴2b﹣c=2,故①正确;故选:C.11.(3分)如图,将正方形ABCD折叠,使点A与CD边上的点H重合(H不与C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD 周长为m,△CHG周长为n,则为()A.B.2C.D.【分析】连接AH、AG,作AM⊥HG于M.证明△AHD≌△AHM(AAS),得出DH=HM,AD=AM,证明Rt△AGM≌Rt△AGB(HL),得出GM=GB,求出△GCH的周长=n=CH+HM+MG+CG=CH+DH+CG+GB=2BC,由四边形ABCD的周长=m=4BC,即可得出答案.【解答】解:连接AH、AG,作AM⊥HG于M.∵四边形ABCD是正方形,∴AD=AB.∴AM=AB.∵EA=EH,∴∠1=∠2,∵∠EAB=∠EHG=90°,∴∠HAB=∠AHG,∵DH∥AB,∴∠DHA=∠HAB=∠AHM,在△AHD和△AHM中,∴△AHD≌△AHM(AAS),∴DH=HM,AD=AM,在Rt△AGM和Rt△AGB中,,∴Rt△AGM≌Rt△AGB(HL),∴GM=GB,∴△GCH的周长=n=CH+HM+MG+CG=CH+DH+CG+GB=2BC,∵四边形ABCD的周长=m=4BC,∴=2;故选:B.12.(3分)如图,点A、B在双曲线(x<0)上,连接OA、AB,以OA、AB为边作▱OABC.若点C恰落在双曲线(x>0)上,此时▱OABC的面积为()A.B.C.D.4【分析】先过A作AD⊥x轴于D,过C作CE⊥x轴于E,过B作BF⊥AD于F,设A(a,﹣),C(b,),依据△ABF≌△COE,可得B(a+b,﹣+),根据点B在双曲线y=﹣(x<0)上,可得B(a+b)(﹣+)=﹣3,设=x,则方程﹣=2可化为3x﹣=2,进而得到=,=,最后根据平行四边形OABC的面积=2×S△OAC=2(S梯形ADEC﹣S△AOD﹣S△COE),进行计算即可.【解答】解:如图,连接AC,过A作AD⊥x轴于D,过C作CE⊥x轴于E,过B作BF ⊥AD于F,则△ABF≌△COE,设A(a,﹣),C(b,),则OE=BF=b,CE=AF=,∴B(a+b,﹣+),又∵点B在双曲线y=﹣(x<0)上,∴(a+b)(﹣+)=﹣3,∴﹣=2,设=x,则方程﹣=2可化为3x﹣=2,解得x=或x=(舍去),∴=,=,∴平行四边形OABC的面积=2×S△OAC=2(S梯形ADEC﹣S△AOD﹣S△COE)=2[(﹣+)(b﹣a)﹣×|﹣3|﹣×|2|]=﹣+3+2﹣﹣5=﹣3×﹣2×(﹣)=2.故选:B.二、填空题(本部分共4小题,每题3分,共12分)13.(3分)因式分解:﹣2x2+4xy+30y2=﹣2(x+3y)(x﹣5y).【分析】先提公因式,再利用十字相乘法分解即可.【解答】解:原式=﹣2(x2﹣2xy﹣15y2)=﹣2(x+3y)(x﹣5y).故答案为:﹣2(x+3y)(x﹣5y).14.(3分)若关于x的分式方程=的解为非负数,则a的取值范围是a≥1,且a ≠4.【分析】在方程的两边同时乘以2(x﹣2),解方程,用含a的式子表示出x的值,再根据x≥0,且x≠2,解不等于组即可.【解答】解:两边同时乘以2(x﹣2),得:4x﹣2a=x﹣2,解得x=,由题意可知,x≥0,且x≠2,∴,解得:a≥1,且a≠4,故答案为:a≥1,且a≠4.15.(3分)如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B 的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(,).【分析】根据翻折变换的性质结合锐角三角函数关系得出对应线段长,进而得出D点坐标.【解答】解:如图,过点D作DM⊥x轴于点M,∵四边形AOBC是矩形,∠ABO=30°,点B的坐标为(0,3),∴AC=OB=3,∠CAB=30°,∴BC=AC•tan30°=3×=,∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=30°,AD=3,∵∠CAB=∠BAD=30°,∴∠DAM=30°,∴DM=AD=,∴AM=3×cos30°=,∴MO=﹣=,∴点D的坐标为(,).故答案为:(,).16.(3分)如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为2.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,作AE⊥CD,∴AE=P′Q,∵AB=4,∠A=120°,∴∠DAE=30°,∴AE=cos30°•AD=4×=2∴点P′到CD的距离为2,∴PK+QK的最小值为2.故答案为:2.三、解答题(本部分共7小题,共52分)17.(5分)计算:【分析】直接利用特殊角的三角函数值以及负整数指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣3+1﹣9=1﹣3+1﹣9=﹣10.18.(6分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.【分析】先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.【解答】解:原式=(+)÷=•=•=,解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、0、1、2,∵分式有意义时x≠±1、0,∴x=2,则原式=0.19.(7分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【分析】(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作文篇数,补全条形统计图即可:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.树状图即可得出答案.【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,共有12种可能性结果,它们发生的可能性相等,其中七年级特等奖作文被选登在校刊上的可能性有6种,∴P(七年级特等奖作文被选登在校刊上)==.20.