江西省统考2020年高中毕业班教学质量监测卷 数学(理数)卷(含答案)

合集下载

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)一、解答题1.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.4.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.5.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.6.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.7.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:8.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.9.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.10.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.11.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.12.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.13.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.14.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。

人教版数学七年级上册第1章 有理数 测试卷(含答案)

人教版数学七年级上册第1章 有理数 测试卷(含答案)

人教版数学七年级上册第1章有理数测试卷(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣32.(3分)2的相反数是()A.B.C.﹣2D.23.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣4.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个7.(3分)比﹣2大3的数是()A.1B.﹣1C.﹣5D.﹣68.(3分)下列算式正确的是()A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9 9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作.12.(4分)已知|a|=4,那么a=.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.(4分)比较大小:3223.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.(6分)﹣8﹣6+22﹣919.(6分)计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.(7分)计算:(﹣+﹣)×(﹣12).22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)2的相反数是()A.B.C.﹣2D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.(3分)比﹣2大3的数是()A.1B.﹣1C.﹣5D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.(3分)下列算式正确的是()A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n 是整数数位减1.10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.(4分)已知|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.(4分)比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.(6分)﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.(6分)计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.(7分)计算:(﹣+﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣+﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。

第二章 有理数的运算—七年级上册数学人教版(2024)单元质检卷(A卷)(含答案)

第二章 有理数的运算—七年级上册数学人教版(2024)单元质检卷(A卷)(含答案)

(3)有理数的运算—七年级上册数学人教版(2024)单元质检卷(A卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.根据有理数加法法则,计算过程正确的是( )A. B. C. D.2.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩,使得湿地生态环境状况持续向好.其中数据29.47万用科学记数法表示为( )A. B. C. D.3.与的关系是( )A.互为相反数B.互为倒数C.和为零D.绝对值相等4.用四舍五入法按要求对0.05049分别取近似值,其中错误的是( )A.0.1(精确到0.1)B.0.051(精确到千分位)C.0.05(精确到百分位)D.0.0505(精确到0.0001)5.下列计算正确的是( )A.C. D.6.在简便运算时,把变形成最合适的形式是( )A.B.C.D.47249948⎛⎫⨯-- ⎪⎝⎭()23+-()32++()32+-()32-+()32--60.294710⨯42.94710⨯52.94710⨯429.4710⨯23-2310(3)03⎛⎫÷-=⨯-= ⎪⎝⎭2)(2)224-÷-=-⨯=-111(9)99⎛⎫÷-=⨯-=- ⎪⎝⎭(36)(9)4-÷-=-12410048⎛⎫⨯-+ ⎪⎝⎭12410048⎛⎫⨯-- ⎪⎝⎭47249948⎛⎫⨯-- ⎪⎝⎭47249948⎛⎫⨯-+ ⎪⎝⎭A.-8B.-5C.-1D.169.一只跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳两个单位,第3次向右跳3个单位,第4次向左跳4个单位以此规律跳下去,当它跳第99次落下时,落点处离O 点的距离是( )个单位.A.50B.49C.99D.-5010.按如图所示的程序进行计算,如果第一次输入的数是18,当结果不大于100时,就把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为( )A.72B.144C.288D.576二、填空题(每小题4分,共20分),则_____.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)计算:(1);(2).17.(8分)已知的氢气质量约为0.00009 g ,请用科学记数法表示下列计算结果.(1)求一个容积为的氢气球所充氢气的质量;(2)一块橡皮重45 g ,这块橡皮的质量是的氢气质量的多少倍?18.(10分)在计算“依据的运算法则应当是同号两数相加,_________.(2)请写出正确的计算过程.19.(10分)阅读下列解题过程:计算.原式第①步第②步第③步(1)上面的解题过程在第_________步出现错误;错误原因是_________.(2)请写出正确的解题过程.20.(12分)南果梨是东北辽宁省的一大特产,现有20筐南果梨,以每筐25千克为标准,超11032--222021()()2020a b m cd ++-=()()()1022813---+--()22123432⎛⎫--⨯-+-÷- ⎪⎝⎭31cm 38000000cm 31cm 115632⎛⎫-÷-⨯ ⎪⎝⎭1566⎛⎫=-÷-⨯ ⎪⎝⎭5(1)=-÷-5=过或不足的千克数分别用正、负数来表示,记录如下:(2)与标准重量比较,20筐南果梨总计超过或不足多少千克?(3)若南果梨每千克售价4元,则这20筐可卖多少元?21.(12分)桌子上有7张反面向上的纸牌,每次翻转n 张(n 为正整数)纸牌,多次操作后能使所有纸牌正面向上吗?用“+1”“-1”分别表示一张纸牌“正面向上”“反面向上”,将所有牌的对应值相加得到总和,我们的目标是将总和从-7变化为+7.(1)当时,每翻转1张纸牌,总和的变化量是2或-2,至少需要_________次操作能使所有纸牌正面向上;(2)当时,每翻转2张纸牌,总和的变化量是_________,多次操作后能使所有纸牌正面向上吗?若能,最少需要几次操作?若不能,简要说明理由;(3)若要使多次操作后所有纸牌正面向上,写出n 的所有可能的值.1n =2n =答案以及解析1.答案:D 解析:.故选D.2.答案:C解析:29.47万.3.答案:B解析:∵,∴与互为倒数.故选:B.4.答案:B解析:A 选项,(精确到0.1),所以A 选项不符合题意;B 选项,(精确到千分位),所以B 选项符合题意;C 选项,(精确到百分位),所以C 选项不符合题意;D 选项,(精确到0.0001),所以D 选项不符合题意.故选B.5.答案:C解析:,A 选项错误;,B 选项错误;C 选项正确;,D 选项错误.故选C.6.答案:A解析:,根据有理数的乘法分配律,把变形成最合适的形式为:,可以简便运算.故选:A.7.答案:B0.050490.1≈()()2332=+---5294700 2.94710==⨯23-=2=91=23-230.050490.050≈0.050490.05≈0.050490.0505≈0(3)0÷-=1(2)(2)(2)12⎛⎫-÷-=-⨯-= ⎪⎝⎭(36)(9)3694-÷-=÷=114710010099484848⎛⎫-+=--=- ⎪⎝⎭ ∴47249948⎛⎫⨯- ⎪⎝⎭11479924100241002448482⎛⎫⨯-+=-⨯+⨯=- ⎪⎝⎭解析:因为a ,b 互为相反数,c 的倒数是4,所以,所以.故选C.9.答案:A解析:设向右为正,向左为负.则.落点处离O 点的距离是50个单位.故答案为:A.10.答案:C解析:把18输入,得;把-36输入,得;把72输入,得;把-144输入,得,所以最后输出的结果为288.11.答案:82解析:(精确到个位).故答案为:82.12.答案:16解析:,的相反数是,0a b +=c =)13343(40414a b c a b c +-=+-=-⨯=-()()123499+-++-+⋅⋅⋅+()()()1234979899=+-++-+⋅⋅⋅++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦499950=-+=∴2111118189(4)361002224⎡⎤⎛⎫⎛⎫⨯-÷-=⨯÷-=⨯-=-<⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21111363618(4)721002224⎡⎤⎛⎫⎛⎫-⨯-÷-=-⨯÷-=-⨯-=<⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21111727236(4)1441002224⎡⎤⎛⎫⎛⎫⨯-÷-=⨯÷-=⨯-=-<⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2111114414472(4)2881002224⎡⎤⎛⎫⎛⎫-⨯-÷-=-⨯÷-=-⨯-=>⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦81.73982≈ 2416-=-∴24-()1616--=解析:由题意可知:,,,当时,,当时,.故答案为1或-3.16.答案:(1)(2)2解析:(1)0a b +=1cd =,2m =±2m =22021()()2020a b m cd ++-201=+-1=2m =-22021()()2020a b m cd ++-201=-+-3=-9-()()()1022813---+--1022813=-+--12813=--.(2).17.答案:(1)(2)解析:(1),.故一个容积为的氢气球所充氢气的质量为.(2).故这块橡皮的质量是的氢气质量的倍.18.答案:(1)②;取与加数相同的符号,并把绝对值相加(2)6解析:(1)在甲同学的计算过程中,开始出错的步骤是②,这一步依据的运算法则应当是同号两数相加,取与加数相同的符号,并把绝对值相加.故答案为②;取与加数相同的符号,并把绝对值相加.(2)原式.19.答案:(1)②,运算顺序错误(2)180解析:(1)解题过程在第②步出现错误;错误原因是运算顺序错误.故答案为:②,运算顺序错误.(2).20.答案:(1)5.5千克(2)8千克(3)2032元解析:(1)(千克).413=-9=-()22123432⎛⎫--⨯-+-÷- ⎪⎝⎭()()43492=-+-⨯-⨯-41218=--+2=27.210g⨯5510⨯0.000098000000720(g)⨯=2720g 7.210g =⨯38000000cm 27.210g ⨯5450.00009500000510÷==⨯31cm 5510⨯111110310310462222⎛⎫⎛⎫⎛⎫=+-+-=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭115632⎛⎫-÷-⨯ ⎪⎝⎭1566⎛⎫=-÷-⨯ ⎪⎝⎭()566=-⨯-⨯180=()2.53 5.5--=答:最重的一筐比最轻的一筐重5.5千克.(2)(千克)答:20筐南果梨总计超过8千克.(3)(元).答:这20筐南果梨可卖2032元.21.答案:(1)7(2)见解析(3)1,3,5,7解析:(1)总和从-7变化为+7,变化量:,至少需要(次)操作能使所有纸牌正面向上,故答案为7.(2)①两张由反到正,变化量:;②两张由正到反,变化量:;③一正一反变一反一正,变化量:.故答案为4或-4或0.不能.理由如下:使所有纸牌正面向上的总和变化量仍为14,14无法由4,-4,0组成,故不能使所有纸牌正面向上.(3)由题可知.①当时,由(1)可知能够做到;②当时,由(2)可知无法做到;③当时,每次翻转的变化量为6或-6或2或,,故可以;④当时,每次翻转的变化量为8或-8或4或-4或0,14无法由8,-8,4,-4,0组成,故不可以;⑤当时,每次翻转的变化量为10或-10或6或-6或2或,,故可以;⑥当时,每次翻转的变化量为12或-12或8或-8或4或-4或0,14无法由12,-12,8,-8,4,-4,0组成,故不可以;⑦当时,一次全翻完即可使所有纸牌正面向上,故,3,5,7.1(3)4(2)2( 1.5)30218 2.5⨯-+⨯-+⨯-+⨯+⨯+⨯3832208=---++=4(25208)2032⨯⨯+=7(7)14--=1427÷=2[1(1)]4⨯--=2(11)4⨯--=-111(1)0--+--=07n <≤1n =2n =3n =2-14662=++3n =4n =4n =5n =2-141022=++5n =6n =6n =7n =1n =。

