相似三角形题型讲解
相似三角形难题集锦(含问题详解)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△E相似?4.如下列图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C 〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假如能,求出AP的长;假如不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t <6〕。
〔1〕当t为何值时,△QAP为等腰直角三角形?〔2〕当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为〔1,3〕,将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为〔〕A. B.C. D.10..,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。
相似三角形重难点模型(五大模型)(解析版)

相似三角形重难点模型(五大模型)【题型01:(双)A字型相似】【题型02:(双)8型相似】【题型03:母子型相似】【题型04:旋转相似】【题型05:K字型相似】【题型01:(双)A字型相似】1.如图,在△ABC中,BC=12,高AD=6,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,求AN的长.【答案】2【分析】设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF∥BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【详解】解:设正方形EFGH的边长EF=EH=x,∵四边形EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴AN AD =EFBC(相似三角形对应边上的高的比等于相似比),∵BC=12,AD=6,∴AN=6-x,∴6-x6=x 12,解得:x=4,∴AN=6-x=6-4=2.【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比.2.如图,光源P 在水平横杆AB 的上方,照射横杆AB 得到它在平地上的影子为CD (点P 、A 、C 在一条直线上,点P 、B 、D 在一条直线上),不难发现AB ⎳CD .已知AB =1.5m ,CD =4.5m ,点P 到横杆AB 的距离是1m ,则点P 到地面的距离等于m .【答案】3【分析】作PF ⊥CD 于点F ,利用AB ∥CD ,推导△P AB ∽△PCD ,再利用相似三角形对应高之比是相似比求解即可.【详解】解:如图,过点P 作PF ⊥CD 于点F ,交AB 于点E ,∵AB ∥CD ,∴△P AB ∽△PCD ,PE ⊥AB ,∵△P AB ∽△PCD ,∴AB CD =PE PF ,(相似三角形对应高之比是相似比)即:1.54.5=1PF,解得PF =3.故答案为:3.【点睛】本题考查相似三角形的判定与性质,掌握相似三角形对应高之比是相似比是解题的关键.3.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AC =6,AD 平分∠BAC ,交边BC 于点D ,过点D 作CA 的平行线,交边AB 于点E .(1)求线段DE 的长;(2)取线段AD 的中点M ,连接BM ,交线段DE 于点F ,延长线段BM 交边AC 于点G ,求EF DF的值.【答案】(1)4(2)23【分析】(1)根据平行线分线段成比例定理,列出比例式求解即可;(2)根据平行线分线段成比例定理,列出比例式求解即可.【详解】(1)解:∵AD 平分∠BAC ,∠BAC =60°,∴∠DAC =30°,在Rt △ACD 中,∠ACD =90°,∠DAC =30°,AC =6,∴CD =23,在Rt △ACB 中,∠ACB =90°,∠BAC =60°,AC =6,∴BC =63,∴BD =BC -CD =43,∵DE ∥CA ,∴DE CA=BD BC =23,∴DE =4;(2)解:如图.∵点M 是线段AD 的中点,∴DM =AM ,∵DE ∥CA ,∴DF AG =DM AM.∴DF =AG .∵DE ∥CA ,∴EF AG =BF BG ,BF BG =BD BC .∴EF AG=BD BC .∵BD =43,BC =63,DF =AG ,∴EF DF=23.【点睛】考查了平行线分线段成比例定理,注意线段之间的对应关系.4.如图,△ABD 中,∠A =90°,AB =6cm ,AD =12cm .某一时刻,动点M 从点A 出发沿AB 方向以1cm/s 的速度向点B 匀速运动;同时,动点N 从点D 出发沿DA 方向以2cm/s 的速度向点A 匀速运动,运动的时间为ts .(1)求t 为何值时,△AMN 的面积是△ABD 面积的29;(2)当以点A ,M ,N 为顶点的三角形与△ABD 相似时,求t 值.【答案】(1)t 1=4,t 2=2;(2)t =3或245【分析】(1)由题意得DN =2t (cm ),AN =(12-2t )cm ,AM =tcm ,根据三角形的面积公式列出方程可求出答案;(2)分两种情况,由相似三角形的判定列出方程可求出t的值.【详解】解:(1)由题意得DN=2t(cm),AN=(12-2t)cm,AM=tcm,∴△AMN的面积=12AN•AM=12×(12-2t)×t=6t-t2,∵∠A=90°,AB=6cm,AD=12cm∴△ABD的面积为12AB•AD=12×6×12=36,∵△AMN的面积是△ABD面积的29,∴6t-t2=29×36,∴t2-6t+8=0,解得t1=4,t2=2,答:经过4秒或2秒,△AMN的面积是△ABD面积的2 9;(2)由题意得DN=2t(cm),AN=(12-2t)cm,AM=tcm,若△AMN∽△ABD,则有AMAB=ANAD,即t6=12-2t12,解得t=3,若△AMN∽△ADB,则有AMAD=ANAB,即t12=12-2t6,解得t=24 5,答:当t=3或245时,以A、M、N为顶点的三角形与△ABD相似.【点睛】本题考查了相似三角形的判定,直角三角形的性质和一元二次方程的应用,正确进行分类讨论是解题的关键.【题型02:(双)8型相似】5.已知:如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在AE的延长线上,CE和DF交于点M,BC和DF交于点N,联结BD.(1)求证:△BND∽△CNM;(2)如果AD2=AB•AF,求证:CM•AB=DM•CN.【答案】(1)见解析;(2)见解析【分析】(1)利用平行四边形的性质得AB=CD,AB∥CD,再证明四边形BECD为平行四边形得到BD∥CE,根据相似三角形的判定方法,由CM∥DB可判断△BND∽△CNM;(2)先利用AD 2=AB •AF 可证明△ADB ∽△AFD ,则∠1=∠F ,再根据平行线的性质得∠F =∠4,∠2=∠3,所以∠3=∠4,加上∠NMC =∠CMD ,于是可判断△MNC ∽△MCD ,所以MC :MD =CN :CD ,然后利用CD =AB 和比例的性质即可得到结论.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,而BE =AB ,∴BE =CD ,而BE ∥CD ,∴四边形BECD 为平行四边形,∴BD ∥CE ,∵CM ∥DB ,∴△BND ∽△CNM ;(2)∵AD 2=AB •AF ,∴AD :AB =AF :AD ,而∠DAB =∠FAD ,∴△ADB ∽△AFD ,∴∠1=∠F ,∵CD ∥AF ,BD ∥CE ,∴∠F =∠4,∠2=∠3,∴∠3=∠4,而∠NMC =∠CMD ,∴△MNC ∽△MCD ,∴MC :MD =CN :CD ,∴MC •CD =MD •CN ,而CD =AB ,∴CM •AB =DM •CN .【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在运用相似三角形的性质时主要利用相似比计算线段的长.也考查了平行四边形的判定与性质.6.如图,在平行四边形ABCD 中,点E 是AD 上一点,AE =2ED ,连接BE 交AC 于点G ,延长BE 交CD 的延长线于点F ,则BG GF 的值为()A.23B.12C.13D.34【答案】A【分析】本题考查了相似三角形的判定与性质,平行四边形的性质,解决本题的关键是利用平行四边形的性质对边平行而构建相似三角形.先根据平行四边形的性质得到AB ∥CD ,则可判断△ABG ∽△CFG ,△ABE ∽△DFE ,于是根据相似三角形的性质和AE =2ED 即可得结果.【详解】解:∵四边形ABCD 为平行四边形,∴AB ∥CD ,∴△ABG ∽△CFG ,∴BG GF =AB CF∵△ABE ∽△DFE ,∴AE DE =AB DF,∵AE =2ED ,∴AB =2DF ,∴AB CF =23,∴BG GF=23.故选:A .7.如图1,在四边形ABDE 中,∠ABC =∠BDE ,点C 在边BD 上,且AC ∥DE ,AB ∥CE ,点F 在边AC 上,且AF =CE ,连接BF ,DF ,DF 交CE 于点G .(1)求证:BF =DF ;(2)如图2,若∠ACE =∠CDF ,求证:CE ⋅CF =BF ⋅DG ;(3)如图3,若延长BF 恰好经过点E ,求BC CD的值.【答案】(1)见解析(2)见解析(3)1+52【分析】(1)证明△ABF ≌△CAE ,得出BF =AE ,证明四边形AFDE 为平行四边形,得出AE =DF ,则可得出结论;(2)证明△FCG ∽△FDC ,得出CF DF =GF CF ,证明△FCG ∽△DEG ,得GF DG =CF DE ,则得出结论;(3)证明△ABF ∽△CEF ,得出AB CE =AF CF,设AB =x ,AF =CE =m ,解方程求出x ,则可得出答案.【详解】(1)∵AC∥DE,AB∥CE∴∠BDE=∠ACB,∠ABC=∠DCE,∠BAC=∠ACE ∵∠ABC=∠BDE∴∠ABC=∠BDE=∠ACB=∠DCE∴AB=AC,CE=DE在△ABF和△CAE中,又∵AF=CE∠BAC=∠ACE AB=AC∴△ABF≌△CAE(SAS)∴BF=AE∵CE=DE,AF=CE∴AF=DE∵AF=DE,AC∥DE∴四边形AFDE为平行四边形∴AE=DF∴BF=DF(2)∵∠CFG=∠CFD ∠ACE=∠CDF∴△FCG∽△FDC∴CF DF =GF CF又∵AC∥DE∴△FCG∽△DEG∴GF DG =CFDE,即GFCF=DGDE∴CF DF =DGDE.