(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?【分析】(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由总利润=销售量•每件纯赚利润,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.【解答】解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,即政府这个月为他承担的总差价为600元.(2)由题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,4000>w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.21.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED =∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=另解:∵AG⊥BC,AF⊥DE,△ADE∽△ABC,∴==22.(8分)如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?【分析】(1)要证明y轴是⊙G的切线,只需要连接GD后证明GD⊥OB即可,推出GD ∥OA,则△BDG∽△BOA,设半径为r后,利用对应边的比相等列方程即可求出半径r 的值.(2)由于∠FEA=45°,所以可以连接CE、CF构造直角三角形.由于要求的EF是弦,所以过点A作AH⊥EF,然后利用垂径定理即可求出EF的长度.【解答】解:(1)连接GD,EC.∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;∵A(2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,由勾股定理可得:AB===设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=2(﹣r),∴r=,∵AC是直径,∴∠AEC=∠AOB=90°,∴EC∥OB,∴==,∴==,∴EC=2,AE=,∴OE=2﹣=,∴C的坐标为(,2);(2)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=∴∠AEC=∠AFC=90°∵∠FEA=45°∴∠FCA=45°∴在Rt△AEH中,由勾股定理可知:AF=CF=,设OE=a∴AE=2﹣a∵CE∥OB∴△ACE∽△ABO∴=,∴CE=,∵CE2+AE2=AC2,∴(2﹣a)2+(2﹣a)2=∴a=或a=(不合题意,舍去)∴AE=∴在Rt△AEH中,由勾股定理可得,AH=EH=,∴在Rt△AEH中,由勾股定理可知:FH2=AF2﹣AH2=()2﹣()2=2,∴FH=,∴EF=EH+FH=.23.(10分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP=S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.【分析】(1)由对称轴求出B的坐标,由待定系数法求出抛物线解析式,即可得出顶点D的坐标;(2)由勾股定理和勾股定理的逆定理证出△ACD为直角三角形,∠ACD=90°.得出AD为△ACD外接圆的直径,再证明△AED为直角三角形,∠ADE=90°.得出AD⊥DE,即可得出结论;(3)求出直线AC的解析式,再求出线段AD的中点N的坐标,过点N作NP∥AC,交抛物线于点P,求出直线NP的解析式,与抛物线联立,即可得出答案;(4)由相似三角形的性质和直角三角形的性质即可得出答案.【解答】解:(1)∵抛物线的对称轴是直线x=1,点A(3,0),∴根据抛物线的对称性知点B的坐标为(﹣1,0),OA=3,将A(3,0),B(﹣1,0)代入抛物线解析式中得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;当x=1时,y=4,∴顶点D(1,4).(2)当x=0时,∴点C的坐标为(0,3),∴AC==3,CD==,AD==2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径,∵点E在轴C点的上方,且CE=.∴E(0,)∴AE==DE==,∴DE2+AD2=AE2,∴△AED为直角三角形,∠ADE=90°.∴AD⊥DE,又∵AD为△ACD外接圆的直径,∴DE是△ACD外接圆的切线;(3)设直线AC的解析式为y=kx+b,根据题意得:,解得:,∴直线AC的解析式为y=﹣x+3,∵A(3,0),D(1,4),∴线段AD的中点N的坐标为(2,2),过点N作NP∥AC,交抛物线于点P,设直线NP的解析式为y=﹣x+c,则﹣2+c=2,解得:c=4,∴直线NP的解析式为y=﹣x+4,由y=﹣x+4,y=﹣x2+2x+3联立得:﹣x2+2x+3=﹣x+4,解得:x=或x=,∴y=,或y=∴P(,)或(,);(4)分三种情况:①M恰好为原点,满足△CMB∽△ACD,M(0,0);②M在x轴正半轴上,△MCB∽△ACD,此时M(9,0);③M在y轴负半轴上,△CBM∽△ACD,此时M(0,﹣);综上所述,点M的坐标为(0,0)或(9,0)或(0,﹣).。

2020年广东深圳市中考数学一模试卷及解析

2020年广东深圳市中考数学一模试卷及解析