金考卷—百校联盟—领航高考冲刺卷(理数答案)

金考卷—百校联盟—领航高考冲刺卷(理数答案)

平”的原则.
〃答案速查
镶2 静
4


拱″
慧鳞
~ ~
酗ii!10
~|~~~|~
B|[


D|B
B
A~{C~|[〕


■ [考查目标] 本题考查集合的并运算`简单指数不等式和一元二次

11


·


[考查目标]

嚣霹撼嗡慧霉 ″

/I∏+2 | 了

4
2





本题考查三角恒等变换`三角函数的图象和性质’考

14垫[考查目标] 本题主要; α厕ˉl≠0,所以α″ˉα″ˉ|=1,又易知αl=1 ’故数列{α鹏}是首项和公
本题主要考 查双曲线的离心率,考查了分析

差都为l的等差数列,故α,="`s"=÷″(″+l) ’则b"= 2

问题和解决问题的能力。
(—]),警二(—])馏(←击) ,则数列|h鹏|的煎2022项和
考生的逻辑椎理能力以及运算求解能力,考查的核心素养是逻辑椎
面积,再利用几何概型的概率计算公式求解即可。
≤沪 [解析] 如图所示,设AB=α,连接CF,根据
题意可知乙CEF=90°’乙CFE=45°,EF=
\.~
÷』则cF=粤α;正八边形的面积为α2+4×
理`数学运算。 [解题思路] 分公比是否为l进行讨论,再利用等比数列的前门项 和公式及定义求解即可。 [解析] 设等比数列{α′』 }的公比为q’当q=1时,S"_2α| =nαl