又∵DE=CE,DF=BF∴CF BF =DGCE,即CE⋅CF=BF⋅DG(3)∵∠ABC=∠DCE ∠ACB=∠EDC∴△ABC∽△ECD∴BC CD =AB CE∵AB∥CE,∴△ABF∽△CEF∴AB CE =AF CF∴AB⋅CF=AF⋅CE.设AB=x,AF=CE=m,则有x(x-m)=m2解得x=1+52m(负值舍去)∴BC CD =ABCE=1+52【点睛】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、平行四边形的性质,利用相似三角形的判定和性质是本题解题的关键.8.如图1,在矩形ABCO 中,OA =8,OC =6,D ,E 分别是AB ,BC 上一点,AD =2,CE =3,OE 与CD 相交于点F .(1)求证:OE ⊥CD ;(2)如图2,点G 是CD 的中点,延长OG 交BC 于H ,求CH 的长.【答案】(1)见解析;(2)CH 的长为6.【分析】(1)根据四边形ABCO 是矩形,可得OA =BC =8,OC =AB =6,根据勾股定理可得OE 和CP 的长,进而得EF 和CF 的长,再根据勾股定理的逆定理即可得OE ⊥CD ;(2)在Rt △CBD 中,CB =8,BD =AB -AD =6-2=4,根据勾股定理可得CD =45,根据点G 是CD 的中点,可得CG =DG =25,所以得点G 是CP 的三等分点,根据OA ∥BC ,对应边成比例即可求出CH 的长.【详解】(1)∵四边形ABCO 是矩形,∴OA =BC =8,OC =AB =6,在Rt △OCE 中,CE =3,∴OE =OC 2+CE 2=62+32=35,∵AB ∥OC ,即AD ∥OC ,且AD =2,∴AD OC =P A PO ,∴26=P A P A +8,∴P A =4,∴PO =P A +OA =12,∴在Rt △OPC 中,OC =6,∴CP =OC 2+PO 2=62+122=65,∵OA ∥BC ,即OP ∥CE ,∴CE OP =EF OF =CF PF ,∴EF OF=CF PF =312=14,∴EF =15OE =355,CF =15CP =655,∵355 2+655 2=95+365=9,∴EF 2+CF 2=CE 2,∴△CEF 是直角三角形,∴∠CFE=90°,∴OE⊥CD;(2)在Rt△CBD中,CB=8,BD=AB-AD=6-2=4,根据勾股定理,得CD=CB2+BD2=82+42=45,∵点G是CD的中点,∴CG=DG=25,由(1)知:CP=65,∴DP=CP-CD=25,∴点G是CP的三等分点,∵OA∥BC,即OP∥CH,∴CH OP =CG GP,∴CH12=12,∴CH=6.答:CH的长为6.【点睛】本题考查了矩形的性质、勾股定理及其逆定理的应用、相似三角形的判定与性质以及平行线分线段成比例定理,解决本题的关键是掌握矩形的性质.【题型03:母子型相似】9.【典例3】如图1,∠C=90,BC=6,tan B=43,点M从点B出发以每秒1个单位长度的速度向点C运动,点N同时从点C出发以每秒2个单位长度的速度向点A运动,当一点到达终点时,另一点也停止运动.(1)求AB的长.(2)当以点M、C、N为顶点的三角形与△ABC相似时,求t的值.(3)如图2,将本题改为点M从点B出发以每秒3个单位长度的速度在BA上向点A运动,点N同时从点A出发向点C运动,其速度是每秒2个单位长度,其它条件不变,求当t为何值时,△MNA为等腰三角形.【答案】(1)10(2)t=125或t=1811时,以点M、C、N为顶点的三角形与△ABC相似(3)t=2或t=4017或t=5031时,△MNA为等腰三角形【分析】(1)根据三角函数解得即可;(2)分①当△MCN ∽△BCA 时和②当△MCN ∽△ACB 时,两种情况利用相似三角形的性质解答即可;(3)分①当AM =AN 时,②当AM =MN 时,③当MN =AN 时,三种情况,利用等腰三角形的性质得出比例解答即可.【详解】(1)解:∵∠C =90°,BC =6,tan B =43∴AC =8∴AB =BC 2+AC 2=62+82=10(2)解:解:①当△MCN ∽△BCA 时,∴MC BC =CN CA ,即6-t 6=2t 8,解得:t =125,②当△MCN ∽△ACB 时,∵MC AC =CN BC ,即6-t 8=2t 6,解得:t =1811,综上所述,t =125或t =1811时,以点M 、C 、N 为顶点的三角形与△ABC 相似,(3)解:①如图3,当AM =AN 时,10-3t =2t ,解得:t =2,②如图4,当AM =MN 时,过点M 作MD ⊥AC 于D ,则∠ADM =90°,AM =MN =10-3t ,AD =12AN =t ,∵∠ACB =90°,∴MD ∥BC ,∴△AMD ∽△ABC ,∴AM AB =AD AC ,即10-3t 10=t 8,解得:t =4017,③如图5,当MN =AN 时,过点N 作ND ⊥AB 于D ,则∠ADN =∠ACB =90°,AD =DM =12AM =12(10-3t ),∵∠A =∠A ,∴△ADN ∽△ACB ,∴AD AC =AN AB ,即12(10-3t )8=2t 10,解得:t =5031,综上所述,t =2或t =4017或t =5031时,△MNA 为等腰三角形【点睛】本题考查考查了相似三角形的判定与性质、等腰三角形的性质,已知正切求边长,解题的关键是掌握辅助线的作法,数形结合,分类讨论思想的应用.10.如图,在△ABC 中,D 是BC 上的点,E 是AD 上一点,且AB AC=AD CE ,∠BAD =∠ECA .(1)求证:AC 2=BC •CD ;(2)若AD 是△ABC 的中线,求CE AC 的值.【答案】(1)证明见解析;(2)22【分析】(1)首先利用相似三角形的判定得出△BAD ∽△ACE △,得∠B =∠EAC ,进而求出△ABC ∽△DAC ,再利用相似三角形的性质得出答案即可;(2)由△BAD ∽△ACE 可证∠CDE =∠CED ,进而得出CD =CE ,再由(1)可证AC =2CD ,由此即可得出线段之间关系.【详解】(1)证明:∵AB AC =AD CE ,∠BAD =∠ECA ,∴ΔBAD ∽ΔACE ,∴∠B =∠EAC ,∵∠ACB =∠DCA ,∴△ABC ∽△DAC ,∴AC CD =BC AC,∴AC 2=BC ·CD .(2)解:∵△BAD ∽△ACE ,∴∠BDA =∠AEC ,∴∠CDE =∠CED ,∴CD =CE ,∵AD 是△ABC 的中线,∴BC =2BD =2CD ,∴AC 2=BC ·CD =2CD 2,即:AC =2CD ,∴CE AC =CD 2CD=22.【点睛】此题主要考查了相似三角形的判定与性质以及重心的性质等知识,根据已知得出△BAD ∽△ACE 是解题关键.11.如果两个相似三角形的对应边存在2倍关系,则称这两个相似三角形互为母子三角形.(1)如果△DEF 与△ABC 互为母子三角形,则DE AB 的值可能为()A.2B.12C.2或12(2)已知:如图1,△ABC 中,AD 是∠BAC 的角平分线,AB =2AD , ∠ADE =∠B .求证:△ABD 与△ADE 互为母子三角形.(3)如图2,△ABC 中,AD 是中线,过射线CA 上点E 作EG ⎳BC ,交射线DA 于点G ,连结BE ,射线BE 与射线DA 交于点F ,若△AGE 与△ADC 互为母子三角形.求AG GF的值.【答案】(1)C ;(2)见解析;(3)AG GF=13或3.【分析】(1)根据互为母子三角形的定义即可得出结论;(2)根据两角对应相等两三角形相似得出△ABD ∽△ADE ,再根据AB =2AD 从而得出结论;(3)根据题意画出图形,分当G ,E 分别在线段AD ,AC 上时和当G ,E 分别在射线DA ,CA 上时两种情况加以讨论;【详解】(1)∵△DEF 与△ABC 互为母子三角形,∴DEAB=12或2故选:C(2)∵AD 是∠BAC 的角平分线,∴∠BAD =∠CAD ,∵∠ADE =∠B ,∴△ABD ∽△ADE .又∵AB =2AD ,∴△ABD 与△ADE 互为母子三角形.(3)如图,当G ,E 分别在线段AD ,AC 上时,∵△AGE 与△ADC 互为母子三角形,∴CD GE =AD AG=2,∴AG =DG ,∵AD 是中线,∴BD =CD ,又∵GE ⎳BC ,∴△GEF ∽△DBF .∴DF GF =DB GE =CD GE=2,∴DG =3GF ,∴AG GF=3.如图,当G ,E 分别在射线DA ,CA 上时,∵△AGE 与△ADC 互为母子三角形,∴CD GE =AD AG =2,∴AG =12AD =13DG ,∵AD 是中线,∴BD =CD ,又∵GE ⎳BC ,∴△GEF ∽△DBF .∴DF GF =DB GE =CD GE=2,∴DG =GF ,∴AG GF =13.综上所述,AG GF =13或3【点睛】本题主要考查了相似三角形的判定与性质、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中互为母子三角形的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.12.如图1,AB =AC =2CD ,DC ∥AB ,将△ACD 绕点C 逆时针旋转得到△FCE ,使点D 落在AC 的点E 处,AB 与CF 相交于点O ,AB 与EF 相交于点G ,连接BF .(1)求证:△ABE ≌△CAD ;(2)求证:AC ∥FB ;(3)若点D,E,F在同一条直线上,如图2,求ABBC的值.(温馨提示:请用简洁的方式表示角)【答案】(1)见解析(2)见解析(3)2【分析】(1)根据旋转变换的性质得到旋转前后两个三角形全等,从而得到CE=CD,根据AC=2CD,就能得到AE=CD,然后利用平行可以得到内错角相等,最后加上AB=AC,就可以通过边角边证明两个三角形全等.(2)根据旋转和第一小题的结论,可以得到BE=FE,然后用等角对等边即可得到∠EFB=∠EBF,又可以从前面的两个全等中得到∠EFC=∠EBA,∠OAC=∠OCA从而得到∠OFB=∠OBF,那么△ACO和△BOF就是顶角互为对顶角的一组等腰三角形,所以就能得到底角相等,即∠CAO=∠FOB,那么内错角相等,两直线平行即可证结论.