2020年广东深圳市中考一模试卷数学试卷一、选择题(本大题共12小题,共36分)1.一种巧克力的质量标识为“100±0.25克”,则下列巧克力合格的是()A. 100.30克B. 100.70克C. 100.51克D. 99.80克2.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.3.下列运算正确的是()A. 2m×3m=6mB. (m3)2=m6C. (−2m)3=−2m3D. m2+m2=m44.2019年1月3日,经过26天的飞行,嫦娥4号月球探测器在月球背面的预定着陆区中顺利着陆,成为人类首颗成功软着陆月球背面的探测器地球与月球之间的平均距离大约为384000km,384000用科学记数法表示为()A. 3.84×103B. 3.84×104C. 3.84×105D. 3.84×1065.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1−6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. 16B. 13C. 12D. 236.某校年级(1)班在“迎中考日誓师”活动中打算制作一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字如图是该班同学设计的正方体挂坠的平面展开图,那么“谁”对面的字是()A. 成B. 功C. 其D. 我7.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠1=65°,则∠2的度数是()A. 25°B. 35°C. 45°D. 65°8.下列命题中,是假命题的是()A. 样本方差越大,数据波动越小B. 正十七边形的外角和等于360°C. 位似图形必定相似D. 方程x2+x+1=0无实数根9.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A. πB. 2πC. 3πD. 6π10.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A. 12000x+100=120001.2xB. 12000x=120001.2x+100C. 12000x−100=120001.2xD. 12000x=120001.2x−10011.给出一种运算:对于函数y=x n,规定若函数y=x4,则有,已知函数y=x3,则方程的解是()A. x=2B. x=3C. x 1=0,x2=2D. x=−212.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG⋅FC④EG⋅AE=BG⋅AB其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,共12.0分)13.因式分解:m2n−6mn+9n=______.14.某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成9______环数789人数3415.如图,在▱ABCD中,AB=2√13cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长______cm.16.如图,△OAC和△BAD都是等腰直角三角,∠ACO=∠ADB=90°,反比例函数y=8x的图象经过点B,则△OAC与△BAD的面积之差S△OAC−S△BAD=______.三、解答题(本大题共7小题,共52分)17.计算:4sin60°+|3−√12|−(12)−1+(π−2019)018.x取哪些整数值时,不等式5x+2>3(x−1)与12x≤2−32x都成立?19.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27=108”,请你判断这种说法是否正确,并说明理由.30020.在小水池旁有一盏路灯(如图),已知支架AB的长是0.8m,A端到B地面的距离AC是4m,支架AB与灯柱AC的夹角为65°小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C,E,D在同一直线上),求小水池的宽DE.(结果精确到0.1.参考数据:sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)21.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整2h后提速行驶至乙地.设行驶时间为x(ℎ),货车的路程为y1(km),小轿车的路程为y2(km),图中的线段OA与折线OBCD分别表示y1,y2与x之间的函数关系.(1)甲乙两地相距______km,m=______;(2)求线段CD所在直线的函数表达式;(3)小轿车停车休整后还要提速行驶多少小时,与货车之间相距20km?22.如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=______°;(2)求证:DE与⊙O相切;(3)点F在BC⏜上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.23.如图,抛物线y=ax2+bx−5(a≠0)经过点A(4,−5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.答案和解析1.【答案】D【解析】【分析】此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围.计算巧克力的质量标识的范围:在100−0.25和100+0.25之间,即:从99.75克到100.25克之间.【解答】解:100−0.25=99.75(克),100+0.25=100.25(克),所以巧克力的质量标识范围是:在99.75克到100.25克之间.故选D.2.【答案】B【解析】解:A、不是中心对称图形,又不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,又不是轴对称图形,故此选项错误;D、不是中心对称图形,又不是轴对称图形,故此选项错误;故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:A、2m×3m=6m2,故原题计算错误;B、(m3)2=m6,故原题计算正确;C、(−2m)3=−8m3,故原题计算错误;D、m2+m2=2m2,故原题计算错误;故选:B.