∩■

|三

γ 几

七年级数学上册人教(部编版)第1章 有理数 测试卷(2)含答案

七年级数学上册人教(部编版)第1章 有理数 测试卷(2)含答案

第1章有理数测试卷(2)一、选择题(每小题4分,共32分)1.(4分)杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克2.(4分)下列说法正确的有()①一个数不是正数就是负数;②海拔﹣155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个 B.2个 C.3个 D.4个3.(4分)小灵做了以下4道计算题:①﹣6﹣6=0;②﹣3﹣|﹣3|=﹣6;③3÷×2=12;④0﹣(﹣1)2016=﹣1.则她做对的道数是()A.1 B.2 C.3 D.44.(4分)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A.3.844×108B.3.844×107C.3.844×109D.38.44×1095.(4分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c6.(4分)已知①1﹣22;②|1﹣2|;③(1﹣2)2;④1﹣(﹣2),其中相等的是()A.②和③B.③和④C.②和④D.①和②7.(4分)若(﹣ab)2017>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>08.(4分)若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.11二、填空题(每小题4分,共16分)9.(4分)﹣2的相反数是,倒数是,绝对值是.10.(4分)在数轴上,与点﹣3距离4个单位长度的点有个,它们对应的数是.11.(4分)若m、n互为相反数,则|m﹣1+n|=.12.(4分)某品种兔子,一对兔子每个月能繁殖3对小兔子,而每对小兔子,一个月后也能繁殖3对新小兔子,总之,所有的每对兔子,都是每月繁殖3对小兔子,如果开始只有一对兔子,那么半年后有对兔子(不考虑意外死亡).三、解答题(共52分)13.(12分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);(2)﹣17+17÷(﹣1)11﹣52×(﹣0.2)3;(3)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].14.(10分)小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有1人参加,数学老师想出了一个主题,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组,你也一起来试一试吧!15.(10分)小明是“环保小卫士”,课后他经常关心环境天气的变化,他了解到本周白天的平均气温,如表(“+”表示比前一天上升了,“﹣”表示比前一天下降了.单位:℃)已知上周周日平均气温是16.9℃,回答下列问题:(1)这一周哪天的平均气温最高,最高是多少?(2)计算这一周每天的平均气温.16.(10分)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,想一想:等式左边各个幂的底数与右边幂的底数有什么关系,并用等式表示出规律;再利用这一规律计算13+23+33+43+…+1003的值.17.(10分)如图,小玉有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:(1)从中抽出2张卡片,使这2张卡片上的数字的乘积最大,则应如何抽取?最大的乘积是多少?(2)从中抽出2张卡片,使这2张卡片上的数字相除的商最小,则应如何抽取?最小的商是多少?(3)从中抽出2张卡片,使这2张卡片上的数字经过加、减、乘、除、乘方中的一种运算后,组成一个最大的数,则应如何抽取?最大的数是多少?(4)从中抽出4张卡片,用学过的运算方法,要使结果为24,则应如何抽取?写出运算式子(一种即可).参考答案与试题解析一、选择题(每小题4分,共32分)1.(4分)杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克【考点】正数和负数.【专题】计算题.【分析】根据有理数的加法,可得答案.【解答】解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.【点评】本题考查了正数和负数,有理数的加法运算是解题关键.2.(4分)下列说法正确的有()①一个数不是正数就是负数;②海拔﹣155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个 B.2个 C.3个 D.4个【考点】有理数.【专题】计算题;实数.【分析】利用正数与负数的定义判断即可.【解答】解:①一个数不是正数就是负数或0,错误;②海拔﹣155m表示比海平面低155m,正确;③负分数是有理数,错误;④零不是最小的数,错误;⑤零是整数,不是正数,错误.故选A【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.3.(4分)小灵做了以下4道计算题:①﹣6﹣6=0;②﹣3﹣|﹣3|=﹣6;③3÷×2=12;④0﹣(﹣1)2016=﹣1.则她做对的道数是()A.1 B.2 C.3 D.4【考点】有理数的混合运算.【分析】根据绝对值、有理数的加减法、乘除进行计算即可.【解答】解:①﹣6﹣6=﹣12,故错误;②﹣3﹣|﹣3|=﹣6,故正确;③3÷×2=12,故正确;④0﹣(﹣1)2016=﹣1,故正确;故选C.【点评】本题考查了有理数的混合运算,掌握有理数的加减乘除混合运算是解题的关键.4.(4分)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A.3.844×108B.3.844×107C.3.844×109D.38.44×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于384 400 000有9位,所以可以确定n=9﹣1=8.【解答】解:384 400 000=3.844×108.故选:A.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(4分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【考点】实数与数轴.【专题】数形结合.【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.6.(4分)已知①1﹣22;②|1﹣2|;③(1﹣2)2;④1﹣(﹣2),其中相等的是()A.②和③B.③和④C.②和④D.①和②【考点】有理数的混合运算.【分析】①先算平方,再算减法;②先做绝对值里面的减法运算,再根据绝对值的定义去掉绝对值的符号;③先做括号里面的减法运算,再根据有理数的乘方运算法则计算;④根据减法法则计算.计算出各式的值以后,再比较即可.【解答】解:因为①1﹣22=1﹣4=﹣3;②|1﹣2|=|﹣1|=1;③(1﹣2)2=(﹣1)2=1;④1﹣(﹣2)=1+2=3.所以,相等的是②和③.故选A.【点评】此题主要考查了有理数的混合运算.7.(4分)若(﹣ab)2017>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>0【考点】有理数的乘方;有理数的除法.【分析】根据乘方法则得的结果.【解答】解:∵(﹣ab)2017>0,∴﹣ab>0,∴ab<0,即ab异号,∴A选项正确,B选项错误;CD错误,故选A.