软氮化概念基础

合集下载

钢的氮化及碳氮共渗讲解

钢的氮化及碳氮共渗讲解

钢的氮化及碳氮共渗
钢的氮化(气体氮化)
概念:氮化是向钢的表面层渗入氮原子的过程,其目的是提高表面硬度和耐磨性,以及提高疲劳强度和抗腐蚀性。

它是利用氨气在加热时分解出活性氮原子,被钢吸收后在其表面形成氮化层,同时向心部扩散。

氮化通常利用专门设备或井式渗碳炉来进行。

适用于各种高速传动精密齿轮、机床主轴(如镗杆、磨床主轴),高速柴油机曲轴、阀门等。

氮化工件工艺路线:锻造-退火-粗加工-调质-精加工-除应力-粗磨-氮化-精磨或研磨。

由于氮化层薄,并且较脆,因此要求有较高强度的心部组织,所以要先进行调质热处理,获得回火索氏体,提高心部机械性能和氮化层质量。

钢在氮化后,不再需要进行淬火便具有很高的表面硬度大于HV850)及耐磨性。

氮化处理温度低,变形很小,它与渗碳、感应表面淬火相比,变形小得多钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程,习惯上碳氮共渗又称作氰化。

目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较是广。

中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度,低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。

汽车排气阀软氮化工艺研究

汽车排气阀软氮化工艺研究

1绪论1.1 课题背景及目的近年来,随着我国汽车工业的蓬勃发展,内燃机机型和产量不断增加,随着汽车发动机高功率化所产生的排气温度上升,排气净化率标准提高以及汽车轻量化的需求,对材料耐蚀性耐磨性、抗氧化性、高温性能和热强性等提出了苛刻的要求。

汽车排气阀是发动机上重要的工作部件及易损件,其工作条件异常恶劣,要在高温、高压、腐蚀性燃气中经受频繁往复的高速运动和摩擦,冲击负荷大,因此要求有较高的高温性能、耐磨性能、耐腐蚀性能等,其工作的好坏直接影响到发动机的工作性能,故制备排气阀的材料要求也极为苛刻。

自从发动机问世以来,气阀钢的材料已经历了碳钢和低合金钢,硅铬型不锈钢,奥氏体型耐热钢等多个发展阶段。

目前,国内外使用最多的是奥氏体型耐热钢,而这种耐热钢系列中,常见的有:4Cr10Si2Mo,4Cr9Si2,5Cr21Mn9Ni2N(21–2N),5Cr21Mn9Ni4N(21–4N)等钢种。

其中21–4N钢是上世纪50年代为节镍开发的阀门用奥氏体时效钢,目前国内外用于制造汽车、摩托车发动机排气阀应用最广的钢号,它是以奥氏体为基体,以碳、氮化合物作为沉淀硬化相对散分布以获得足够的高温强度、韧性、较高的硬度、耐磨性以及在冷热交变条件下组织的稳定性和较好的抗氧化、耐腐蚀性能,在工作温度700℃下具有良好的力学性能和高温性能。

由于21–4N钢碳氮锰含量较高,其变形抗力较1Cr18Ni9Ti 高30%,室温下强度高、塑性低、脆性大,且加工硬化效应明显,热变形温度范围窄,变形抗力大,生产过程中如锻造、热轧、冷拔时易出现裂纹,导致产品成品率较低,国内一些专业化生产企业该钢种的成品率仅70%–80%,这也是当前该材料亟待解决的重要问题。