(3)根据D,E,F在同一条直线上,可以证明△AEG和△CED全等,即可得到AG=12AB,那么EG就是中位线,则EG∥CB,加上第二小题结论就能得到四边形BCEF是平行四边形,那么BC=AD,然后通过三角形外角的性质,可以证得∠ADE=∠ACD,就能证△ACD和△ADE是一组子母型相似,然后根据相似比可得最终答案.【详解】(1)解:∵将△ACD绕点C逆时针旋转得到△FCE,∴△FCE≌△ACD,∴CE=CD,∵AC=2CD,∴AC=2CE,∴AE=AC-CE=2CE-CE=CE=CD,∵DC∥AB∴∠DCA=∠EAB,在△ABE和△CAD中,∵AE=CD∠EAB=∠DCA AB=CA,∴△ABE≌△CAD SAS.(2)解:由(1)得BE=AD,∠ABE=∠CAD,∵△CEF≌△CDA,∴FE=AD,∠EFC=∠DAC,∴BE=FE,∠EFC=∠EBA,∴∠EFB=∠EBF,∵∠OFB=∠EFB-∠EFC,∠OBF=∠EBF-∠EBA,∴∠OFB=∠OBF,∵∠ECF=∠DCA,∴∠OAC=∠OCA,∵∠OCA+∠OAC+∠AOC=180°,∠OBF+∠OFB+∠BOF=180°,又∠AOC=∠BOF,∴∠OCA+∠OAC=∠OBF+∠OFB,即2∠CAO=2∠FOB,∴∠CAO=∠FOB,∴AC∥FB(3)解:在△AEG和△CED中,∵∠GAE=∠DCE AE=CE∠AEG=∠CED ,∴△AEG≌△CED ASA∴AG=CD=12AB,∵AE=CE,∴EG∥CB,∵AC∥FB,∴四边形BCEF是平行四边形,∴BC=FE=AD,∵∠AEG=∠ACD+∠CAD=∠DAE+∠ADE,∴∠ADE=∠ACD,∵∠CAD=∠DAE,∴△ACD∽△ADE,∴EA DA =DA CA,即DA2=EA⋅CA=2EA2,∴DA=2EA,∵AB=AC=2EA,∴AB BC =ABDA=2EA2EA=22=2.【点睛】本题考查了三角形全等的证明,平行线的判定以及利用相似三角形求线段长之比,解题时需要学会将多个小题的结论联系起来,把前面小题的结论用到后面小题的思路中,熟练寻找证明三角形全等或相似所需要的条件是解题的关键.【题型04:旋转相似】13.【典例4】某校数学活动小组探究了如下数学问题:(1)问题发现:如图1,△ABC中,∠BAC=90°,AB=AC.点P是底边BC上一点,连接AP,以AP为腰作等腰Rt△APQ,且∠P AQ=90°,连接CQ、则BP和CQ的数量关系是______;(2)变式探究:如图2,△ABC中,∠BAC=90°,AB=AC.点P是腰AB上一点,连接CP,以CP为底边作等腰Rt△CPQ,连接AQ,判断BP和AQ的数量关系,并说明理由;(3)问题解决:如图3,在正方形ABCD中,点P是边BC上一点,以DP为边作正方形DPEF,点Q是正方形DPEF两条对角线的交点,连接CQ.若正方形DPEF的边长为210,CQ=22,请直接写出正方形ABCD的边长.【答案】(1)BP=CQ(2)BP=2AQ(3)6【分析】(1)根据已知条件利用边角边证明△ABP≌△ACQ,再利用全等三角形的性质即可得到BP和CQ 的数量关系;(2)根据任意等腰直角三角形的直角边与斜边的比是相等的,利用两边长比例且夹角相等的判定定理证明△CBP∽△CAQ,之后再由相似三角形对应边成比例即可得到BP和AQ的数量关系;(3)连接BD,先由正方形的性质判断出△BCD和△PQD都是等腰直角三角形,再利用与第二问同样的方法证出△BDP∽△CDQ,由对应边成比例,依据相似比求出线段BP的长,接着设正方形ABCD的边长为x,运用勾股定理列出方程即可求得答案.【详解】(1)解:∵△APQ是等腰直角三角形,∠P AQ=90°,在△ABC中,∠BAC=90°,AB=AC,∴AP=AQ,∠BAP+∠P AC=∠CAQ+∠P AC,∴∠BAP=∠CAQ.在△ABP和△ACQ中,AB=AC∠BAP=∠CAQ AP=AQ,∴△ABP≌△ACQ(SAS),∴BP=CQ;(2)解:结论:BP=2AQ,理由如下:∵△CPQ是等腰直角三角形,△ABC中,∠BAC=90°,AB=AC,∴QCPC=ACBC=22,∠ACB=∠QCP=45°.∵∠BCP+∠ACP=∠ACQ+∠ACP=45°,∴∠BCP=∠ACQ,∴△CBP∽△CAQ,∴QCPC=ACBC=AQBP=22,∴BP=2AQ;(3)解:连接BD,如图所示,∵四边形ABCD与四边形DPEF是正方形,DE与PF交于点Q,∴△BCD和△PQD都是等腰直角三角形,∴QDPD=CDBD=22,∠BDC=∠PDQ=45°.∵∠BDP+∠PDC=∠CDQ+∠PDC=45°,∴∠BDP=∠CDQ,∴△BDP∽△CDQ,∴QDPD=CDBD=CQBP=22.∵CQ=22,∴BP=2CQ=4.在Rt△PCD中,CD2+CP2=DP2,设CD=x,则CP=x-4,又∵正方形DPEF的边长为210,∴DP=210,∴x2+(x-4)2=(210)2,解得x1=-2(舍去),x2=6.∴正方形ABCD的边长为6.【点睛】本题是一道几何综合题,考查了全等三角形,相似三角形的判定和性质,以及正方形和等腰三角形的性质,正确识图并能熟练地掌握几何图形的性质与判定定理进行证明是解题的关键.14.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF是正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=9,GH=32,求BC的长.【答案】(1)答案见解析;(2)AG=2BE;理由见解析;(3)BC=95 2.【分析】(1)先说明GE⊥BC、GF⊥CD,再结合∠BCD=90°可证四边形CEGF是矩形,再由∠ECG= 45°即可证明;(2)连接CG,证明△ACG∽△BCE,再应用相似三角形的性质解答即可;(3)先证△AHG∽△CHA可得AGAC =GHAH=AHCH,设BC=CD=AD=a,则AC=a,求出AH=23a,DH=13a,CH=103a最后代入即可求得a的值.【详解】(1)∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形.(2)结论:AG=2BE;理由:连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG=cos45°=22,CB CA =cos45°=22,∴CG CE =CA CB=2,∴△ACG ∽△BCE ,∴AG BE =CA CB=2∴线段AG 与BE 之间的数量关系为AG =2BE ;(3)∵∠CEF =45°,点B 、E 、F 三点共线,∴∠BEC =135°,∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°,∴∠AGH =∠CAH =45°,∵∠CHA =∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH=AH CH ,设BC =CD =AD =a ,则AC =2a ,由AG AC =GH AH ,得92a =32AH ,∴AH =23a ,则DH =AD -AH =13a ,CH =CD 2+DH 2=103a ,∴AG AC =AH CH ,得 92a =23a 103a ,解得:a =952,即BC =952.【点睛】本题属于四边形综合题,主要考查相似形的判定和性质、正方形的性质等知识点,解题的关键是正确寻找相似三角形解决问题并利用参数构建方程解决问题.【题型05:K 字型相似】15.综合探究如图,在平面直角坐标系中,点O 为原点,□ABCD 的顶点B 、C 在x 轴上,A 在y 轴上,OA =OC =2OB =4,直线y =x +t (-2≤t ≤4)分别与x 轴、y 轴、线段AD 、直线AB 交于点E 、F 、P 、Q .(1)当t =1时,求证:AP =DP .(2)探究线段AP 、PQ 之间的数量关系,并说明理由.(3)在x 轴上是否存在点M ,使得∠PMQ =90°,且以点M 、P 、Q 为顶点的三角形与△AOB 相似,若存在,请求出此时t 的值以及点M 的坐标;若不存在,请说明理由.【答案】(1)见解析(2)PQ =22AP(3)t =73时,M 13,0 ;t =23时,M 143,0 ;t =-1时,M -7,0 .【分析】(1)根据t =1,求出t =1与AD 交点P 的坐标,即可求解;(2)先求出直线AB 的表达式为y =2x +4,再联立直线AB 与直线y =x +t 求出Q (t -4,2t -4),再求出点P (4-t ,4),利用坐标系中两点距离公式求出即可PQ =22(t -4),结合AP =4-t 即可求解;(3)证明△PHM ∽△MIQ ,得到PM QM =AO BO =2或PM QM =BO AO=12,分四种情况画图求解.【详解】(1)证明:由OA =OC =2OB =4知,OC =4,OB =2,则AD =BC =6,则点A 、B 的坐标分别为:(0,4)、(-2,0),当y =4时,y =x +1=4,则x =3=12AD ,即点P (3,4),∴AP =DP =3;(2)解:PQ =22AP ,理由:设直线AB 的表达式为:y =kx +b ,将A 0,4 、B -2,0 代入得:4=b 0=-2k +b ,解得:k =2b =4 .∴直线AB 的表达式为:y =2x +4,联立上式和y =x +t 得y =x +t y =2x +4 ,解得x =t -4y =2t -4 ,即点Q (t -4,2t -4),同理(1)可得,点P (4-t ,4),∴PQ =t -4 -4-t 2+2t -4 -4 2=224-t∵AP =4-t ,∴PQ =22AP ;(3)分别过点P 、Q 作PH ⊥x 轴,QI ⊥x 轴,∴∠PHM =∠MIQ =90°,∵∠PMQ =90°,∴∠PMH +∠QMI =90°,∵∠MQI +∠QMI =90°,∴∠PMH =∠MQI ,∴△PHM ∽△MIQ ,∴PH MI =MH QI =PM QM,设点M (x ,0),由(2)知,点P 、Q 的坐标分别为:(4-t ,4)、(t -4,2t -4),①若m >0,如图2,则MI =m -(t -4),MH =4-t -m ,QI =2t -4,当△PMQ ∽△AOB 时,∴PM QM =AO BO=42=2,∴PH MI =MH QI=2.