【点评】本题主要考查了乘方运算,注意正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0是解答此题的关键.8.(4分)若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.11【考点】绝对值.【分析】根据所给a,b绝对值,可知a=±5,b=±6;又知a>b,那么应分类讨论两种情况:a为5,b为﹣6;a为﹣5,b为﹣6,求得a+b的值.【解答】解:已知|a|=5,|b|=6,则a=±5,b=±76∵a>b,∴当a=5,b=﹣6时,a+b=5﹣6=﹣1;当a=﹣5,b=﹣6时,a+b=﹣5﹣6=﹣11.故选C.【点评】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.根据题意确定绝对值符号中数的正负再计算结果.二、填空题(每小题4分,共16分)9.(4分)﹣2的相反数是2,倒数是﹣,绝对值是2.【考点】倒数;相反数;绝对值.【分析】运用倒数,相反数及绝对值的定义求解即可.【解答】解:﹣2的相反数是2,倒数是﹣,绝对值是2.故答案为:2,﹣,2.【点评】本题主要考查了倒数,相反数及绝对值,解题的关键是熟记定义.10.(4分)在数轴上,与点﹣3距离4个单位长度的点有2个,它们对应的数是﹣7和1.【考点】数轴.【专题】计算题;实数.【分析】结合数轴,确定出所求的数即可.【解答】解:在数轴上,与点﹣3距离4个单位长度的点有2个,分别位于﹣3的两侧且到﹣3这一点的距离都是4,右边的数为﹣3+4=1,左边的数为﹣3﹣4=﹣7.故答案为:2;﹣7和1【点评】此题考查了数轴,利用了数形结合的思想,画出相应的数轴是解本题的关键.11.(4分)若m、n互为相反数,则|m﹣1+n|=1.【考点】有理数的加减混合运算;相反数;绝对值.【专题】计算题.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:∵m、n互为相反数,∴m+n=0.∴|m﹣1+n|=|﹣1|=1.故答案为:1.【点评】主要考查相反数,绝对值的概念及性质.12.(4分)某品种兔子,一对兔子每个月能繁殖3对小兔子,而每对小兔子,一个月后也能繁殖3对新小兔子,总之,所有的每对兔子,都是每月繁殖3对小兔子,如果开始只有一对兔子,那么半年后有4096对兔子(不考虑意外死亡).【考点】有理数的乘方.【分析】结合乘方的定义可知:开始有兔子的对数是1,1个月后有4对兔子,以后每一个月后每一对兔子都变成4对兔子,依此类推,可得6个月后有46对小兔子.【解答】解:由题意得:1个月后有3+1=4对兔子,半年后:46=4 096,故答案为:4 096.【点评】此题主要考查了有数的乘方,关键是正确理解题意,得出一个月后兔子的对数.三、解答题(共52分)13.(12分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);(2)﹣17+17÷(﹣1)11﹣52×(﹣0.2)3;(3)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣49﹣91+5﹣9=﹣49﹣91﹣9+5=﹣149+5=﹣144;(2)原式=﹣17+17÷(﹣1)﹣25×(﹣)=﹣17+(﹣17)﹣(﹣)=﹣34+=﹣33;(3)原式=﹣5﹣(﹣﹣×)=﹣5﹣(﹣)=﹣5+=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.(10分)小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有1人参加,数学老师想出了一个主题,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组,你也一起来试一试吧!【考点】有理数大小比较.【专题】图表型.【分析】根据在一个数的前面加上负号就是这个数的相反数,负数的立方是负数,乘积为1的两个数互为倒数,有理数的加法,可化简各数,根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左的大,可得答案.【解答】解:﹣(﹣2)=2,(﹣1)3=﹣1,﹣|﹣3|=﹣3,0的相反数是0,﹣0.4的倒数是﹣,比﹣1大是,在数轴上表示如图:,由数轴上的点表示的数右边的总比左的大,得﹣3<﹣<﹣1<0<<2.【点评】本题考查了有理数比较大小,数轴上的点表示的数右边的总比左的大,注意先把小数化成分数再求倒数.15.(10分)小明是“环保小卫士”,课后他经常关心环境天气的变化,他了解到本周白天的平均气温,如表(“+”表示比前一天上升了,“﹣”表示比前一天下降了.单位:℃)已知上周周日平均气温是16.9℃,回答下列问题:(1)这一周哪天的平均气温最高,最高是多少?(2)计算这一周每天的平均气温.【考点】正数和负数.【分析】(1)根据正负数的意义可知,周六的平均气温最高;(2)只需依次相加即可分别求出这一周每天的平均气温.【解答】解:(1)周六的平均气温最高,最高是16.9+1.1﹣0.3+0.2+0.4+1+1.4=20.7(℃);(2)周一:16.9+1.1=18(℃);周二:18﹣0.3=17.7(℃);周三:17.7+0.2=17.9(℃);周四:17.9+0.4=18.3(℃);周五:18.3+1=19.3(℃);周六:19.3+1.4=20.7(℃);周日:20.7﹣0.3=20.4(℃).【点评】此题考查了正负数的意义和有理数的加减运算,熟练掌握运算法则是解答此题的关键.16.(10分)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,想一想:等式左边各个幂的底数与右边幂的底数有什么关系,并用等式表示出规律;再利用这一规律计算13+23+33+43+…+1003的值.【考点】规律型:图形的变化类.【专题】规律型.【分析】通过特例发现:1=1,3=1+2,6=1+2+3,…,即右边的底数正好是左边的所有底数的和.同时1+2+3+…+n=.【解答】解:13+23+…+n3=(1+2+…+n)2,原式=(1+2+3+…+100)2=(50×101)2=25502500.【点评】能够正确发现规律.同时特别注意:1+2+3+…+n=.17.(10分)如图,小玉有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:(1)从中抽出2张卡片,使这2张卡片上的数字的乘积最大,则应如何抽取?最大的乘积是多少?(2)从中抽出2张卡片,使这2张卡片上的数字相除的商最小,则应如何抽取?最小的商是多少?(3)从中抽出2张卡片,使这2张卡片上的数字经过加、减、乘、除、乘方中的一种运算后,组成一个最大的数,则应如何抽取?最大的数是多少?(4)从中抽出4张卡片,用学过的运算方法,要使结果为24,则应如何抽取?写出运算式子(一种即可).【考点】有理数大小比较.【分析】(1)观察这五个数,要找乘积最大的就要找符号相同且绝对值最大的数,所以选﹣3和﹣5;(2)2张卡片上数字相除的商最小就要找符号不同,且分母越大越好,分子越小越好,所以就要选3和﹣5,且﹣5为分母;(3)这2张卡片上数字组成一个最大的数,除了有个位十位相组成之外,还有乘方,比如(﹣5)4=625;(4)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如﹣3、﹣5、0、3,四个数,{0﹣[(﹣3)+(﹣5)]}×3=24.【解答】解:(1)抽取﹣3,﹣5,最大的乘积是15.(2)抽取﹣5,+3,最小的商是﹣.(3)抽取﹣5,+4,最大的数为(﹣5)4=625.(4)(答案不唯一)如抽取﹣3,﹣5,0,+3,运算式子为{0﹣[(﹣3)+(﹣5)]}×(+3)=24.【点评】此题实际上是有理数的混合运算的逆运算,先给你数,让你列混合运算的式子,所以学生平时要培养自己的逆向思维能力.。