根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.此题主要考查了单项式与单项式相乘、幂的乘方、积的乘方、合并同类项,关键是熟练掌握计算法则.4.【答案】C【解析】解:384000=3.84×105.故选:C.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.【答案】B【解析】解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于26=13,故选:B.根据题意得出所有2位数,从中找到两位数是3的倍数的结果数,利用概率公式计算可得.此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.【答案】D【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“谁”是相对面,故选:D.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【答案】A【解析】【分析】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键,过点C作CD//l1,再由平行线的性质即可得出结论.【解答】解:如图,过点C作CD//l1,则∠1=∠ACD.∵l1//l2,∴CD//l2,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.8.【答案】A【解析】解:A、样本方差越大,数据波动越大,故原命题错误,是假命题;B、任意正多边形的外角和均为360°,故原命题正确,是真命题;C、位似图形必相似,正确,是真命题;D、方程x2+x+1=0无实数根,正确,是真命题,故选:A.利用方差的意义、正多边形的性质、位似图形的定义及一元二次方程根的判别式分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解方差的意义、正多边形的性质、位似图形的定义及一元二次方程根的判别式,难度不大.9.【答案】C【解析】解:∵在▱ABCD中,∠A=2∠B,∠A+∠B=180°,∴∠A=120°,∵∠C=∠A=120°,⊙C的半径为3,∴图中阴影部分的面积是:120⋅π×32360=3π,故选:C.根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.【答案】B【解析】解:设学校购买文学类图书平均每本书的价格是x元,可得:12000x =120001.2x+100,故选:B.首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.11.【答案】C【解析】解:由题意可知:y′=3x2,∴3x2=6x,∴x=0或x=2,故选:C.根据新定义运算法则以及一元二次方程的解法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.12.【答案】C【解析】解:①DE平分∠ADC,∠ADC为直角,∴∠ADE=12×90°=45°,∴△ADE为等腰直角三角形,∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BFE=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF≌△CBF(SAS)∴AF=CF③假设BF2=FG⋅FC,则△FBG∽△FCB,∴∠FBG=∠FCB=45°,∵∠ACF=45°,∴∠ACB=90°,显然不可能,故③错误,④∵∠BGF=180°−∠CGB,∠DAF=90°+∠EAF=90°+(90°−∠AGF)=180°−∠AGF,∠AGF=∠BGC,∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,∴△ADF∽△GBF,∴ADBG =DFBF=DFEF,∵EG//CD,∴EFDF =EGCD=EGAB,∴ADBG =ABGE,∵AD=AE,∴EG⋅AE=BG⋅AB,故④正确,故选:C.①只要证明△ADE为等腰直角三角形即可②只要证明△AEF≌△CBF(SAS)即可;③假设BF2=FG⋅FC,则△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,显然不可能,故③错误,④由△ADF∽△GBF,可得ADBG =DFBF=DFEF,由EG//CD,推出EFDF=EGCD=EGAB,推出ADBG=ABGE,由AD=AE,EG⋅AE=BG⋅AB,故④正确,本题考查相似三角形的判定和性质、矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.【答案】n(m−3)2【解析】解:m2n−6mn+9n=n(m2−6m+9)=n(m−3)2.故答案为:n(m−3)2.此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.【答案】3【解析】解:设成绩为9环的人数是x,根据题意得:(7×3+8×4+9⋅x)÷(3+4+x)=8,解得:x=3,则成绩为9环的人数是3;故答案为:3.先设成绩为9环的人数是x,根据加权平均数的计算公式列出方程,求出x的值即可.此题考查了加权平均数,关键是根据加权平均数的计算公式和已知条件列出方程,是一道基础题.15.【答案】4【解析】解:在▱ABCD中,∵AB=CD=2√13cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC =√AB 2−BC 2=6cm , ∴OC =3cm ,∴BO =√OC 2+BC 2=5cm , ∴BD =10cm ,∴△DBC 的周长−△ABC 的周长=BC +CD +BD −(AB +BC +AC)=BD −AC =10−6=4cm , 故答案为:4.根据平行四边形的性质得到AB =CD =2√13cm ,AD =BC =4cm ,AO =CO ,BO =DO ,根据勾股定理得到OC =3cm ,BD =10cm ,于是得到结论.