∴PH =2MI ,MH =2QI ,联立方程组:4=2m -(t -4) 4-t -m =2(2t -4) ,解得:m =13t =73∴t =73时,M 13,0 ,②若m >0,MI =m -(t -4),MH =m -(4-t ),QI =4-2t ,如图3,当△QMP ∽△AOB 时,∴PM QM =BO AO=24=12∴PH MI =MH QI =12∴2PH =MI ,2MH =QI ,联立方程组:2×4=m -(t -4)2m -(4-t ) =4-2t ,解得m =143t =23.∴t =23时,M 143,0 ③若m <0,当△PMQ ∽△AOB 时,如图4,MI =(t -4)-m ,MH =(4-t )-m ,QI =4-2t ,∴PM AO =QM BO ,∴PM QM =AO BO=42=2,∴PH MI =MH QI =2∴PH =2MI ,MH =2QI ,联立方程组:4=2(t -4)-m 4-t -m =2(4-2t ),解得:m =-7t =-1 ∴t =-1,M -7,0④m <0,△QMP ∽△AOB 的情况不存在,综上,t =73时,M 13,0 ;t =23时,M 143,0 ;t =-1时,M -7,0 .【点睛】本题考查的是一次函数综合运用,涉及到三角形相似、平行四边形的性质等,分类求解是解题的关键.16.如图,边长为10的等边△ABC 中,点D 在边AC 上,且AD =3,将含30°角的直角三角板(∠F =30°)绕直角顶点D 旋转,DE 、DF 分别交边AB 、BC 于P 、Q ,连接PQ .当EF ∥PQ 时,DQ 长为()A.6B.39C.10D.63【答案】B【分析】证明△ADP ∽△BPQ ,由相似三角形的性质得出AD BP =AP BQ =DP PQ ,求出BP =6,CQ =2,过点Q 作QM ⊥AC 于点M ,由勾股定理可求出答案.【详解】解:∵∠F =30°,∴∠E =60°,∵EF ∥PQ ,∴∠DPQ =∠E =60°,∠DQP =∠F =30°,∴∠APD +∠BPQ =120°,∵△ABC 为等边三角形,∴∠A =∠B =60°,AC =BC =AB =10,∴∠APD +∠ADP =120°,∴∠BPQ =∠ADP ,∴△ADP ∽△BPQ ,∴AD BP =AP BQ =DP PQ,∵∠PDQ =90°,∠DQP =30°,∴PD =12PQ ,∴3 BP =APBQ=12,∴BP=6,∴AP=4,BQ=8,∴CQ=2,过点Q作QM⊥AC于点M,∴CM=12CQ=1,QM=3,∵CD=AC-AD=10-3=7,∴DM=CD-CM=7-1=6,∴DQ=DM2+QM2=62+(3)2=29.故选:B.【点睛】本题考查了勾股定理,等边三角形的性质,相似三角形的判定与性质,直角三角形的性质.先证明△ADP∽△BPQ是解题的关键.17.(1)问题如图1,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=90°时,求证:AD⋅BC=AP ⋅BP.(2)探究若将90°角改为锐角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在△ABC中,AB=22,∠B=45°,以点A为直角顶点作等腰Rt△ADE.点D在BC上,点E在AC上,点F在BC上,且∠EFD=45°,若CE=5,求CD的长.【答案】(1)见解析;(2)成立;理由见解析;(3)5【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=α可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)证明△ABD∽△DFE,求出DF=4,再证△EFC∽△DEC,可求FC=1,进而解答即可.【详解】解:(1)证明:如图1,∵∠DPC=90°∴∠BPC+∠APD=90°,∵∠A=90°,∴∠ADP+∠APD=90°∴∠APD=∠BPC,又∵∠A=∠B=90°∴△ADP∽△BPC,∴AD:BP=AP:BC∴AD⋅BC=AP⋅BP;(2)结论AD⋅BC=AP⋅BP仍成立;理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=α,∴∠BPC=∠APD,又∵∠A=∠B=α,∴△ADP∽△BPC,∴AD:BP=AP:BC∴AD⋅BC=AP⋅BP;(3)∵∠EFD=45°,∴∠B=∠ADE=45°,∴∠BAD=∠EDF,∴△ABD∽△DFE∴AB:DF=AD:DE∵Rt△ADE是等腰直角三角形∴AD:DE=1:2∴AB:DF=1:2∵AB=22∴DF=4∵Rt△ADE是等腰直角三角形∴∠AED=45°∵∠EFD=45°∴∠DEC=∠EFC=180°-45°=135°又∵∠C=∠C∴△DEC∽△EFC∴DC:EC=EC:CF即EC2=FC⋅(4+FC)∵EC=5∴5=FC(4+FC)∴FC=1解得CD=5.【点睛】本题考查相似三角形的综合题,三角形的相似,正切值的求法,能够通过构造45°角将问题转化为一线三角是解题的关键.18.如图,在Rt△ABC中,∠ACB=90°,BCAC =mn,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m =n ,点E 在线段AC 上,则DE DF =;(2)数学思考:①如图2,若点E 在线段AC 上,则DE DF =(用含m ,n 的代数式表示);②当点E 在直线AC 上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC =5,BC =25,DF =42,请直接写出CE 的长.【答案】(1)1;n m ;(2)①n m ;②n m ;(3)CE =25或CE =255【分析】(1)先用等量代换判断出∠ADE =∠CDF ,∠A =∠DCB ,得到△ADE ∽△CDF ,再判断出△ADC ∽△CDB 即可;(2)方法和1 一样,先用等量代换判断出∠ADE =∠CDF ,∠A =∠DCB ,得到△ADE ∽△CDF ,再判断出△ADC ∽△CDB 即可;(3)由2 的结论得出△ADE ∽△CDF ,判断出CF =2AE ,求出DE ,再利用勾股定理,计算出即可.【详解】解:1 当m =n 时,即:BC =AC ,∵∠ACB =90°,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠DCB +∠ABC =90°,∴∠A =∠DCB ,∵∠FDE =∠ADC =90°,∴∠FDE -∠CDE =∠ADC -∠CDE ,即∠ADE =∠CDF ,∴△ADE ∽△CDF ,∴DE DF =AD DC,∵∠A =∠DCB ,∠ADC =∠BDC =90°,∴△ADC ∽△CDB ,∴AD DC =AC BC=1,∴DE DF =12 ①∵∠ACB =90°,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠DCB +∠ABC =90°,∴∠A =∠DCB ,∵∠FDE=∠ADC=90°,∴∠FDE-∠CDE=∠ADC-∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴DE DF =AD DC,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴AD DC =ACBC=nm,∴DEDF=nm②成立.如图3,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴DE DF =AD DC,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴AD DC =ACBC=nm,∴DE DF =n m.3 由2 有,△ADE∽△CDF,∵DE DF =ACBC=12,∴AD CD =AECF=DEDF=12,∴CF=2AE,如图4图5图6,连接EF.在Rt△DEF中,DE=22,DF=42,∴EF=210,①如图4,当E在线段AC上时,在Rt△CEF中,CF=2AE=2AC-CE=25-CE,EF=210,根据勾股定理得,CE2+CF2=EF2,∴CE2+25-CE2=40∴CE=25,或CE=-255(舍)②如图5,当E在AC延长线上时,在Rt△CEF中,CF=2AE=2AC+CE=25+CE,EF=210,根据勾股定理得,CE2+CF2=EF2,∴CE2+25+CE2=40,∴CE=255,或CE=-25(舍),③如图6,当E在CA延长线上时,在Rt△CEF中,CF=2AE=2CE-AC=2CE-5,EF=210,根据勾股定理得,CE2+CF2=EF2,∴CE2+2CE-52=40,∴CE=25,或CE=-255(舍),综上:CE=25或CE=25 5.【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解决本题的关键,求CE是本题的难点.。
完整版)相似三角形题型归纳

完整版)相似三角形题型归纳1、在平行四边形ABCD中,点E为对角线AC上的一点,且AE∶EC=1∶3.将BE延长至与CD的延长线交于点G,与AD交于点F。
证明BF∶FG=1∶2.2、在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上的一点。
点G在BE上,连接DG并延长至交AE于点F,且∠FGE=45°。
证明:(1)BD·BC=BG·BE;(2)AG⊥BE;(3)若E为AC的中点,则EF∶FD=1∶2.3、在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上的一点,连接BO交AD于点F,OE⊥OB交BC边于点E。
证明:(1)△ABF∽△COE;(2)当O为AC的中点时,求△ABC的面积;(3)当O为AC边中点时,求△ABC的面积。
4、在平行四边形ABCD和平行四边形ACED中,点R为DE的中点,BR分别交AC、CD于点P、Q。
写出各对相似三角形(相似比为1除外),并求出BP∶PQ∶QR的值。
5、在△ABC中,AD平分∠BAC,EM为AD的中垂线,交BC延长线于点E。
证明DE=BE·CE。
6、过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和E。
证明AE∶ED=2AF∶FB。
7、在Rt△ABC中,CD为斜边AB上的高,点M在CD 上,DH⊥BM且与AC的延长线交于点E。
证明:(1)△AED∽△CBM;(2)DE=DM。
8、在△ABC中,BD、CE分别是两边上的高,过D作DG⊥BC于点G,分别交CE及BA的延长线于点F、H。