【高频真题解析】2022年江西省中考数学真题汇总 卷(Ⅱ)(含答案及详解)

【高频真题解析】2022年江西省中考数学真题汇总 卷(Ⅱ)(含答案及详解)

2022年江西省中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 2、有理数a ,b 在数轴上对应的位置如图所示,则下列结论正确的是( ).A .0a >B .1b >C .0a b ->D .a b >3、点()4,9-关于x 轴的对称点是( ) A .()4,9--B .()4,9-C .()4,9-D .()4,9 4、利用如图①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )·线○封○密○外A .22()4()a b ab a b -+=+B .22()()a b a b a b -+=-C .222()2a b a ab b +=++D .222()2a b a ab b ---+5、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( )A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米6、下列图形是全等图形的是( ) A . B . C . D .7、已知ab =a ,b 的关系是( ) A .相等 B .互为相反数C .互为倒数D .互为有理化因式8、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒9、如图,在平面直角坐标系xOy 中,已知点A (1,0),B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为( )A .1B .2 C1 D110、已知单项式5xayb +2的次数是3次,则a +b 的值是( ) A .1 B .3 C .4 D .0 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,在ABC 中,3cm AB =,6cm BC ,5cm AC =,蚂蚁甲从点A 出发,以1.5cm/s 的速度沿着三角形的边按A B C A →→→的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm/s 的速度沿着三角形的边按A C B A →→→的方向行走,那么甲出发________s 后,甲乙第一次相距2cm .·线○封○密○外2、如图, 已知在 Rt ABC △ 中, 90,30,1,ACB B AC D ∠∠=== 是 AB 边上一点, 将 ACD △ 沿 CD 翻折, 点 A 恰好落在边 BC 上的点 E 处,那么AD =__________3、班主任从甲、乙、丙、丁四位同学中选择一位同学参加学校的演讲比赛.甲同学被选中的概率是______.4、据统计我国微信用户数量已突破8.87亿人,近似数8.87亿有__个有效数字.5、如图,围棋盘的方格内,白棋②的位置是()5,2--,白棋④的位置是()4,6--,那么黑棋①的位置应该表示为______.三、解答题(5小题,每小题10分,共计50分)1、如图1,把一副三角板拼在一起,边OA ,OC 与直线EF 重合,其中45AOB ∠=︒,60COD ∠=︒.(1)求图1中BOD ∠的度数;(2)如图2,三角板COD 固定不动,将三角板AOB 绕点O 顺时针旋转一个角度,在转动过程中,三角板AOB 一直在EOD ∠的内部,设EOA α∠=. ①若OB 平分EOD ∠,求α; ②若4AOC BOD ∠=∠,求α. 2、数学课上,王老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积: 方法1: ; 方法2: ; (2)观察图2,请你写出代数式:(a +b )2,a 2+b 2,ab 之间的等量关系 ; (3)根据(2)题中的等量关系,解决如下问题: ①已知:a +b =5,(a ﹣b )2=13,求ab 的值; ②已知(2021﹣a )2+(a ﹣2020)2=5,求(2021﹣a )(a ﹣2020)的值. 3、问题发现: (1)如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE , ·线○封○密○外①求证:△ACD ≌△BCE ;②求∠AEB 的度数.(2)拓展探究:如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高交AE 于M ,连接BE .请求∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.4、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,且80AOD DOB ∠-∠=︒.求∠AOC 和∠DOE 的度数.5、计算:(a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2.-参考答案-一、单选题1、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D .【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键. 2、D 【解析】 【分析】 先根据数轴可得101a b <-<<<,再根据有理数的减法法则、绝对值性质逐项判断即可得. 【详解】 解:由数轴的性质得:101a b <-<<<. A 、0a <,则此项错误; B 、1b <,则此项错误; C 、0a b -<,则此项错误; D 、1a b >>,则此项正确; 故选:D . 【点睛】 本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键. 3、A 【解析】 【分析】·线○封○密○外直接利用关于x 轴对称点的性质得出答案.【详解】解:点P (−4,9)关于x 轴对称点P ′的坐标是:(−4,−9).故选:A .【点睛】此题主要考查了关于x 轴对称点的性质,正确得出横纵坐标的关系是解题关键.4、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:()a b +,面积为:()2a b +; 1个小正方形的面积加上4个矩形的面积和为:()24a b ab -+; ∴()()2222424a b ab a ab b ab a b -+=-++=+.故选:A .【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.5、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A ;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案. 【详解】 解:∵3600÷20=180米/分, ∴两人同行过程中的速度为180米/分,故A 选项不符合题意; ∵东东在爸爸返回5分钟后返回即第20分钟返回 ∴m =20-5=15, ∴n =180×15=2700,故B 选项不符合题意; ∴爸爸返回的速度=2700÷(45-15)=90米/分,故C 选项不符合题意; ∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米, ∴运动18分钟时两人相距3240-2430=810米; ∵返程过程中东东45-20=25分钟走了3600米, ∴东东返程速度=3600÷25=144米/分, ∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米, ∴运动31分钟两人相距756米,故D 选项符合题意; 故选D . 【点睛】 本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像. 6、D 【解析】 【详解】·线○封○密○外解:A 、不是全等图形,故本选项不符合题意;B 、不是全等图形,故本选项不符合题意;C 、不是全等图形,故本选项不符合题意;D 、全等图形,故本选项符合题意;故选:D【点睛】本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.7、A【解析】【分析】求出a 与b 的值即可求出答案.【详解】解:∵a=,b =∴a =b ,故选:A .【点睛】本题考查了分母有理化,解题的关键是求出a 与b 的值,本题属于基础题型.8、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒ 故选B 【点睛】 本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键. 9、C 【解析】 【分析】 取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案. 【详解】 解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,∵点A (1,0),B (3,0), ∴OA =1,OB =3, ∴OE =2,∴ED∵∠ACB =90°, ∴点C 在以AB 为直径的圆上, ·线○封○密○外∴线段CD−1.故选:C .【点睛】本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C ,D 两点的位置是解题的关键.10、A【解析】【分析】根据单项式的次数的概念求解.【详解】解:由题意得:a+b +2=3,∴a+b =1.故选:A .【点睛】本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.二、填空题1、4【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】 解:根据题意, ∵3cm AB =,6cm BC ,5cm AC =, ·线∴周长为:35614++=(cm ),∵甲乙第一次相距2cm ,则甲乙没有相遇,设甲行走的时间为t ,则乙行走的时间为(1)t -,∴1.52(1)214t t +-+=,解得:4t =;∴甲出发4秒后,甲乙第一次相距2cm .故答案为:4.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.21##1-【解析】【分析】翻折的性质可知AD DE AC CE ==,,A CED ∠=∠;在Rt ABC 中有60A ∠=︒,BC =CED B EDB ∠=∠+∠,得DEB 是等腰三角形,AD DE BE BC CE BC AC ===-=-即可求出长度.【详解】解:翻折可知:ACD ECD ≌,AD DE AC CE ==,∵30B ∠=︒,1AC =,90ACB ∠=︒∴在Rt ABC 中,22AB AC ==∴60A CED ∠=∠=︒,BC =∵CED B EDB ∠=∠+∠∴30EDB B ∠=∠=︒∴DEB 是等腰三角形∴DE EB =∴1AD EB BC CE ==-=1.【点睛】本题考查了轴对称的性质,等腰三角形的判定与性质,三角形的外角,勾股定理等知识点.解题的关键在于找出边相等的关系.3、14或0.25【解析】【分析】由题意得出从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果,根据概率公式可得.【详解】解:从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果, ∴恰好选中乙同学的概率为14, 故答案为:14.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 4、3【解析】 【分析】 根据有效数字的定义求解.·线【详解】解:近似数8.87亿有3个有效数字,它们为8、8、7.故答案为:3.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.5、()1,5--【解析】【分析】先根据白棋②的位置是()5,2--,白棋④的位置是()4,6--确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为()1,5--故答案为:()1,5--【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.三、解答题1、 (1)75°;(2)①15°;②40°.【解析】【分析】(1)根据平角定义,利用角的差∠BOD =180°-∠AOB -∠COD 运算即可;(2)①根据补角性质求出∠EOD =180°-∠COD =180°-60°=120°,根据角平分线定义求出∠EOB =12∠EEE =12×120°=60°,再根据两角差E =∠EEE −∠EEE =15°即可;②根据角的和求出∠AOC =∠AOB +∠BOD +∠COD =105°+∠BOD ,然后列方程求出∠EEE =35°,求出∠EEE =4∠EEE =4×35°=140°,再求补角即可.(1)解:∵45AOB ∠=︒,60COD ∠=︒,∴∠BOD =180°-∠AOB -∠COD =180°-45°-60°=75°;(2)解:①∵60COD ∠=︒,∴∠EOD =180°-∠COD =180°-60°=120°,∵OB 平分EOD ∠,∴∠EOB =12∠EEE =12×120°=60°,∵45AOB ∠=︒,∴E =∠EEE −∠EEE =60°−45°=15°;②∵45AOB ∠=︒,60COD ∠=︒.∴∠AOC =∠AOB +∠BOD +∠COD =45°+∠BOD +60°=105°+∠BOD ,∵4AOC BOD ∠=∠,∴105°+∠EEE =4∠EEE ,解得:∠EEE =35°,∴∠EEE =4∠EEE =4×35°=140°,∴α=180°-∠AOC =180°-140°=40°. 【点睛】 本题考查三角板中形成的角计算,平角,补角,角平分线有关的计算,角的和差倍分,一元一次方·线程,本题难度不大,是角中计算的典型题.2、 (1)(E+E)2;E2+E2+2EE(2)(E+E)2=E2+E2+2EE;(3)①EE=3;②-2【解析】【分析】(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;(2)由(1)直接可得关系式;(3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.(1)方法一:∵大正方形的边长为(a+b),∴S=(a+b)2;方法二:大正方形是由2个长方形,2个小正方形拼成,∴S=b2+ab+ab+a2=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由(1)可得(a+b)2=a2+b2+2ab;故答案为:(a+b)2=a2+b2+2ab;(3)①∵(a-b)2=a2+b2-2ab=13①,(a+b)2=a2+b2+2ab=25②,由①-②得,-4ab=-12,解得:ab=3;②设2021-a=x,a-2020=y,∴x+y=1,∵(2021-a)2+(a-2020)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2=1,∴2xy=1-(x2+y2)=1-5=-4,解得:xy=-2,∴(2021-a)(a-2020)=-2.【点睛】本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.3、(1)①见解析;②∠AEB=60°(2)∠AEB=90°,AE=BE+2CM.理由见解析【解析】【分析】(1)①先证明∠EEE=∠EEE,再结合等边三角形的性质,利用EEE证明△ACD≌△BCE即可;②先求解∠EEE=120°,由△ACD≌△BCE可得∠ADC=∠BEC,再利用角的和差关系可得答案;(2)先证明△EEE≌△EEE,∠EEE=135°,再结合全等三角形的性质与等腰直角三角形的性质可得∠EEE=90°,由EE⊥EE,结合等腰直角三角形的性质,可得EE=EE=EE,结合全等三角形的性质可得EE=EE+2EE.(1) 证明:①∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =60°﹣∠DCB =∠BCE . 在△ACD 和△BCE 中,{EE =EE ∠EEE =∠EEEEE =EE, ∴△ACD ≌△BCE (SAS ).解:②∵△ACD ≌△BCE ,∴∠ADC =∠BEC .∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°.∴∠AEB =∠BEC ﹣∠CED =60°.(2)解:∠AEB =90°,AE =BE +2CM .理由如下: 如图2所示:由题意得:EE⊥EE ,·线○封○密○外∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,{EE=EE∠EEE=∠EEEEE=EE,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,确定每一问中的两个全等三角形是解本题的关键.4、50°,25°.【解析】【分析】 根据邻补角的性质,可得∠AOD +∠BOD =180°,即∠EEE =180°−∠EEE ,代入80AOD DOB ∠-∠=︒可得∠BOD ,根据对顶角的性质,可得∠∠AOC 的度数,根据角平分线的性质,可得∠DOE 的数. 【详解】 解:由邻补角的性质,得∠AOD +∠BOD =180°,即∠EEE =180°−∠EEE ∵80AOD DOB ∠-∠=︒, ∴180°−∠EEE −∠EEE =80°. ∴∠EEE =50°,∴∠AOC =∠BOD =50°, ∵OE 平分∠BOD ,得 ∠DOE =12∠DOB =25°.【点睛】 本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解. 5、4EE 【解析】 【分析】 根据整式的乘法公式及运算法则化简,合并即可求解. 【详解】 (a ﹣2b )(a +2b )﹣(a ﹣2b )2+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2 =4ab . ·线○封○密·○外【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.。