本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键. 16.【答案】4【解析】解:设△OAC 和△BAD 的直角边长分别为a 、b , 则点B 的坐标为(a +b,a −b).∵点B 在反比例函数y =8x 的第一象限图象上, ∴(a +b)×(a −b)=a 2−b 2=8.∴S △OAC −S △BAD =12a 2−12b 2=12(a 2−b 2)=12×8=4.故答案为:4.设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.本题考查了反比例函数系数k 的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a 2−b 2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.17.【答案】解:4sin60°+|3−√12|−(12)−1+(π−2019)0=4×√32+2√3−3−2+1 =2√3+2√3−4 =4√3−4【解析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【答案】解:根据题意解不等式组{5x +2>3(x −1)①12x ≤2−32x ②, 解不等式①,得:x >−52, 解不等式②,得:x ≤1, ∴−52<x ≤1,故满足条件的整数有−2、−1、0、1.【解析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.本题考查的是解一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】(1)144°(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120−27−33−20=120−80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:=160人;1200×40300(4)这个说法不正确.理由如下:小明得到的108人是全校经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.【解析】解:(1)360°×(1−15%−45%)=360°×40%=144°;故答案为:144°;(2)见答案(3)见答案(4)见答案【分析】(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【答案】解;作BF⊥AC于F,作BG⊥CD于G,如图所示:则CG=BF,BG=CF,,在Rt△ABF中,∠BAF=65°,AB=0.8,sin∠BAF=BFABcos ∠BAF =AF AB ,∴BF =AB ×sin65°≈0.8×0.9=0.72,AF =AB ×cos65°≈0.8×0.4=0.36, ∴BG =CF =AF +AC =0.36+4=4.36,CG =BF =0.72,在Rt △ACE 中,tan ∠CEA =AC CE ,∴CE =ACtan50∘≈41.2≈3.333,∵∠BDG =45°,∠BGD =90°,∴△BDG 是等腰直角三角形,∴DG =BG =4.36,∴CD =CG +DG =0.72+4.36=5.08,∴DE =CD −CE =5.08−3.333≈1.7(m);答:小水池的宽DE 约为1.7m .【解析】作BF ⊥AC 于F ,作BG ⊥CD 于G ,则CG =BF ,BG =CF ,在Rt △ABF 中,由三角函数得出BF =AB ×sin65°≈0.72,AF =AB ×cos65°≈0.36,得出BG =CF =AF +AC =0.36+4=4.36,CG =BF =0.72,在Rt △ACE 中,由三角函数得出CE =ACtan50∘≈3.333,证明△BDG 是等腰直角三角形,得出DG =BG =4.36,求出CD 的长,即可得出答案.本题考查了解直角三角形的应用−仰角俯角问题、等腰直角三角形的判定与性质;熟练掌握甲种直角三角形,作出辅助线构造直角三角形是解题的关键.21.【答案】(1)420;5(2)设直线CD 的解析式为y =kx +b ,把C(5,270),D(6.5,420)代入得到{5k +b =2706.5k +b =420, 解得{k =100b =−230, ∴直线CD 的解析式为y =100x −230.(3)设线段OA 所在的直线的解析式为y =k′x ,把点A(7,420)代入得到k′=60,∴y =60x ,由题意:60x −(100x −230)=20,解得x =214,x −5=14, 或(100x −230)−60x =20,解得x =254,x −5=54, 答:小轿车停车休整后还要提速行驶14或54小时,与货车之间相距20km.【解析】解:(1)观察图象可知:甲乙两地相距420km ,m =5,故答案为:420,5;(2)见答案;(3)见答案.【分析】(1)观察图象结合题意即可解决问题;(2)利用待定系数法即可解决问题;(3)首先确定直线OA 的解析式,分两种情形构建方程解决问题即可;本题考查一次函数的应用,解题的关键是理解题意,学会构建一次函数解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.22.【答案】(1)60;(2)∵CD⊥AB,AB是⊙O的直径,∴CM=MD.∵M是OA的中点,∴AM=MO.又∵∠AMC=∠DMO,∴△AMC≌△OMD.∴∠ACM=∠ODM.∴CA//OD.∵DE⊥CA,∴∠E=90°.∴∠ODE=180°−∠E=90°.∴DE⊥OD.∴DE与⊙O相切.(3)如图2,连接CF,CN,∵OA⊥CD于M,∴M是CD中点.∴NC=ND.∵∠CDF=45°,∴∠NCD=∠NDC=45°.∴∠CND=90°.∴∠CNF=90°.由(1)可知∠AOD=60°.∴∠ACD=1∠AOD=30°.2在Rt△CDE中,∠E=90°,∠ECD=30°,DE=3,=6.