证明:(1)DG=BG·CG;(2)BG·CG=GF·GH。
9、在平行四边形ABCD中,点P为对角线AC上的一点。
过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H。
证明:AG∶GB=CP∶PD。
1、求证:如图,已知平行四边形ABCD中,点P在AC上,点Q在BC上,且AP=CQ。
相似三角形-专题(完整版-可打印)

相似三角形的判定--知识讲解(基础)【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】(2014秋•江阴市期中)给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).【答案】①②④⑤.类型二、相似三角形的判定2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数.【答案与解析】∵四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;当△CDF∽△AED时,相似比.【总结升华】此题考查了相似三角形的判定(有两角对应相等的两三角形相似)与性质(相似三角形的对应边成比例).解题的关键是要仔细识图,灵活应用数形结合思想.举一反三:【高清课程名称:相似三角形的判定(2)高清ID号:394499关联的位置名称(播放点名称):例4及变式应用】【变式】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.【答案】∵ AD、CE是△ABC的高,∴∠AEF=∠CDF=90°,又∵∠AFE=∠CFE,∴△AEF∽△CDF.∴AF EFCF FD, 即AF·FD=CF·FE.3.(2014秋•揭西县校级期末)如图,F为平行四边形ABCD的边AD的延长线上的一点,BF分别交于CD、AC于G、E,若EF=32,GE=8,求BE.【答案与解析】解:设BE=x,∵EF=32,GE=8,∴FG=32﹣8=24,∵AD∥BC,∴△AFE∽△CBE,∴=,∴则==+1①∵DG∥AB,∴△DFG∽△CBG,∴=代入①=+1,解得:x=±16(负数舍去),故BE=16.【总结升华】此题主要考查了相似三角形的判定、平行四边形的性质,得出△DFG∽△CBG 是解题关键.4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.【思路点拨】从求证可以判断是运用相似,再根据BP2=PE·PF,可以判定所给的线段不能组成相似三角形,这就需要考虑线段的等量转移了.【答案与解析】连接,,,是的中垂线,,,,.,.又, ∽,,. 【总结升华】根据求证确定相似三角形,是解决此类题型的捷径. 举一反三:【变式】如图,F 是△ABC 的AC 边上一点,D 为CB 延长线一点,且AF=BD,连接DF,交AB 于E. 求证:DE ACEF BC=.【答案】过点F 作FG ∥BC,交AB 于G.则△DBE ∽△FGE △AGF ∽△ABC∵DE DBEF GF=, 又∵AF=BD,∴.DE AFEF GF= ∵△AGF ∽△ABC∴AF ACGF BC =, 即DE ACEF BC=.相似三角形的判定--巩固练习(基础)【巩固练习】一、选择题1. 下列判断中正确的是( ).A.全等三角形不一定是相似三角形B.不全等的三角形一定不是相似三角形C.不相似的三角形一定不全等D.相似三角形一定不是全等三角形2.已知△ABC的三边长分别为、、 2, △A′B′C′的两边长分别是1和, 如果△ABC与△A′B′C′ 相似, 那么△A′B′C′ 的第三边长应该是 ( ).A. B. C. D.3.(2015•大庆校级模拟)如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.4.在△ABC和△DEF中,①∠A=35°,∠B=100°,∠D=35°,∠F=45°;②AB=3cm,BC=5cm,∠B=50°,DE=6cm,DF=10cm,∠D=50°;其中能使△ABC与以D、E、F为顶点的三角形相似的条件( ).A.只有①B.只有②C.①和②分别都是D.①和②都不是5.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有().A.ΔADE∽ΔAEF B.ΔECF∽ΔAEF C.ΔADE∽ΔECF D.ΔAEF ∽ΔABF6. 如图所示在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为( ).A. B.8 C.10 D.16二、填空题7.(2015•伊春模拟)如图,在△ABC中,D为AB边上的一点,要使△ABC∽△AED成立,还需要添加一个条件为.8如图所示,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=________.9.如图所示,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).10.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________.11.如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,则图中与△OEF相似的三角形为_________.12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE交CD于点F,则图中相似三角形共有_________对.三.解答题13. 如图,在△ABC中,DE∥BC,AD=3,AE=2,BD=4,求的值及AC、EC的长度.14. 如图在梯形ABCD中,AD∥BC,∠A=90°,且,求证:BD⊥CD.15.(2014秋•射阳县校级月考)如图,在△ABC中,已知∠BAC=90°,AD⊥BC于D,E 是AB上一点,AF⊥CE于F,AD交CE于G点,(1)求证:AC2=CE•CF;(2)若∠B=38°,求∠CFD的度数.相似三角形的性质及应用--知识讲解(基础)【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】要点一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用 1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件: ①;②;③.二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似找夹角相等两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例三边对应成比例,两三角形相似 找一个直角斜边、直角边对应成比例,两个直角三角形相似找另一角两角对应相等,两三角形相似找两边对应成比例判定定理2 找顶角对应相等判定定理1 找底角对应相等判定定理1 找底和腰对应成比例判定定理3e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。
相似三角形经典题型

相似三角形经典题型一、相似三角形的判定定理相关题型1. 题目已知在△ABC和△A'B'C'中,∠A = 50°,AB = 3cm,AC = 4cm,∠A'= 50°,A'B'= 6cm,A'C' = 8cm。
判断这两个三角形是否相似。
解析根据相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
在△ABC和△A'B'C'中,(AB)/(A'B')=(3)/(6)=(1)/(2),(AC)/(A'C')=(4)/(8)=(1)/(2),且∠A = ∠A' = 50°。
所以△ABC∽△A'B'C'。
2. 题目如图,在四边形ABCD中,∠B = ∠ACD,AB = 6,BC = 4,AC = 5,CD=(7)/(2),求AD的长。
解析因为∠B = ∠ACD,且(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AC)/(AD)未知。
又因为(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),不满足三边对应成比例。
但是由∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),可以尝试证明△ABC和△ACD相似。
因为∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),这里我们重新计算(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)是错误的,应该是(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(BC)/(CD)所以△ABC∽△DCA。
相似三角形题型讲解解析

相似三角形题型讲解相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。
一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
本例除公共角∠G 外,由BC ∥AD 可得∠1=∠2,所以△AGD ∽△EGC 。
再∠1=∠2(对顶角),由AB ∥DG 可得∠4=∠G ,所以△EGC ∽△EAB 。
评注:(1)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”。
(2)找到两个三角形中有两对角对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线, 求证:△ABC ∽△BCD分析:证明相似三角形应先找相等的角,显然∠C 是公共角,而另一组相等的角则可以通过计算来求得。
借助于计算也是一种常用的方法。
证明:∵∠A=36°,△ABC 是等腰三角形,∴∠ABC=∠C=72° 又BD 平分∠ABC ,则∠DBC=36°在△ABC 和△BCD 中,∠C 为公共角,∠A=∠DBC=36° ∴△ABC∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD,∠BCE=∠BAD 求证:△DBE∽△ABCA B C DEF G 1234ABCD分析:由已知条件∠ABD=∠CBE,∠DBC公用。