2020-2021学年人教版七年级上册数学《第1章 有理数》单元测试卷(有答案)

2021-2022学年人教新版七年级上册数学《第1章有理数》单元测试卷一.选择题1.如果水位上升5m时水位变化记为+5m,那么水位下降2m时水位变化记作()A.+5m B.﹣5m C.+2m D.﹣2m2.在有理数中,有()A.最大的数B.最小的数C.绝对值最大的数D.绝对值最小的数3.﹣的相反数是()A.B.C.﹣D.﹣4.有理数﹣1绝对值是()A.1B.﹣1C.±1D.25.下列正确的是()A.﹣(﹣21)<+(﹣21)B.C.D.6.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.(﹣5)+(﹣2)B.(﹣5)+2C.5+(﹣2)D.5+27.2018年1月12日,东明县白天的最高气温2℃,到了夜间气温最低时﹣9℃,则这天的温差为()A.11℃B.2℃C.7℃D.18℃8.若有理数a、b在数轴上的位置如图所示,则下列各式中不成立的是()A.a>﹣b B.b﹣a<0C.a>b D.a+b<09.有理数﹣的倒数是()A.B.﹣2C.2D.110.下列计算中,结果等于5的是()A.|(﹣9)﹣(﹣4)|B.|(﹣9)+(﹣4)|C.|﹣9|+|﹣4|D.|﹣9|+|+4|二.填空题11.若上升15米记作+15米,那么下降2米记作米.12.在﹣5,,0,1.6这四个有理数中,整数是.13.绝对值不大于4的所有整数有个,积为.14.比较大小:﹣1(填“>”、“<”或“=”).15.某地某天早上气温为22℃,中午上升了4℃,夜间又下降了10℃,那么这天夜间的气温是℃.16.已知:A和B都在同一条数轴上,点A表示﹣2,又知点B和点A相距5个单位长度,则点B表示的数一定是.17.﹣0.5的相反数是,倒数是.18.若a、b互为倒数,则﹣2ab=.19.对于有理数a,b,c,d,给出如下定义:如果|a﹣c|+|b﹣c|=d.那么称a和b关于c的相对距离为d,如果m和3关于1的相对距离为5,那么m的值为.20.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.三.解答题21.把下列各数填入相应的大括号里:﹣7,﹣0.5,﹣,0,﹣98%,8.7,2018.负整数集合:{};非负整数集合:{ };正分数集合:{ };负分数集合:{ }.22.计算:已知|x |=3,|y |=2,(1)当xy <0时,求x +y 的值; (2)求x ﹣y 的最大值.23.记M (1)=﹣2,M (2)=(﹣2)×(﹣2),M (3)=(﹣2)×(﹣2)×(﹣2),…,M (n )=(其中n 为正整数).(1)计算:M (5)+M (6);(2)求2M (2019)+M (2020)的值;(3)说明2M (n )与M (n +1)互为相反数.24.求证: +++……+<1. 25.在数轴上表示下列各数,并把它们按照从小到大的顺序排列:3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,26.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”,若C 到A 、B 的距离之和为6,则C 叫做A 、B 的“幸福中心”(1)如图1,点A 表示的数为﹣1,则A 的幸福点C 所表示的数应该是 ; (2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为﹣2,点C 就是M 、N 的幸福中心,则C 所表示的数可以是 (填一个即可);(3)如图3,A 、B 、P 为数轴上三点,点A 所表示的数为﹣1,点B 所表示的数为4,点P 所表示的数为8,现有一只电子蚂蚁从点P 出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A 和B 的幸福中心?27.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?ccccccc参考答案与试题解析一.选择题1.解:∵水位上升5m时水位变化记作+5m,∴水位下降2m时水位变化记作﹣2m.故选:D.2.解:A、在有理数中,没有最大的数,故本选项错误;B、在有理数中,没有最小的数,故本选项错误;C、在有理数中,没有绝对值最大的数,故本选项错误;D、在有理数中,有绝对值最小的数,是0,故本选项正确;故选:D.3.解:﹣的相反数是.故选:B.4.解:有理数﹣1绝对值是1,故选:A.5.解:A、∵﹣(﹣21)=21,+(﹣21)=﹣21,∴﹣(﹣21)>+(﹣21),故本选项错误;B、∵﹣|﹣10|=﹣10,∴﹣|﹣10|<8,故本选项错误;C、∵﹣|﹣7|=﹣7,﹣(﹣7)=7,∴﹣|﹣7|<﹣(﹣7),故本选项错误;D、∵|﹣|=,|﹣|=,∴﹣<﹣,故本选项正确;故选:D.6.解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.7.解:2﹣(﹣9)=2+9=11(℃).故这天的温差为11℃.故选:A.8.解:由数轴可得,b<0<a,|b|<|a|,∴a>﹣b,故选项A正确,b﹣a<0,故选项B正确,a>b,故选项C正确,a+b>0,故选项D错误,故选:D.9.解:有理数﹣的倒数是:﹣2.故选:B.10.解:A:|(﹣9)﹣(﹣4)|=|﹣9+4|.=5.∴A正确.B:|(﹣9)+(﹣4)|=|﹣13|.=13.∴B错误.C:|﹣9|+|﹣4|=9+4.=13.∴C错误.D:|﹣9|+|+4|=9+4.=13.∴D错误.故选:A.二.填空题11.解:若上升15米记作+15米,那么下降2米记作﹣2米.故答案为:﹣2.12.解:在﹣5,,0,1.6这四个有理数中,在,1.6是分数,﹣5、0是整数.故答案是:﹣5、0.13.解:绝对值不大于4的所有整数有0,±1,±2,±3,±4,共有9个,因为有因数0,故积为0,故答案为:9;0.14.解:根据有理数比较大小的方法,可得>﹣1.故答案为:>.15.解:根据题意列算式得:22+4﹣10=26﹣10=16.∴这天夜间的气温是16℃.16.解:点B 表示的数一定是:﹣2+5=3或﹣2﹣5=﹣7.故答案是:3或﹣7.17.解:﹣0.5的相反数是0.5,倒数是﹣2,故答案为:0.5,﹣2.18.解;若a 、b 互为倒数,则﹣2ab =﹣2,故答案为:﹣2.19.解:由题意得|m ﹣1|+|3﹣1|=5,即|m ﹣1|=3,∴m ﹣1=3或m ﹣1=﹣3,解得m =4或﹣2,故答案为4或﹣2.20.解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12三.解答题21.解:负整数集合:{﹣7,…}; 非负整数集合:{ 0,2018,…}; 正分数 集合:{ 8.7,…}; 负分数集合:{﹣0.5,﹣,﹣98%,…}. 故答案为:﹣7;0,2018;8.7;﹣0.5,﹣,﹣98%.22.解:由题意知:x =±3,y =±2,(1)∵xy <0,∴x =3,y =﹣2或x =﹣3,y =2,∴x +y =±1,(2)当x =3,y =2时,x ﹣y =3﹣2=1;当x =3,y =﹣2时,x ﹣y =3﹣(﹣2)=5;当x =﹣3,y =2时,x ﹣y =﹣3﹣2=﹣5;当x =﹣3,y =﹣2时,x ﹣y =﹣3﹣(﹣2)=﹣1,所以x ﹣y 的最大值是523.解:(1)M (5)+M (6)=(﹣2)5+(﹣2)6=﹣32+64=32;(2)2M(2019)+M(2020)=2×(﹣2)2019+(﹣2)2020=﹣(﹣2)×(﹣2)2019+(﹣2)2020=﹣(﹣2)2020+(﹣2)2020=0;(3)2M(n)+M(n+1)=﹣(﹣2)×(﹣2)n+(﹣2)n+1=﹣(﹣2)n+1+(﹣2)n+1=0,∴2M(n)与M(n+1)互为相反数.24.解:+++……+<=1,∴+++……+<1.25.解:按照从小到大的顺序排列:﹣3<﹣2<﹣1.5<0<1<3.26.解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)∵4﹣(﹣2)=6,∴M,N之间的所有数都是M,N的幸福中心.故C所表示的数可以是﹣2或﹣1或0或1或2或3或4(答案不唯一);(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.27.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)。

2023年江西省中考数学真题卷(含答案与解析)