1.2 论文的总体思路及主要研究内容21–4N奥氏体热钢具有很好的耐蚀性能,它主要用来制造发动机的排气阀。

发动机的排气阀不但要求具有良好的耐蚀性能和耐热性能,而且需要良好的耐磨性能。

但21–4N奥氏体耐热钢的硬度较低、耐磨性能较差。

软氮化金相检测标准_解释说明以及概述

软氮化金相检测标准_解释说明以及概述

软氮化金相检测标准解释说明以及概述1. 引言1.1 概述软氮化金相检测标准是用于评估和判定金属材料中软氮化现象的一个重要依据。

软氮化是指在金属表面上出现的一种特殊相,主要是由碳和氮元素组成的薄层混合物。

软氮化不仅会对金属材料的性能产生影响,还可能导致零件失效或者降低使用寿命。

因此,制定和实施软氮化金相检测标准对于确保金属材料质量、提高产品可靠性具有重要意义。

1.2 文章结构本文主要分为五个部分。

引言部分(第1节)首先对研究的背景和目的进行了概述,并介绍了文章的整体结构。

其后,第2节将详细解释说明软氮化金相检测标准的定义、重要性以及制定机构及流程。

接着,在第3节中,我们将对软氮化金相检测标准进行概述,包括标准内容和要点概述、相关检测方法介绍以及结果判定标准和评价方法。

在第4节中,我们将讨论实施软氮化金相检测标准的意义和挑战,包括其对金属材料行业的影响和推动作用、可能遇到的困难与解决方案以及国际合作与标准对比分析。

最后,在第5节中我们将总结主要观点和结论,并展望进一步研究和完善软氮化金相检测标准的方向。

1.3 目的本文旨在全面解释说明软氮化金相检测标准的定义、重要性以及制定机构及流程,并概述标准内容和要点,介绍检测方法以及结果判定标准和评价方法。

同时,我们将讨论实施该标准对金属材料行业的影响和推动作用,可能遇到的困难与解决方案,以及国际合作与标准对比分析。

通过这些内容,读者可以更好地了解并掌握软氮化金相检测标准,在实践中应用该标准进行质量控制和产品改进。

此外,本文也为今后进一步研究和完善软氮化金相检测标准提供了展望和参考。

2. 软氮化金相检测标准解释说明:2.1 什么是软氮化金相检测标准:软氮化金相检测标准是指一套用于评估和检测金属材料中软氮化层质量的规范和指导性文件。

软氮化层是一种通过将金属材料暴露在含有硝酸盐或亚硝酸盐的溶液中进行处理,以增强材料表面硬度和耐磨性的表面处理技术。

该标准旨在确保软氮化层的质量符合预定的要求。

碳氮共渗浅析

碳氮共渗浅析

碳氮共渗与氮碳共渗其实没有什么区别,热处理一般的都通称为碳氮共渗。
只是碳氮共渗又分为:1.高温碳氮共渗,以渗碳为主,加热到奥氏体化,渗层深。
2.中温碳氮共渗,以渗碳为主,加热到奥氏体化,但温度比高温碳氮共渗低,渗层较浅,又叫氰化
3.低温碳氮共渗,以渗氮为主,加热到共析线以下,组织不发生相变,变形很小,又叫软氮化。
但我认为如果在0.5mm以内时,一次离子渗就可以达到,可以根据零件实际需要对渗层深度进行修正,这样即可以节约成本又可以满足使用需要。
碳氮共渗(carbonitrided)与氮碳共渗(nitrocarburized)的区别:
1、 碳氮共渗carbonitriding :在奥氏体状态下,同时将碳、氮渗入钢件表层,并渗碳为主的化学热处理工艺。
气体软氮化(碳氮共渗)温度常用560-570℃,因该温度下氮化层硬度值最高。氮化时间常为2-3小时,因为超过2.5小时,随时间延长,氮化层深度增加很慢。 可以看出碳氮共渗的温度最高,其组织由ε相、γ相和含氮的渗碳体Fe3(C,N)所组成,所以热应力和组织应力都较前两者大,再者渗层薄,所以不能承受重载。但这种处理也有优点,由于软氮化层不存在脆性ξ相,故氮化层硬而具有一定的韧性,不容易剥落。
4.碳氮共渗热处理的工艺温度低,一般淬火后的变形也小.
影视版主 2009-03-03 06:48
渗碳与碳氮共渗是有区别的:
渗碳一般都用880~940度,而碳氮共渗使用的温度比较低,一般在800~860度.
ummvixf 2009-03-03 06:49
2楼的说的不完全,对一些有安全要求的产品来说,选择渗碳更好点.其实两种工艺各有各的优点,具体要根据零件的服役条件及性能要求而选择.