所以∠DBE=∠ABC,要证的△DBE和△ABC,有一对角相等,要证两个三角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例。
相似三角形(解析版)

4.3相似三角形一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形. 要点:(1) 相似图形就是指形状相同,但大小不一定相同的图形; (2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形全等;二、相似三角形 在和中,如果我们就说与相似,记作∽.k 就是它们的相似比,“∽”读作“相似于”一、单选题 1.若ABC A B C ''',40A ∠=︒,110B ∠=︒,则'C ∠的度数为( )A .30°B .40°C .70°D .110°【解答】A【提示】若ABC A B C '''∽△△,则说明点A 的对应点为点'A ,点B 的对应点B ',点C 的对应点为点C ',且对应角相等.【详解】因为ABC A B C '''∽△△,所以'C C ∠=∠.因为40A ∠=︒,110B ∠=︒,所以30C ∠=︒,所以'30C ∠=︒故选A.【点睛】考核知识点:相似比.熟记相似三角形性质:对应角相等,是关键. 2.若ABCA B C '''',3BC =,'' 1.8B C =,则A B C '''与ABC 的相似比为( )A .5∶3B .32∶C .23∶D .35∶ 【解答】D【提示】根据相似三角形的对应角相等、对应边成比例可得:A B C '''与ABC 的相似比为1.83B C BC =''. 【详解】因为ABC A B C '''∽△△,3BC =,'' 1.8B C =,所以A B C '''与ABC 的相似比为1.8335B C BC ''==. 故选D.【点睛】考核知识点:相似比.熟记相似三角形性质是关键. 3.如图,已知ADEACB ,若AB=10,AC=8,AD=4,则AE 的长是( )A .4B .3.2C .20D .5【解答】D【提示】根据相似三角形对应边成比例直接建立等式求解即可. 【详解】由相似三角形的性质可得:AD AEAC AB=, 则·41058AD AB AE AC ⨯===, 故选:D .【点睛】本题考查相似三角形的性质,熟记相似三角形对应边成比例是解题关键.4.如果ABC DEF ∆∆∽,A 、B 分别对应D 、E ,且:1:2AB DE =,那么下列等式一定成立的是( ) A .:1:2BC DE =B .ABC ∆的面积:DEF ∆的面积1:2=C .A ∠的度数:D ∠的度数1:2= D .ABC ∆的周长:DEF ∆的周长1:2= 【解答】D【提示】相似三角形对应边的比等于相似比,面积之比等于相似比的平方,对应角相等.【详解】根据相似三角形性质可得:A :BC 和DE 不是对应边,故错;B :面积比应该是1:4,故错;C:对应角相等,故错;D :周长比等于相似比,故正确. 故选:D【点睛】考核知识点:相似三角形性质.理解基本性质是关键.5.如图所示,△ACB ∽△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )A .20°B .30°C .35°D .40° 【解答】B【提示】根据相似三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB 即可. 【详解】解:∵△ACB ∽△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB , ∴∠ACA′=∠BCB′, ∵∠BCB′=30°, ∴∠ACA′=30°, 故选:B .【点睛】本题考查了相似三角形性质,掌握相似三角形的对应角相等是解题的关键.6.如图,在△ABC 中,∠A =75°,AB =6,AC =8,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【解答】D【提示】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A 、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误. D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确; 故选D .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.7.在△ABC 中,已知AB =5,BC =4,AC =8.若△ABC ∽△A1B1C1,△A1B1C1的最长边的长为16,则其他两边的长分别为( )A .A1B1=8,B1C1=10B .A1B1=10,B1C1=8C .A1B1=5,B1C1=8D .A1B1=10,B1C1=4【解答】B【详解】分析:根据相似三角形对应边的比相等解答即可.详解:∵两个三角形中最长边和最长边是对应边,△ABC ∽△A1B1C1,∴111111AB BC ACA B B C AC == ,∴111154816A B B C ==,∴A1B1=10,B1C1=8. 故选B .点睛:本题主要考查学生对两个三角形相似的性质的理解及运用.掌握相似三角形的性质是解题的关键.8.若ABC DEF △△,且ABC 与DEF 的相似比为m ,DEF 与ABC 的相似比为n ,则(.): A .m n = B .0m n += C .1⋅=m n D .1m n ⋅=-【解答】C【提示】根据题意,可判定ABC 与DEF 的相似比为m ,则DEF 与ABC 的相似比为其倒数,所以两者积为1.【详解】解:∵ABC 与DEF 的相似比为m , ∴DEF 与ABC 的相似比为1m ,即1n m=, ∴1⋅=m n 故答案为C.【点睛】此题主要考查相似三角形相似比的性质,熟练掌握,即可解题.9.△ABC ∽△A′B′C′,已知AB =5,A′B′=6,△ABC 面积为10,那么另一个三角形的面积为( ) A .15B .14.4C .12D .10.8【解答】B【提示】利用相似三角形的性质得出两三角形的面积比,进而求出即可. 【详解】解:∵△ABC ∽△A′B′C′,AB =5,A′B′=6, ∴A'B'C'2536ABC S S =, ∵△ABC 面积为10, ∴解得:S △A′B′C′=14.4. 故选B .【点睛】本题考查相似三角形的性质,利用相似比与面积比的关系得出是解题关键.10.如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△EBD 相似的三角形是( )A .ABCB .ADEC .DABD .BDC 【解答】C【提示】由于∠A=36°,AB=AC ,易求∠ABC=∠C=72°,而BD 是角平分线,易求∠ABD=∠CBD=36°,又DE ∥BC ,那么有∠EDB=∠CBD=36°,即∠A=∠BDE ,∠ABD=∠DBE ,从而可证△ABD ∽△DBE . 【详解】∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°, 又∵BD 是∠ABC 的平分线, ∴∠ABD=∠CBD=36°, ∵DE ∥BC ,∴∠EDB=∠CBD=36°,即∠A=∠BDE ,∠ABD=∠DBE , ∴△ABD ∽△DBE , 故选C .【点睛】本题考查了相似三角形的判定、等腰三角形的性质、三角形内角和定理.解题的关键是求出相关角的度数.二、填空题11.已知111ABC A B C △△,相似比为23,111222A B C A B C △△,相似比为54,则222ABC A B C △△,其相似比为________. 【解答】56【提示】根据相似三角形的性质可得1123AB A B =,112254A B A B =,故可得2256AB A B =. 【详解】因为111ABC A B C ∽△△,相似比为23,所以1123AB A B =,因为111222A B C A B C ∽△△,相似比为54,所以112254A B A B =,所以2256AB A B =,即所求相似比为56. 故答案为56【点睛】考核知识点:相似三角形的性质.根据相似三角形性质和比例性质求解是关键.12.ΔABC 与△DEF 中,65A ∠=︒,42B ∠=︒,65D ∠=︒,73F ∠=︒,3AB =,5AC =,6BC =,6DE =,10DF =,12EF =,则△DEF 与△ABC________【解答】相似【提示】根据相似三角形的判定方法解答即可. 【详解】∵65A ∠=︒,42B ∠=︒, ∴∠C=180°-65°-42°=73°. ∵65D ∠=︒,73F ∠=︒, ∴∠A=∠D, ∠C=∠F, ∴△DEF 与△ABC 相似. 故答案为相似.【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.13.已知ABC 的三边分别是4,5,6,则与它相似'''A B C 的最长边为12,则'''A B C 的周长是________. 【解答】30【提示】由于A B C '''的最大边为12,所以边长12对应的边只能是ABC 中边长为6的边,进而再由对应边成比例即可求解.【详解】∵△ABC ∽△A′B′C′,且其最大边为12,所以边长12对应的边只能是△ABC 中边长为6的边,∴△′B′C′的另两边的长为8,10, 故△′B′C′的周长为8+10+12=30. 故答案为:30.【点睛】考查相似三角形的性质,掌握相似三角形的周长比等于相似比是解决问题的关键. 14.若ABC DEF ∽,50B ∠=,70C ∠=,则D ∠的度数为________. 【解答】60【提示】根据三角形的内角和定理求出∠A ,再根据相似三角形的对应角相等可得∠D=∠A . 【详解】∵50B ∠=,70C ∠=∴180180507060,A B C ∠=-∠-∠=--= ∵△ABC ∽△DEF , ∴60.D A ∠=∠=故答案为60.【点睛】考查相似三角形的性质,掌握相似三角形对应角相等是解题的关键.15.如图,在△ ABC 中, DE ∥ BC , AD =3cm , BD =2cm ,则△ ADE 与△ ABC 相似比是_____;若 DE =4cm ,则 BC =________.【解答】 3:5203cm ; 【详解】∵AD=3cm ,BD=2cm , ∴AB=AD+DB=5cm. ∵DE ∥BC ,∴△ADE ∽△ABC ,且相似比为:35AD AB =; ∴35DE AD BC AB ==,即435BC =, ∴BC=203. 