∴CD=DEsin30∘在Rt△CND中,∠CND=90°,∠CDN=45°,CD=6,∴CN=CD⋅sin45°=3√2.由(1)知∠CAD=2∠OAD=120°,∴∠CFD=180°−∠CAD=60°.在Rt△CNF中,∠CNF=90°,∠CFN=60°,CN=3√2,=√6.∴FN=CNtan60∘【解析】解:(1)如图1,连接OD ,AD∵AB 是⊙O 的直径,CD ⊥AB∴AB 垂直平分CD∵M 是OA 的中点,∴OM =12OA =12OD ∴cos ∠DOM =OM OD =12∴∠DOM =60° 又:OA =OD∴△OAD 是等边三角形∴∠OAD =60°故答案为:60°(2)见答案;(3)见答案;【分析】(1)由CD ⊥AB 和M 是OA 的中点,利用三角函数可以得到∠DOM =60°,进而得到△OAD 是等边三角形,∠OAD =60°.(2)只需证明DE ⊥OD.便可以得到DE 与⊙O 相切.(3)利用圆的综合知识,可以证明,∠CND =90°,∠CFN =60°,根据特殊角的三角函数值可以得到FN 的数值.本题考查圆的综合运用,特别是垂径定理、切线的判定要求较高,同时对于特殊角的三角函数值的运用有所考察,需要学生能具有较强的推理和运算能力.23.【答案】解:(1)∵抛物线y =ax 2+bx −5与y 轴交于点C ,∴C(0,−5),∴OC =5.∵OC =5OB ,∴OB =1,又点B 在x 轴的负半轴上,∴B(−1,0).∵抛物线经过点A(4,−5)和点B(−1,0),∴{16a +4b −5=−5a −b −5=0,解得{a =1b =−4, ∴这条抛物线的表达式为y =x 2−4x −5.(2)由y=x2−4x−5,得顶点D的坐标为(2,−9).连接AC,∵点A的坐标是(4,−5),点C的坐标是(0,−5),又S△ABC=12×4×5=10,S△ACD=12×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18.(3)过点C作CH⊥AB,垂足为点H.∵S△ABC=12×AB×CH=10,AB=√(−1−4)2+(0+5)2=5√2,∴CH=2√2,在Rt△BCH中,∠BHC=90°,BC=√26,BH=√BC2−CH2=3√2,∴tan∠CBH=CHBH =23.∵在Rt△BOE中,∠BOE=90°,tan∠BEO=BOEO,∵∠BEO=∠ABC,∴BOEO =23,得EO=32,∴点E的坐标为(0,32).【解析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.。

2020届深圳市中考数学模拟试卷有答案(word版)

2020届深圳市中考数学模拟试卷有答案(word版)

广东省深圳市中考试卷数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是( )A .6-B .16-C .16D .6 2.260000000用科学计数法表示为( )A .90.2610⨯B .82.610⨯C .92.610⨯D .72610⨯3.图中立体图形的主视图是( )A .B .C .D .4.观察下列图形,是中心对称图形的是( )A .B . C.D .5.下列数据:75,80,85,85,85,则这组数据的众数和极差是( )A .85,10B .85,5 C.80,85 D .80,106.下列运算正确的是( )A .236a a a =gB .32a a a -= C. 842a a a ÷= D =7.把函数y x -向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3 C.()2,4 D .(2,5)8.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠=B .34∠==∠ C.24180∠+∠=o D .14180∠+∠=o9.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩ C. 4806870x y x y +=⎧⎨+=⎩ D .4808670x y x y +=⎧⎨+=⎩10.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .6 D .11.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +< C.30a c +< D .230ax bx c ++-=有两个不相等的实数根12.如图,A B 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③ C.②④ D .③④第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上)13.分解因式:29a -=.14.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.如图,四边形ABCD 是正方体,CEA ∠和ABF ∠都是直角且点,,E A B 三点共线,4AB =,则阴影部分的面积是.16.在Rt ABC ∆中,90?C ∠=,AD 平分CAB ∠,AD BE 、相交于点F ,且4,AF EF ==则AC =.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:-1012sin )2π⎛⎫- ⎪⎝⎭. 18.先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =. 19.某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:请根据上图完成下面题目:(1)总人数为__________人,a =__________,b =__________.