软氮化的‘白亮层’

软氮化的‘白亮层’

软氮化的‘白亮层’作者:hezj钢的氮碳共渗(软氮化)中,获得厚度不到一根头发粗、薄薄如纸的白亮层,隐藏着许多的秘密。

一方面在工程上获得广泛应用,也留下许多谜团。

下面仅就这个问题说说个人的一些看法。

一,白亮层的优缺点及其应用1,渗氮和铁素体氮碳共渗时,对碳素钢而言,钢表面有一层化合物层,相结构为γ,、ε、ε+γ,三种基本形式;奥氏体氮碳共渗快冷时,临近化合物层下面还有一层含氮碳奥氏体的淬火层,相结构为M+A。

这种两种属性不同表面层,在弱酸性溶液中短时间浸蚀时抗蚀能力优于普通钢的基体组织,金相组织检查时,基体组织腐蚀出来后,仍然保持着为白色或灰白色,故称为‘白亮层’。

2,化合物白亮层,具有较高的硬度和良好的热硬性、较好的抗大气和淡水腐蚀性能和较低的摩擦系数。

含氮碳奥氏体淬火层具有中等硬度(可时效硬化)、耐磨性和耐蚀性(淬火态)都优于化合物层,其塑性也较高。

两种白亮层都有同样的问题,其内部的相结构不同,性能上而有所差别。

3,白亮层也有不足之处,单簿、脆性较大、怕酸、抗蚀性有限。

在应用上,选择有所侧重,通常按三个方面,即高耐磨性与抗疲劳性;较高抗蚀性与耐磨性;良好的滑动摩擦与减摩性。

同时要与钢牌号的选择相结合,优化组合达到工程上的不同要求。

所以,不要以为白亮层的优点是万能的,通用的,不讲条件的。

学以致用,掌握此门技术只是第一步,用好则是一种艺术。

4,化合物白亮层在通常渗氮的合金钢工件上,是否有利,要看使用条件。

对于局部承载力很大的零件,白亮层是有害的东西。

由于容易压碎而剥落,碎片将加速零件表面的磨损、划伤,使零件过早失效,还有可能散落到其他组件上造成事故。

尤其是高可靠性的精密机械,对化合物白亮层的厚度有严格的限制,甚至要求完全没有白亮层。

这时,扩散层(内氮化层)才是设计所需要的。

近代兴起的可控氮化技术,就是针对这个问题发展起来的。

可控氮化技术可以做到3~5μm以下(单相γ,),乃至无化合物层。

这是渗氮技术上的重大突破。

软氮化原理浅析课件

软氮化原理浅析课件

温度
氨气流量
钢铁中的合金元素对软氮化效果也有影响,如铬、镍 等元素可以提高氮化层的耐磨性和耐腐蚀性。
钢铁成分
氨气流量是影响软氮化效果的重要因素之一,流量过 小会使反应不充分;流量过大则可能引起局部过热, 导致氮化物粗大。
03
CATAL表面的油污、锈迹和杂 质,确保零件表面的清洁度。
智能化与自动化
结合先进的信息技术和制造技术,实现软 氮化过程的自动化和智能化控制,提高生 产效率。
THANKS
感谢观看
使用表面粗糙度仪测量软氮化 层的表面粗糙度,评估其光洁 度和摩擦性能。
化学成分分析
通过光谱分析或化学滴定等方 法,测定软氮化层中的氮、碳 等元素含量,了解其化学成分
和浓度分布。
软氮化质量控制措施
01
02
03
04
控制温度
保持炉温稳定,避免温度波动 ,以确保软氮化层的均匀性和
质量。
控制时间
根据工艺要求,合理控制软氮 化时间,以保证软氮化层达到
如铜、铝等金属材料也可以进行软 氮化处理,以提高其综合性能。
软氮化材料的选用原则
根据用途选择材料
考虑经济效益
不同的用途需要不同性能的金属材料 ,因此需要根据具体用途选择适合的 金属材料进行软氮化处理。
在选择软氮化设备和材料时,需要考 虑经济效益,选择性价比高的设备和 材料,以降低生产成本。
根据工艺要求选择设备
当前研究与应用
目前,软氮化技术已成为一种成熟的表面处理技术,在许多 领域得到广泛应用。同时,随着新材料和新能源的发展,软 氮化技术也在不断创新和拓展,为新技术的应用提供了有力 支持。
软氮化技术的应用领域
汽车工业
软氮化处理广泛应用于汽车发动机、变速器和底盘等关键 部件,提高其耐磨性和耐腐蚀性,延长使用寿命。

几种常见的热处理种类及基本概念

几种常见的热处理种类及基本概念

几种常见的热处理种类及基本概念1.正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。

2.退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺3.固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺4.时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。

5.固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型6.时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度7.淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺8.回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺9.钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。