故答案为(1)35;(2)203.点睛:本题解题的要点是根据“平行于三角形一边的直线截另外两边(或两边的延长线),所得新三角形与原三角形相似”由DE ∥BC 得到△ADE ∽△ABC ,这样利用相似三角形的性质即可求得所求量了.16.在ABC 中,5AB AC ==,6BC =,点E 、F 分别在AB 、BC 边上,将BEF 沿直线EF 翻折后,点B 落在对边AC 的点为'B ,若'B FC 与ABC 相似,那么BF =________.【解答】3或3011【提示】由于对应边不确定,所以本题应分两种情况进行讨论:①△ABC ∽△B ' FC;②△ABC ∽△F B 'C.【详解】①当△ABC ∽△B 'FC 时:根据△ABC 是等腰三角形,则△B 'FC 也是等腰三角形, 则B 'FC=∠C=∠B,设BF=x,则CF=6-x, B 'F=B 'C=x,根据△ABC ∽△B 'FC ,得到:B F CFAB BC'=,得到656x x -=,解得x=3011;②当△ABC ∽△F B 'C 则FC=B 'F=BF,则x=6-x,解得x=3. 因而BF=3或3011. 【点睛】本题考查了相似三角形的性质,对应边的比相等,注意到分两种情况进行讨论是解决本题的关键.17.如图,已知ADE ABC ∽,相似比为2:3,则:BC DE 的值为________.【解答】3:2【提示】由于△ADE ∽△ABC ,且已知了它们的相似比,因此两三角形的对应边的比等于相似比.由此可求出BC 、DE 的比例关系.【详解】∵△ADE ∽△ABC ,且相似比为2:3, ∴BC :DE=3:2, 故答案为3:2.【点睛】本题考查对相似三角形性质的理解. (1)相似三角形面积的比等于相似比的平方;(2)相似三角形周长的比等于相似比; (3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.18.如图,在△ABC 中,AB=AC ,点D 在边BC 上,连接AD ,将线段AD 绕点A 逆时针旋转到AE ,使得∠DAE=∠BAC ,连接DE 交AC 于F ,请写出图中一对相似的三角形:________(只要写出一对即可).【解答】△ABD ∽△AEF(或△ABD ∽△DCF 或△DCF ∽△AEF 或△ADE ∽△ABC) 【详解】分析:先根据等腰三角形的性质,由AB=AC 得∠B=∠C ,再利用旋转的性质得∠ADE=∠E=∠B=∠C ,且∠BAD=∠CAE ,于是根据有两组角对应相等的两个三角形相似可判断△ABD ∽AEF . 详解:∵AB=AC , ∴∠B=∠C ,∵线段AD 绕点A 逆时针旋转到AE ,使得∠DAE=∠BAC ,∴∠ADE=∠E=∠B=∠C,∴∠BAD=∠CAE,∴△ABD∽AEF.故答案为△ABD∽AEF.点睛:本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.三、解答题19.根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由(1)AB=12,BC=15,AC=24,A′B′=25,B′C′=40,C′A′=20(2)AB=3,BC=4,AC=5,A′B′=12,B′C′=16,C′A′=20【解答】(1)见解析;(2)见解析.【提示】(1)通过计算得出两个三角形三边成比例,即可得出结论.(2)通过计算得出两个三角形三边成比例,即可得出结论.【详解】解:(1)∵AB123BC153AC243C'A'205A'B'255B'C'405 ======,,,∴△ABC∽△C′A′B′(2)∵AB31BC41AC51 A'B'124B'C'164A'C'204 ======,,∴△ABC∽△A′B′C′.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法,通过计算得出三边成比例是解题的关键.20.如图,在△ABC中,D、E两点分别在AC、AB两边上,∠ABC=∠ADE,AB=7,AD=3,AE=2.7,求AC的长.【解答】6.3.【详解】试题分析:已知∠ABC=∠ADE,∠A=∠A,则可推出△ABC∽△ADE,根据相似三角形的相似比即可求得AC的长.试题解析:在△ABC和△ADE中,∵∠ABC=∠ADE,∠A=∠A∴△ABC∽△ADE.∴AB ACAD AE=,即AB AE7 2.7AC 6.3AD3⋅⨯===.考点:相似三角形的判定和性质.21.如图,在正方形网格上有△ABC 和△DEF .(1)这两个三角形相似吗?为什么? (2)请直接写出∠A 的度数 ;(3)在上边的网格内再画一个三角形,使它与△ABC 相似,并求出其相似比. 【解答】(1)相似,理由见解析;(2)45º;(3)见解析【提示】(1)根据勾股定理列式求出AB 、AC 、BC 、DE 、DF 、EF 的长度,然后根据三边对应成比例,两三角形相似解答;(2)取AC 的中点O ,连接BO ,根据网格结构可以判断∠ABO=90°,△ABO 是等腰直角三角形,即可得解;(3)把△ABC 三边扩大2倍,然后利用网格结构作出即可. 【详解】(1)AB=22152=+, AC=22026=21+, BC=5, DE=1,DF=22152=+, EF=22222=2+, ∵5AB AC BCDE EF DF===, ∴△ABC ∽△DEF ;(2)如图,取AC 的中点O ,连接BO , 则△ABO 是等腰直角三角形, ∴∠A=45°;(3)如图,△A′B′C′与△ABC 相似,它们的相似比是2.【点睛】本题考查了利用相似变换作图,熟练掌握相似三角形的判定与性质,网格结构的特点是解题的关键.22.已知:如图AB//CD//EF ,AC 、BD 相交于点O ,E 在AC 上,F 在BD 上,且AE:EC=2:3,BD=10.(1)求BF 的长;(2)当AB=12,CD=8时,求EF 的长.【解答】(1)4 (2)4【提示】(1)根据平行线分线段成比例定理得出BF :FD 的值,从而得出BF 与FD 的数量关系,再再结合BF+DF=BD=10求出BF 的值.(2)先证明~,~OEF OAB OEF OCD 从而得出两组关于EF 的比例式,再根据和比的性质对比例式进行变形得出23AB EF AE CD EF EC -==+,代入AB 和CD 的值即可求出EF. 【详解】解:(1)∵AB//CD//EFAE BF EC DF∴= :2:3AE EC =23BF DF ∴= 23DF BF ∴= 10BD = 10DF BD BF BF ∴=-=-2(10)3BF BF ∴-=4BF ∴=(2)AB CD EF ‖‖~,~OEF OAB OEF OCD ∴,AB OA CD OC EF OE EF OE ∴== ,AB EF OA OE CD EF OC OE EF OE EF OE--++∴== ,AB EF AE CD EF EC EF OE EF OE-+==23AB EF AE CD EF EC -∴==+ 3()2()AB EF CD EF ∴-=+12,8AB CD ==3(12)2(8)EF EF ∴-=+4EF ∴=【点睛】本题考查平行线分线段成比例,相似三角形的性质与判定,比例的性质.(1)中能根据平行线分线段成比例得出BF 与FD 的数量关系是解决此问的关键;(2)中的难度在于能根据和比的性质将比例式进行变形,建立EF 有关的比例式和AE:EC 之间的等量关系.23.如图,直线EF 分别交ABC 的边AB ,AC 于点F ,E ,交BC 的延长线于点D ,已知BF BA BC BD ⋅=⋅.求证:AE CE DE EF ⋅=⋅.【解答】见解析【提示】由对应线段成比例且夹角相等可证ABC DBF ∽△△,根据两组对应角相等即证AEF DEC ∽△△,由相似三角形对应线段成比例的性质可得结论.【详解】证:BF BA BC BD ⋅=⋅,∴AB BC BD BF =, 又ABC DBF ∠=∠,∴ABC DBF ∽△△,∴A D ∠=∠.又AEF DEC ∠=∠,∴AEF DEC ∽△△,∴AE EF DE EC=,即AE CE DE EF ⋅=⋅. 【点睛】本题考查了相似三角形的性质和判定,综合利用其判定和性质进行证明是解题的关键. 24.如图,在△ABC 中,AB =AC ,点D ,E 分别在BC ,AB 上,且∠BDE =∠CAD.求证:△ADE ∽△ABD.【解答】证明见解析.【详解】试题分析:由等腰三角形的性质得出∠B=∠C,由三角形的外角性质和已知条件得出∠ADE=∠C,因此∠B=∠ADE,再由公共角∠DAE=∠BAD,即可得出△ADE∽△ABD.试题解析:∵AB=AC,∴∠B=∠C.∵∠ADB=∠C+∠CAD=∠BDE+∠ADE,∠BDE=∠CAD,∴∠ADE=∠C,∠B=∠ADE.∵∠DAE=∠BAD,∴△ADE∽△ABD.25.点D、E分别是△ABC两边AB、BC所在直线上的点,∠BDE+∠ACB=180°,DE=AC,AD =2BD.(1) 如图1,当点D、E分别在AB、CB的延长线上时,求证:BE=BD(2) 如图2,当点D、E分别在AB、BC边上时,BE与BD存在怎样的数量关系?请写出你的结论,并证明【解答】(1)证明见解析;(2)BE=3BD【提示】(1)在BD上找一点M,连接EM,使EM=ED,如图1.证明EMB ACB≅可得EB=AB,利用AD=2BD,AB=AD-BD即可得结论;(2)在AB上找一点M,连接EM,使EM=ED,如图2.证明EBM ABC可得BE EMAB AC=由AD=2BD,可得AB=AD+BD=3BD代入,即可得结论.【详解】(1)在BD上找一点M,连接EM,使EM=ED,如图1.则∠BDE=∠EMD.∵∠BDE+∠ACB=180°,∴∠EMB=∠ACB.∵DE=AC,∴EM=AC在△EMB 和△ACB 中,EBM ABC EMB ACB EM AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()EMB ACB AAS ∴≅∴EB=AB∵AD=2BD ,∴AB=AD-BD=BD.∴BE=BD ;(2) BE=3BD ,理由如下:在AB 上找一点M ,连接EM ,使EM=ED ,如图 2.则∠MDE=∠EMD.∵DE=AC,∴EM=AC.∵∠BDE+∠ACB=180, ∠EDM+∠BDE=180,∴∠EMD=∠ACB∵∠EBM=∠ABC,EBMABC ∴ BE EM AB AC∴= ∵AD=2BD,∴AB=AD+BD=3BD3BE AC BD AC∴=. ∴BE=3BD【点睛】本题考查了三角形全等的判定及性质以及相似三角形的判定及性质,掌握三角形全等的判定方法及相似三角形的判定及性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档相似三角形题型讲解相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。