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在CFE ∆中,6,12CF CE ==,45?FCE ∠=,以点C 为圆心,以任意长为半径作AD ,再分别以点A 和点D 为圆心,大于12AD 长为半径做弧,交EF 于点,//B AB CD . (1)求证:四边形ACDB 为FEC ∆的亲密菱形;(2)求四边形ACDB 的面积.21.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贯2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.如图在O e 中,2,BC AB AC ==,点D 为AC 上的动点,且cos B =. (1)求AB 的长度;(2)求AD AE ⋅的值;(3)过A 点作AH BD ⊥,求证:BH CD DH =+.23.已知顶点为A 抛物线2122y a x ⎛⎫=-- ⎪⎝⎭经过点3,22B ⎛⎫- ⎪⎝⎭,点5,22C ⎛⎫ ⎪⎝⎭. (1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点,M y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若OPM MAF ∠=∠,求POE ∆的面积;图1(3)如图2,点Q 是折线A B C --上一点,过点Q 作//QN y 轴,过点E 作//EN x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将QEN ∆沿QE 翻折得到1QEN ∆,若点1N 落在x 轴上,请直接写出Q 点的坐标. 图2广东省深圳市中考试卷数学参考答案一、选择题1-5: ABBDA 6-10:BDBAD 11、12:CB二、填空题13.()()33a a +- 14.1215.8 三、解答题17.318.解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++ 把2x =代入得:原式13=19.解:(1)0.440100÷=(人)251000.25a =÷=,1000.1515b =⨯=(人), (2)如图:(3)6000.1590⨯=(人)20.解:(1)证明:由已知得:AC CD =,AB DB =由已知尺规作图痕迹得:BC 是FCE ∠的角平分线则:ACB DCB ∠=∠又//AB CD QABC DCB ∴∠=∠ACB ABC ∴∠=∠AC AB ∴=又,AC CD AB DB ==QAC CD DB BA ∴===∴四边形ACDB 是菱形ACD ∠Q 与FCE ∆中的FCE ∠重合,它的对角ABD ∠顶点在EF 上 ∴四边形ACDB 为FEC ∆的亲密菱形(2)解:设菱形ACDB 的边长为x可证:EAB FCE ∆∆∽ 则:FA AB FC CE =,即6126x x -= 解得:4x =过A 点作AH CD ⊥于H 点在Rt ACH ∆中,45?ACH ∠=AH ∴==∴四边形ACDB 的面积为:4⨯21.解:(1)设第一批饮料进货单价为x 元,则:1600600032x x ⋅=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: (8)200(10)6001200m m -⋅+-⋅≥化简得:2(8)6(10)12m m -+-≥解得:11m ≥答:销售单价至少为11元.22.解:(1)作AM BC ⊥,,2AB AC AM BC BC =⊥=Q112BM CM BC ===cos BM B AB ==Q Rt AMB ∆中,1BM =cos 1AB BM B ∴=÷==(2)连接DCAB AC =QACB ABC ∴∠=∠∵四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=o ,180ACE ACB ∠+∠=o Q ,ADC ACE ∴∠=∠CAE ∠Q 公共EAC CAD ∴∆∆∽AC AE AD AC∴=2210AD AE AC ∴⋅===.(3)在BD 上取一点N ,使得BN CD =在ABN ∆和ACD ∆中31AB AC BN CD =⎧⎪∠=∠⎨⎪=⎩()ABN ACD SAS ∴∆≅∆AN AD ∴=,AN AD AH BD =⊥QNH HD ∴=,BN CD NH HD ==QBN NH CD HD BH ∴+=+=.23.解:(1)把点3,22B ⎛⎫- ⎪⎝⎭代入2122y a x ⎛⎫=-- ⎪⎝⎭,解得:1a =, ∴抛物线的解析式为:2122y x ⎛⎫=-- ⎪⎝⎭或274y x x =--; (2)设直线AB 解析式为:y kx b =+,代入点,A B 的坐标得: 122322k b k b ⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:21k b =-⎧⎨=-⎩,∴直线AB 的解析式为:21y x =--, 易求()0,1E ,70,4F ⎛⎫- ⎪⎝⎭,1,02M ⎛⎫- ⎪⎝⎭, 若OPM MAF ∠=∠,则当//OP AF 时,OPE EAE ∆∆∽,14334OP OE FA FE ===, 433OP FA ∴===, 设点(),21P t t --3= 解得1215t =-,223t =-, 由对称性知;当1215t =-时,也满足OPM MAF ∠=∠, 1215t ∴=-,223t =-都满足条件 POE ∆Q 的面积12OE l =⋅,POE ∴∆的面积为115或13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳市南山区育才二中2020
年中考数学一模试卷一、单选题 1. 与 的积为1的数是( )
A . 2
B .
C . ﹣2
D . - 2. 《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾.其票房突破56亿元(5600000000元),5600000000
用科学记数法表示为( )A . 5.6×10 B . 5.6×10 C . 0.56×10 D . 56×103. 下列运算正确的是( )
A .
B .
C .
D .