习惯上碳氮共渗又称为氰化,目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。

中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。

低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。

10.调质处理quenching and tempering:一般习惯将淬火加高温回火相结合的热处理称为调质处理。

调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。

调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织为优。

它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。

氮化知识培训

氮化知识培训

氮化知识培训1、氮化的定义是什么?氮化又叫渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。

2、硬氮化与软氮化的区别是什么?氮化可分为硬氮化和软氮化,通常说的氮化是指硬氮化,软氮化是在硬氮化的基础上发展起来的,且越来越受到广泛的应用。

硬氮化:学名‘渗氮’,也有人称为常规氮化。

渗入钢表面的是单一的‘氮’元素,主要有气体法和离子法等方法。

软氮化:学名‘氮碳共渗’,渗入钢表面的元素以氮为主,同时添加了碳。

碳的加入使表面化合物层(白亮层)的形成和性能得到某些甚至是明显的改善。

3、气体软氮化的原理是什么?整个渗氮过程分为NH3分解为得到活性氮原子,钢件表面吸收氮原子,然后氮原子从表面向里扩散这三个过程。

渗氮过程:2NH3→2[N]+3H2CO2+H2→CO+H2O CO+H2→[C]+H2OFe+2[N]→Fe2N (Fe4N,Fe2-3N)Fe-N系形成的5种相:α相氮在α-Fe中的间隙固溶体,也称含氮铁素体。

590℃时,氮在α-Fe 中的固溶度最大,氮的质量分数约为0.1%,随温度下降,α相缓慢析出γ´相。

γ相氮在γ-Fe中的间隙固溶体,也称含氮奥氏体,存在于共析温度590℃以上,缓冷时发生γ相共析转变,生成共析组织(α+γ´);如果快冷,则形成含氮马氏体。

γ´相以Fe4-N为基体的固溶体,在680℃以下稳定存在。

在680℃以上转变为ε相。

ε相以Fe3-N为基体的固溶体,随温度降低,ε相不断析出γ´相。

ξ相分子式未Fe2-N,温度高于490℃,ξ相转变为ε相。

因此,渗氮层组织由表及里为:ε→ε+γ´→γ´→γ´+ɑ→ɑ4、氮化的基本特点(与渗碳相比较)包括哪些?(1)渗氮表面具有高的硬度和耐磨性。

(2)具有高的残余应力,故具有高的疲劳极限和低的缺口敏感性。

(3)渗氮的温度低(480-580℃),产品变形小。

(4)具有良好的抗腐蚀性能,致密的化学稳定性渗层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

软氮化概念基础
氮化处理技术氮化作为热处理中的一项重要处理工艺,它有着多种形式。

每一种工艺都对应着不同的性能特点,希望在此大家谈谈自己的经验与看法,以便共同提高。

我单位的氮化处理常用的就有六种,当然了也包括了复合氮化技术。

复合氮化——QPQ
这一类氮化处理的特点是:高耐磨、高抗氧化能力。

它主要克服的是摩擦磨损,其抗咬合能力非常的强,接近渗硫后的效果。

概念:(软)氮化是向钢的表面层渗入氮原子的过程,其目的是提高表面硬度和耐磨性,以及提高疲劳强度和抗腐蚀性。

它是利用氨气或含氮原子的有机液体在加热时分解出活性氮原子,被钢吸收后在其表面形成氮化层,同时向心部扩散。

氮化通常利用专门设备或井式渗(氮)碳炉来进行。

适用于各种高速传动精密齿轮、机床主轴(如镗杆、磨床主轴),高速柴油机曲轴、阀门、工具等。

氮化工件工艺路线:锻造-退火-粗加工-调质-精加工-除应力-粗磨-氮化-精磨或研磨(一般情况下氮化后直接使用)。

由于氮化层薄,并且较脆,因此要求有较高强度的心部组织,所以要先进行调质热处理,获得回火索氏体,提高心部机械性能,保证氮化层质量。

钢在氮化后,不再需要进行淬火便具有很高的表面硬度及耐磨性。

氮化处理温度低,变形很小,它与渗碳、感应表面淬火相比,变形小得多。

钢的软氮化:又名氮碳共渗;氮碳共渗是向钢的表层同时渗入碳和氮的过程,习惯上氮碳共渗又称作氰化。

目前以气体氮碳共渗(即气体软氮化)应用较广。

其主要目的是提
高钢的硬度、耐磨性、疲劳强度和抗咬合性渗氮(软氮化)的常见缺陷
一、硬度偏低
生产实践中,工件渗氮(软氮化)后其表面硬度有时达不到工艺规定的要求,轻者可以返工,重者则造成报废。