一、如何证明三角形相似。
则△AGD∽∽FDC的延长线上,AG交BC、BD于点E、,如图:例1、点G在平行四边形ABCD的边,除已知条件中已明确给出的以外,还应结合具体的图分析:关键在找“角相等”AD24F由,外形,利用公共角、对顶角及由平行线产生的一系列相等的角。
本例除公共角∠G3CB14=AB∥DG可得∠∠∠BC∥AD可得∠1=2,所以△AGD∽△EGC。
再∠1=2(对顶角),由EG。
∠G,所以△EGC∽△EAB)找到两个三角形中有两对角2)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”1。
(评注:(对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。
A是角平分线,A=36°,BD、已知△ABC中,AB=AC,∠例2BCD∽△求证:△ABC D是公共角,而另一组相等的角则可以C 分析:证明相似三角形应先找相等的角,显然∠通过计算来求得。
借助于计算也是一种常用的方法。
CB ABC=∠C=72°A=36证明:∵∠°,△ABC是等腰三角形,∴∠,则∠DBC=36°又BD平分∠ABC °A=中,∠C为公共角,∠∠DBC=36BCD在△ABC和△ BCD∴△ABC∽△BAD BCE=∠,∠∠外作∠为边在△,以、内一点连结为△:已知,如图,例3DABCEDADBCABCCBE=ABDABC求证:△DBE∽△实用文档,有一对角相等,要证两个三ABCDBE和△DBE=DBC公用。
所以∠∠ABC,要证的△分析:由已知条件∠ABD=∠CBE,∠,这ABDCBE∽△角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例。
从已知条件中可看到△样既有相等的角,又有成比例的线段,问题就可以得到解决。
ABD中,在△证明:CBE和△BADBCE=∠CBE=∠ABD, ∠∠ABDCBE∽△∴△BEBC∴=BDAB ABBC即: =BDBE ABC中在△DBE 和△公用∠DBC∠∠CBE=ABD,DBC∠DBC=∠ABD+∠∴∠CBE+ABC∠∴∠DBE=实用文档ABBC且=BDBE ABC∴△DBE∽△,问AC、,E、F,是BC边的三等分点,连结AE、AF例4、矩形ABCD中,BC=3AB AD图中是否存在非全等的相似三角形?请证明你的结论。
分析:本题要找出相似三角形,那么如何寻找相似三角形呢?下面我们来看一看B相似三角形的几种基本图形:CFE如图:称为“平行线型”的相似三角形(1)AAEDAEDBCEDCBCB称为“相交线型”的相似三角形。
ADE∽△ABC如图:其中∠(2)1=∠2,则△DAA1EE4E1AD1D22C2CCBBB,称为“旋转型”的相似三角形。
∽△2,∠B=∠D,则△ADEABC∠(3)如图:∠1=ECA与△观察本题的图形,如果存在相似三角形只可能是“相交线型”的相似三角形,及△EAF 解:设AB=a,则BE=EF=FC=3a,A a2 AE=,由勾股定理可求得2D1ECAE E2??AEFECAEAF在△与△中,∠为公共角,且AEEF BC ECAEAF所以△∽△(两边对应成比例且夹角相等的两个三角形相似)实用文档,该定理的灵活应用是教学上的难点所在,应注重加强训练。
注:以上两例中都用了相似三角形的判定定理2 二、如何应用相似三角形证明比例式和乘积式??FEDFAC=BCCB延长线上截取BE,使AD=BE,求证:AD例1、△ABC中,在AC上截取,在AD FECK B:AC,再利用相似三角形或平行线的性质进行证明:分析:证明乘积式通常是将乘积式变形为比例式及DF:FE=BC 于K,DK∥AB,交BC证明:过D点作BEFE=BK:,∴DK∥ABDF:∵AC AD=BC::AD,而BK:又∵AD=BE,∴DF:FE=BK??FE AC,∴DFAC=BC 即DF:FE= BC:D。
于点的中点,DM⊥BCE,交BA,例2:已知:如图,在△ABC中,∠BAC=90M 0的延长线于点是BC2MEAE??2 2MA1)=MD)ME;(求证:(2MDAD0的中点,BAC=90,M是BC)∵∠证明:(1 ,,∠1=∠C∴MA=MC D,∵DM⊥BC A0 B,∴∠C=∠D=90-∠E12 D1=∠,∴∠B,2=∵∠∠2CM,MDA∴△MAE∽△MEMA?∴,MAMD?2,MA∴=MDME实用文档,∽△MDA(2)∵△MAE MEAEAEMA??,∴MAMDADAD2MEMAAEME???∴2MDMDMAAD?2,=MDME1是证比例线段的一种基本方法。
本例第()小题证明MA:评注(1)通过一对相似三角形来证明比例线段,看作一对相似三角形的公共边,再去寻觅与确定需证相似的三角形。
经常可以把其中的MA,这种具有特殊关系(有一个公共角和一条公共边)的三角形的相似,在解MDA)本例的关键是证明△MAE∽△(2 题中应用很多,应从下面两个方面深刻理解:?2 AB=AD。
AC,如图,如果∠命题1 1=∠2,那么△ABD∽△ACB?2∠2。
ABDAC,那么△∽△ACB,∠=AD命题2 如图,如果AB1=C1BAD例3:如图△ABC中,AD为中线,CF为任一直线,CF交AD于E,交AB于F,求证:AE:ED=2AF:FB。
实用文档分析:图中没有现成的相似形,也不能直接得到任何比例式,于是可以考虑作平行线构造相似形。
怎样作?观察要证AEAF?。
与结论,,得△AEF∽△DEGED”的特征,作DG∥BA交CF于G明的结论,紧紧扣住结论中“AE:DEDG AE2AFAF1DG?FB??。
相比较,显然问题转化为证12EDFBBF2证明:过D点作DG∥AB交FC于G则△AEF∽△DEG。
(平行于三角形一边的直线截其它两边或两边的延长线所得三角形与原三角形相似)AEAF?)(1 DEDG∵D为BC的中点,且DG∥BF∴G为FC的中点1BF?DG(的中位线,DG为△CBF2)则2将(2)代入(1)得:AEAF2AF??1DEFBBF2评注:(1)为了得到比例式,通常用过一点作某一直线的平行线的方法,在作平行线时必须注意紧扣与结论有关的线段。
(2)在探索证题思路的过程中,我们可以采取“做做比比,比比做做”的方法,即构造相似形,写出比例式时要始终注意待证结论中的有关线段,并及时与待证结论中的有关线段进行比较,以便确定下一步需要解决什么问题。
三、如何用相似三角形证明两角相等、两线平行和线段相等。
实用文档1AFEB??FBD 上的点,且和AD∠。
求证:∠AEF=ABCD例1:已知:如图E、F分别是正方形的边AB3ABAD要证角相等,一般来说可通过全等三角形、相似三角形,等边对等角等方法来实现,本题要证的两个角分别在分析:两个三角形中,可考虑用相似三角形来证,但要证的两个角所在的三角形显然不可能相似(一个在直角三角形中,另一个在斜三角形中),所以证明本题的关键是构造相似三角形,证明:作FG⊥BD,垂足为。
GAB=AD=3k设FDA BE=AF=k,,AE=DF=2k则k32 BD=G00∵∠ADB=45,∠FGD=90E0 DFG=45∴∠CB DFk2? DG=FG=∴2k2?22k?2k3 BG=∴1AFFG??∴2AEBG0∠FGB=90又∠A=FBD ∠GBF ∴∠AEF=∴△AEF∽△本例是通过构造一对相似三角形,而证明两个角相等,而证明两个三角形相似又运用了代数法,设参数,计算评注:边长,从而证明两个三角形的对应边成比例。
运用代数法解几何题一般在遇到正方形和正三角形的条件时效果很好,同学们可以试试看。
各为四角的平分线,、、CPDP、、在平行四边形例2ABCD内,ARBRBCRP∥,求证:SQ∥ABDCRSQPA B.实用文档分析:要证明两线平行较多采用平行线的判定定理,但本例不具备这样的条件,故可考虑用比例线段去证明。
利:AS=BR,只需证明ABAR:用比例线段证明平行线最关键的一点就是要明确目标,选择适当的比例线段。
要证明SQ∥。
DS 中。
ADS和△ARB 证明:在△11ABC ∠DCP=∠PCB=∠DAB,∠∵∠ DAR=∠RAB=22BRAR?∴△ADS∽△ABRDSAS,,∴DS=BQ 但△ADS≌△CBQ BRAR?BC RP∥AB,∴则SQ∥,同理可证,BQAS O的两边上的点,且、D分别是∠B、C、E和、F3例、已知ACD∥,求证:∥FEAFAB∥ED,BC EC件,因而有好多的比例线段可供利∥CD,已知条件中有平行的条分析:要证明AF A OFOA?即可,因此只用,这就要进行正确的选择。
其实要证明只要证明AF∥CD,O ODOC DFB要找出与这四条线段相关的比例式再稍加处理即可成功。
FE BC∥AB∥ED,证明:∵OFOBOEOA??∴,∴OBOCOEODOFOA?两式相乘可得:ODOC FC=FG,求证:于交∥,于交是正方形,°,中,∠、直角三角形例4ABCACB=90BCDEAEBCFFGACABG实用文档DCEFAGB,从图中可以看出它们所在的三角形显然不全等,但存在较多的平行线的条件,因而可用比例线段FC=FG分析:要证明、相关的比例式较多,则应选择与、FGFC,首先要找出与FC、FG相关的比例线段,图中与FC来证明。
要证明FC=FG FGFC? FG都有联系的比作为过渡,最终必须得到“?”代表相同的线段或相等的线段),便可完成证明。
(??AGF,∴△ABE∽△ FG∥AC∥BE 证明:∵AFGF?则有AEBE AFC AED∽△而FC∥DE ∴△AFGFCFCFAF???∴则有AEBEDEDEAE(正方形的边长相等)又∵BE=DE GFDF?,即GF=CF∴。
BEBE于F,,过O引BC的平行线交AB于锐角例5、Rt△ABCC的平分线交AB于E,交斜边上的高ADOAE=BF求证:A 3,平分∠C,∠2=∠CO证明:∵1EF ACAE O? CDO△,∴故Rt△CAE∽Rt2CDOD3CBD ABBF?又OF∥BC,∴ADOD BFABAEAC??,∴Rt△CAD,即∽△又∵RtABD ODODCDAD AE=BF∴。
实用文档评注:应用比例线段证明两直线平行或两线段相等时,(1)要注意如果相关的比例式较多,一时难以作出选择,应将所有相关的比例式都写出来,然后再仔细对比、分析选出有用的。