江西省2023年初中学业水平考试数学试题卷说明:1.全卷满分120分,考试时间120分钟。

2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。

一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是( )A. 3B. 2.1C. 0D. 2-2. 下列图形中,是中心对称图形的是( )A. B. C.D.3.有意义,则a 的值可以是( )A 1- B. 0 C. 2 D. 64. 计算()322m的结果为( ) A. 68m B. 66mC. 62mD. 52m 5. 如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为( ).A. 35︒B. 45︒C. 55︒D. 65︒6. 如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为( )A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式5ab -的系数为______.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.9. 计算:(a+1)2﹣a 2=_____.10. 将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .12. 如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α度数为_______.三、解答题(本大题共5小题,每小题6分,共30分)13. (10tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.14. 如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.15. 化简2111x x x x x x -⎛⎫+⋅ ⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:的解:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式221111x x x x x x x x--=⋅+⋅+- ……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17. 如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)20. 如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长; (2)若76EAD ∠=︒,求证:CB 为O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表 视力 人数 百分比 0.6及以下8 4% 0.7 16 8%0.828 14% 0.9 3417% 1.0 m34% 1.1及以上 46n 合计 200 100%高中学生视力情况统计图(1)m =_______,n =_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22. 课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完的成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值. 六、解答题(本大题共12分)23 综合与实践 问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC上一点,CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系是.(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.参考答案一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是( )A. 3B. 2.1C. 0D. 2-【答案】A【解析】【分析】根据有理数的分类即可求解.【详解】解:3是正整数,2.1是小数,不是整数,0不是正数,2-不是正数,故选:A .【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.2. 下列图形中,是中心对称图形的是( )A. B. C.D.【答案】B【解析】【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:选项A 、C 、D 均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形;选项B 能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形; 故选:B .【点睛】本题主要考查了中心对称图形,关键是找出对称中心.3. 有意义,则a 的值可以是( )A. 1-B. 0C. 2D. 6 【答案】D【解析】【分析】根据二次根式有意义的条件即可求解.有意义,∴40a -≥,解得:4a ≥,则a 的值可以是6故选:D .【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.4. 计算()322m 的结果为( ) A. 68mB. 66mC. 62mD. 52m 【答案】A【解析】【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选A . 【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.5. 如图,平面镜MN 放置在水平地面CD 上,墙面PD CD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若35AOC ∠=︒,则OBD ∠的度数为( )A. 35︒B. 45︒C. 55︒D. 65︒【答案】C【解析】 【分析】根据题意可得AOC BOD ∠=∠,进而根据直角三角形的两个锐角互余即可求解.【详解】解:依题意,AOC BOD ∠=∠,35AOC ∠=︒∴35BOD ∠=︒,∵PD CD ⊥,∴9055OBD BOD ∠=︒-∠=︒,故选:C .【点睛】本题考查了直角三角形中两个锐角互余,入射角等于反射角,熟练掌握以上知识是解题的关键. 6. 如图,点A ,B ,C ,D 均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为( )A. 3个B. 4个C. 5个D. 6个【答案】D【解析】 【分析】根据不共线三点确定一个圆可得,直线上任意2个点加上点P 可以画出一个圆,据此列举所有可能即可求解.【详解】解:依题意,,A B ;,A C ;,A D ;,B C ;,B D ,,C D 加上点P 可以画出一个圆,∴共有6个,故选:D .【点睛】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式5ab -的系数为______.【答案】5-【解析】【分析】根据单项式系数的定义:单项式中的数字因数,得出结果即可.【详解】解:单项式5ab -的系数是5-.故答案是:5-.【点睛】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.【答案】71.810⨯【解析】【分析】根据科学记数法的表示形式进行解答即可.【详解】解:718000000=1.810⨯,故答案为:71.810⨯.【点睛】本题考查科学记数法,熟练掌握科学记数法的表示形式为10n a ⨯(110a ≤<,a 为整数)的形式,n 的绝对值与小数点移动的位数相同是解题的关键.9. 计算:(a+1)2﹣a 2=_____.【答案】2a+1【解析】详解】【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果. 【详解】(a+1)2﹣a 2=a 2+2a+1﹣a 2 【=2a+1,故答案为2a+1.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.10. 将含30︒角的直角三角板和直尺按如图所示的方式放置,已60α∠=︒,点B ,C 表示的刻度分别为1cm,3cm ,则线段AB 的长为_______cm .【答案】2【解析】【分析】根据平行线的性质得出60ACB ∠=︒,进而可得ABC 是等边三角形,根据等边三角形的性质即可求解.【详解】解:∵直尺的两边平行,∴60ACB α∠=∠=︒,又60A ∠=︒,∴ABC 是等边三角形,∵点B ,C 表示的刻度分别为1cm,3cm ,∴2cm BC =,∴2cm AB BC ==∴线段AB 的长为2cm ,故答案为:2.【点睛】本题考查了平行线的性质,等边三角形的性质与判定,得出60ACB ∠=︒是解题的关键. 11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得40cm 20cm 12m AB BD AQ ===,,,则树高PQ =______m .【答案】6【解析】【分析】根据题意可得ABD AQP ∽,然后相似三角形的性质,即可求解.【详解】解:∵ABC ∠和AQP ∠均为直角∴BD PQ ∥,∴ABD AQP ∽, ∴BD AB PQ AQ= ∵40cm 20cm 12m AB BD AQ ===,,, ∴2m 120640AQ BD PQ AB ⨯⨯===, 故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.12. 如图,在ABCD Y 中,602B BC AB ∠=︒=,,将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP ,连接PC ,PD .当PCD 为直角三角形时,旋转角α的度数为_______.【答案】90︒或270︒或180︒【解析】【分析】连接AC ,根据已知条件可得90BAC ∠=︒,进而分类讨论即可求解.【详解】解:连接AC ,取BC 的中点E ,连接AE ,如图所示,∵在ABCD Y 中,602B BC AB ∠=︒=,, ∴12BE CE BC AB ===, ∴ABE 是等边三角形,∴60BAE AEB ∠=∠=︒,AE BE =,∴AE EC = ∴1302EAC ECA AEB ∠=∠=∠=︒, ∴90BAC ∠=︒∴AC CD ⊥,如图所示,当点P 在AC 上时,此时90BAP BAC ∠=∠=︒,则旋转角α的度数为90︒,当点P 在CA 的延长线上时,如图所示,则36090270α=︒-︒=︒当P 在BA 延长线上时,则旋转角α的度数为180︒,如图所示,∵PA PB CD ==,PB CD ∥,∴四边形PACD 是平行四边形,∵AC AB ⊥∴四边形PACD 是矩形,∴90PDC ∠=︒的即PDC △直角三角形,综上所述,旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13. (10tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.【答案】(1)2;(2)证明见解析【解析】【分析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到BAC DAC ∠=∠,再利用SAS 证明ABC ADC △△≌即可.【详解】解:(1)原式211=+-2=;(2)∵AC 平分BAD ∠,∴BAC DAC ∠=∠,在ABC 和ADC △中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC ADC △△≌.是【点睛】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.14. 如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ,使点C 在格点上;(2)在图2中的线段AB 上作点Q ,使PQ 最短.【答案】(1)作图见解析(2)作图见解析【解析】【分析】(1)如图,取格点K ,使90AKB ∠=︒,在K 的左上方的格点C 满足条件,再画三角形即可; (2)利用小正方形的性质取格点M ,连接PM 交AB 于Q ,从而可得答案.【小问1详解】解:如图,ABC 即为所求作的三角形;【小问2详解】如图,Q 即为所求作的点;【点睛】本题考查的是复杂作图,同时考查了三角形的外角的性质,正方形的性质,垂线段最短,熟记基本几何图形的性质再灵活应用是解本题的关键.15. 