造成硬度偏低的原因是多方面的:
设备方面:如系统漏气造成氧化;
材料:如材料选择欠佳;
前期热处理:如基体硬度太低,表面脱碳严重等;
预先处理:如进炉前的清洁方式及清洁度。

工艺方面:如渗氮(软氮化)温度过高或过低,时间短或氮势不足等等。

所以具体情况要具体分析,找准原因,解决问题。

二、硬度和渗层不均匀
装炉方式不当;
气压调节不当;
温度不均;
炉内气流不合理。

三、变形过大
变形是难以杜绝的,对易变形件,采取以下措施,有利于减小变形:
渗氮(软氮化)前应进行稳定化处理;
渗氮(软氮化)过程中的升、降温速度应缓慢;
保温阶段尽量使工件各处的温度均匀一致。

对变形要求严格的工件,如果工艺许可,尽可能采用较低的氮化(软氮化)温度。

四、处观质量差
渗氮(软氮化)件出炉后首先用肉眼检查外观质量,钢件经渗氮(软氮化)处理后表面通常呈银灰(蓝黑色)色或暗灰色(蓝黑色),不同材质的工件,氮化(软氮化)后其表面颜色略有区别,钛及钛合金件表面应呈金黄色。

五、脉状氮化物
氮化(特别是离子氮化)易出现脉状氮化物,即扩散层与表面平行走向呈白色波纹状的氮化物。

其形成机理尚无定论,一般认为与合金元素在晶界偏聚及氮原子的扩散有关。

因此,控制合金元素偏聚的措施均有利于减轻脉状氮化物的形成。

工艺参数方面,渗氮温度越高,保温时间越长,越易促进脉状组织的形成,如工件的棱角处,因渗氮温度相对较高,脉状组织比其它部位严重得多。

软氮化
为了缩短氮化周期,并使氮化工艺不受钢种的限制,在近年间在原氮化工艺基础上发展了软氮化和离子氮化两种新氮化工艺。

软氮化实质上是以渗氮为主的低温氮碳共渗,钢的氮原子渗入的同时,还有少量的碳原子渗入,其处理结果与一般气体氮化相比,渗层硬度较氮化低,脆性较小,故称为软氮化。

1、软氮化方法分为:气体软氮化、液体软氮化及固体软氮化三大类。

目前国内生产中应用最广泛的是气体软氮化。

气体软氮化是在含有活性氮、碳原子的气氛中进行低温氮、碳共渗,常用的共渗介质有尿素、甲酰胺、氨气和三乙醇胺,它们在软氮化温度下发生热分解反应,产生活性氮、碳原子。

活性氮、碳原子被工件表面吸收,通过扩散渗入工件表层,从而获得以氮为主的氮碳共渗层。

气体软氮化温度常用560-570℃,因该温度下氮化层硬度值最高。

氮化时间常为2-3小时,因为超过2.5小时,随时间延长,氮化层深度增加很慢。

2、软氮化层组织和软氮化特点:钢经软氮化后,表面最外层可获得几微米至几十微米的白亮层,它是由ε相、γ`相和含氮的渗碳体Fe3(C,N)所组成,次层为的扩散层,它主要是由γ`相和ε相组成。

软氮化具有以下特点:
(1)、处理温度低,时间短,工件变形小。

(2)、不受钢种限制,碳钢、低合金钢、工模具钢、不锈钢、铸铁及铁基粉未冶金材料均可进行软氮化处理。

工件经软氮化后的表面硬度与氮化工艺及材料有关。

3、能显著地提高工件的疲劳强度、耐磨性和耐腐蚀性。

在干摩擦条件下还具有抗擦伤和抗咬合等性能。

4、由于软氮化层不存在脆性ξ相,故氮化层硬而具有一定的韧性,不容易剥落。

因此,目前生产中软氮化巳广泛应用于模具、量具、刀具(如:高速钢刀具)等、曲轴、齿轮、气缸套、机械结构件等耐磨工件的处理。

相关文档
最新文档