4. 等腰三角形的一边长为4,另一边长为9
,则这个三角形的周长为( )
A . 22
B . 17
C . 13
D . 17
或22
5. 下列立体图形中,主视图是矩形的是( ) A . B . C . D .
6. 下列各数中,为不等式组
解的是( )
A . -1
B . 0
C . 2
D . 47. 在
中, , , ,则 的值是( )A . B . C . D .
8. 如图,四边形ABCD 内接于圆O ,AD ∥BC ,∠DAB =48°,则∠AOC 的度数是( )
A . 48°
B . 96°
C . 114°
D . 132°
9. 某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:
锻炼时间/h
5678人数2652则这 15 名学生一周在校参加体育锻炼时间的中位数和众数分别为( )
A . 6 h , 6 h
B . 7 h , 7 h
C . 7 h , 6 h
D . 6 h , 7 h
10. 已知关于x 的一元二次方程kx ﹣2x ﹣1=0有实数根,若k 为非正整数,则
k 等于( )
A .
B . 0
C . 0或﹣1
D . ﹣1
11. 已知:如图,直线l 经过点A (﹣2,0)和点B (0,1),点M 在x 轴上,过点M 作x 轴的垂线交直线l 于点C , 若OM =2OA , 则经过点C 的反比例函数表达式为( )9898
2
A . y =
B . y
= C . y
= D . y =
12. 如图,等腰直角三角形ABC , ∠BAC =90°,D 、E 是BC 上的两点,且BD =CE , 过D 、E 作DM 、EN 分别垂直A B 、AC , 垂足为M 、N , 交与点F , 连接AD 、AE . 其中①四边形AMFN 是正方形;②△ABE ≌△ACD ;③CE +BD =DE
;④当∠DAE =45°时,AD =DE •CD .
符合题意结论有( )
A . 1个
B . 2个
C . 3个
D . 4个
二、填空题
13. 若分式
的值为0,则 的值为________.14. 把多项式 分解因式的结果是________ .
15. 如图,在平行四边形ABCD 中,AB=2
cm ,AD=4cm ,AC ⊥BC ,则△DBC 比△ABC 的周长长________cm .16. 如图,正方形ABCO 的边长为 ,OA 与x 轴正半轴的夹角为15°,点B 在第一象限,点D 在x 轴的负半轴上,且满足∠
BDO =15°,直线y =
kx +b 经过B 、D 两点,则b ﹣k
=________.
三、解答题17. 计算(
﹣π)﹣3tan30°+
( )+|1﹣ |18. 先化简:
,再从 、2、3中选择一个合适的数作为a 的值代入求值.19. 某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在
统计表上,部分数据看不清楚.
捐款人数0~50元
51~100元
101~150元
151~200元
6200元以上4
(1) 共有多少人捐款?22220﹣2
(2) 如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?
20. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P
的仰角是45°,向前走9m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°.
(1) 求∠BPQ 的度数;
(2) 求该电线杆PQ 的高度.(结果保留根号)
21. 六一儿童节,某玩具经销商在销售中发现:某款玩具若以每个50元销售,一个月能售出500个,销售单价每涨1元,月销售量就减少10个,这款玩具的进价为每个40元,请回答以下问题:
(1) 若月销售利润定为8000元,且尽可能让利消费者,销售单价应定为多少元?
(2) 由于资金问题,在月销售成本不超过10000
元、且没有库存积压的情况下,问销售单价至少定为多少元?22. 如图,点A 、B 分别在x 轴和
y 轴的正半轴上,以线段AB 为边在第一象限作等边△ABC ,
,且CA ∥y 轴.
(1) 若点C 在反比例函数
的图象上,求该反比例函数的解析式;(2) 在(1)中的反比例函数图象上是否存在点N , 使四边形ABCN 是菱形,若存在请求出点N 坐标,若不存在,请
说明理由.(3) 点P 在第一象限的反比例函数图象上,当四边形OAPB 的面积最小时,求出P 点坐标.
23. 如图1所示,已知直线y =kx +m 与抛物线y =ax +bx +c 分别交于x 轴和y 轴上同一点,交点分别是点
B (6,0)和点
C (0,6),且抛物线的对称轴为直线x =4;
(1) 试确定抛物线的解析式;
(2) 在抛物线的对称轴上是否存在点P , 使△PBC 是直角三角形?若存在请直接写出
P 点坐标,不存在请说明理由;
(3) 如图2,点Q 是线段BC
上一点,且CQ = ,点M 是y 轴上一个动点,求△AQM 的最小周长.
参考答案
1.
2.
2
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.。

相关文档
最新文档