化简2111x x xx x x-⎛⎫+⋅⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x xx x x x x⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦……解:原式2211 11x x x xx x x x--=⋅+⋅+-……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③(2)见解析【解析】【分析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【小问1详解】解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】解:甲同学的解法:原式()()()()()()2111 1111x x x x xx x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦()()()()221111x x xx xx xx x=⋅+++---+的()()()()211112x x x x x x =⋅+-+- 2x =; 乙同学的解法: 原式221111x x x x x x x x--=⋅+⋅+- ()()()()111111x x x x x x x x x x=⋅+⋅+-+--+ 11x x =-++2x =.【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员. (1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”) (2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.【答案】(1)随机 (2)16【解析】【分析】(1)由确定事件与随机事件的概念可得答案;(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.【小问1详解】解:“甲、乙同学都被选为宣传员”是随机事件;【小问2详解】画树状图为:共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,所以选中的两名同学恰好是甲,丁的概率21126==.【点睛】本题考查的是事件的含义,利用画树状图求解随机事件的概率,熟记事件的概念与分类以及画树状图的方法是解本题的关键.17. 如图,已知直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数(0)k y x x=>的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC 的面积.【答案】(1)直线AB 的表达式为1y x =+,反比例函数的表达式为6y x=(2)6【解析】【分析】(1)利用待定系数法求函数解析式即可;(2)由一次函数解析式求得点B 的坐标,再根据BC x ∥轴,可得点C 的纵坐标为1,再利用反比例函数表达式求得点C 坐标,即可求得结果.【小问1详解】解:∵直线y x b =+与反比例函数(0)k y x x =>的图象交于点(2,3)A , ∴236k =⨯=,23b +=,即1b =,∴直线AB 的表达式为1y x =+,反比例函数的表达式为6y x =. 【小问2详解】解:∵直线1y x =+的图象与y 轴交于点B ,∴当0x =时,1y =,∴()0,1B ,∵BC x ∥轴,直线BC 与反比例函数(0)k y x x =>的图象交于点C , ∴点C 的纵坐标为1, ∴61x=,即6x =,∴()6,1C ,∴6BC =, ∴12662ABC S =⨯⨯= . 【点睛】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y 轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人(2)至少购买了甲树苗80棵【解析】【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,再根据总费用不超过5400元列出不等式求解即可.【小问1详解】解:设该班的学生人数为x 人,由题意得,320425x x +=-,解得45x =,∴该班的学生人数为45人;【小问2详解】解:由(1)得一共购买了34520155⨯+=棵树苗,设购买了甲树苗m 棵,则购买了乙树苗()155m -棵树苗,由题意得,()30401555400m m +-≤,解得80m ≥,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B ,A ,D ,E 均在同一直线上,AB AC AD ==,测得55 1.8m 2m B BC DE ∠=︒==,,.(结果保小数点后一位)(1)连接CD ,求证:DC BC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:sin 550.82cos550.57tan 55 1.43︒≈︒≈︒≈,,)【答案】(1)见解析(2)雕塑的高约为4.2米 【解析】【分析】(1)根据等边对等角得出,B ACB ACD ADC ∠=∠∠=∠,根据三角形内角和定理得出()2180B ADC ∠+∠=︒,进而得出90BCD ∠=︒,即可得证;(2)过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,得出 1.8cos cos55BC AD B ==︒,则1.82cos55BE AD DE =+=+︒,在Rt EBF △中,根据sin EF BE B =⋅,即可求解. 【小问1详解】 解:∵AB AC AD ==,∴,B ACB ACD ADC ∠=∠∠=∠∵180B ADC BCD ∠+∠+∠=︒即()2180B ADC ∠+∠=︒∴90B ADC ∠+∠=︒即90BCD ∠=︒∴DC BC ⊥;【小问2详解】如图所示,过点E 作EF BC ⊥,交BC 的延长线于点F ,在Rt BDC 中,55 1.8m 2m B BC DE ∠=︒==,, ∴cos BC B AD=, ∴ 1.8cos cos55BC AD B ==︒ ∴ 1.82cos55BE AD DE =+=+︒在Rt EBF △中,sin EF B BE =, ∴sin EF BE B =⋅1.82sin 55cos55⎛⎫=+⨯︒ ⎪︒⎝⎭ 1.820.820.57⎛⎫≈+⨯ ⎪⎝⎭ 4.2≈(米). 答:雕塑的高约为4.2米.【点睛】本题考查了等腰三角形的性质,三角形内角和定理的应用,解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20. 如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长; (2)若76EAD ∠=︒,求证:CB 为O 的切线.【答案】(1)109π (2)证明见解析【解析】【分析】(1)如图所示,连接OE ,先求出2OE OB OA ===,再由圆周角定理得到280AOE ADE ==︒∠∠,进而求出100∠=︒BOE ,再根据弧长公式进行求解即可;(2)如图所示,连接BD ,先由三角形内角和定理得到64AED ∠=︒,则由圆周角定理可得64ABD AED ==︒∠∠,再由AB 是O 的直径,得到90ADB ∠=︒,进而求出26BAC ∠=︒,进一步推出90ABC ∠=︒,由此即可证明BC 是O 的切线.【小问1详解】解:如图所示,连接OE ,∵AB 是O 的直径,且4AB =,∴2OE OB OA ===,∵E 为 ABD 上一点,且40ADE ∠=︒,∴280AOE ADE ==︒∠∠,∴180100BOE AOE ∠=︒-=︒∠,∴ BE 的长1002101809ππ⨯⨯==;【小问2详解】证明:如图所示,连接BD ,∵76EAD ∠=︒,40ADE ∠=︒,∴18064AED EAD ADE =︒--=︒∠∠∠,∴64ABD AED ==︒∠∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴9026BAC ABD =︒-=︒∠∠,∵64C ∠=︒,∴18090ABC C BAC =︒--=︒∠∠∠,即AB BC ⊥,∵OB 是O 的半径,∴BC 是O 的切线.【点睛】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表 视力人数 百分比 0.6及以下8 4% 0.716 8% 0.828 14% 0.9 3417% 1.0 m 34%1.1及以上46 n 合计 200 100%高中学生视力情况统计图(1)m =_______,n =_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.【答案】(1)68;23%;(2)320;(3)①小胡的说法合理,选择中位数,理由见解析;②14300人,合理化建议见解析,合理即可.【解析】【分析】(1)由总人数乘以视力为1.0的百分比可得m 的值,再由视力1.1及以上的人数除以总人数可得n 的值;(2)由条形统计图中各数据之和可得答案;(3)①选择视力的中位数进行比较即可得到小胡说法合理;②由中学生总人数乘以样本中视力不良的百分比即可,根据自身体会提出合理化建议即可.【小问1详解】解:由题意可得:初中样本总人数为:200人, ∴34%20068m =⨯=(人),4620023%n =÷=;【小问2详解】由题意可得:144460826555320+++++=,∴被调查的高中学生视力情况的样本容量为320;【小问3详解】①小胡说:“初中学生的视力水平比高中学生的好.”小胡的说法合理;初中学生视力的中位数为第100个与第101个数据的平均数,落在视力为1.0这一组,而高中学生视力的中位数为第160个与第161个数据的平均数,落在视力为0.9的这一组,而1.0>0.9,∴小胡的说法合理. ②由题意可得:8162834144460822600014300200320+++++++⨯=+(人), ∴该区有26000名中学生,估计该区有14300名中学生视力不良;合理化建议为:学校可以多开展用眼知识的普及,规定时刻做眼保健操.【点睛】本题考查的是从频数分布表与频数分布直方图中获取信息,中位数的含义,利用样本估计总体,理解题意,确定合适的统计量解决问题是解本题的关键.22. 课本再现 思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在ABCD Y 中,对角线BD AC ⊥,垂足为O .求证:ABCD Y 是菱形.(2)知识应用:如图2,在ABCD Y 中,对角线AC 和BD 相交于点O ,586AD AC BD ===,,.①求证:ABCD Y 是菱形;②延长BC 至点E ,连接OE 交CD 于点F ,若12E ACD ∠=∠,求OF EF的值. 【答案】(1)见解析(2)①见解析;②58【解析】 【分析】(1)根据平行四边形的性质证明AOB COB ≌得出AB CB =,同理可得DOA ODC ≌,则DA DC =, AB CD =,进而根据四边相等的四边形是菱形,即可得证;(2)①勾股定理的逆定理证明AOD △是直角三角形,且90AOD ∠=︒,得出AC BD ⊥,即可得证; ②根据菱形的性质结合已知条件得出E COE ∠=∠,则142OC OE AC ===,过点O 作OG CD ∥交BC 于点G ,根据平行线分线段成比例求得1522CG CB ==,然后根据平行线分线段成比例即可求解. 【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AO CO =, AB DC =,∵BD AC ⊥∴90AOB COB ∠=∠=︒,在,AOB COB 中,AO CO AOB COB BO BO =⎧⎪∠=∠⎨⎪=⎩∴AOB COB ≌∴AB CB =,同理可得DOA ODC ≌,则DA DC =,又∵AB CD =∴AB BC CD DA ===∴四边形ABCD 是菱形;【小问2详解】①证明:∵四边形ABCD 是平行四边形,586AD AC BD ===,,. ∴113,422DO BO BD AO CO AC ====== 在AOD △中,225AD =,22223425AO OD +=+=,∴222AD AO OD =+,∴AOD △是直角三角形,且90AOD ∠=︒,∴AC BD ⊥,∴四边形ABCD 是菱形;②∵四边形ABCD 是菱形;∴ACB ACD ∠=∠ ∵12E ACD ∠=∠, ∴12E ACB ∠=∠, ∵ACB E COE ∠=∠+∠,∴E COE ∠=∠, ∴142OC OE AC ===, 如图所示,过点O 作OG CD ∥交BC 于点G ,∴1BG BO GC OD==, ∴115222CG BC AD ===, ∴55248OF GC EF CE ===. 【点睛】本题考查了菱形的性质与判定,勾股定理以及勾股定理的逆定理,等腰三角形的性质与判定,平行线分线段成比例,熟练掌握菱形的性质与判定是解题的关键.六、解答题(本大题共12分)23. 综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC 上一点,CD =,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.【答案】(1)①3;②24S t =+(2)()281828S t t t =-+≤≤,6AB =(3)①4;②349【解析】【分析】(1)①先求出1CP =,再利用勾股定理求出DP =,最后根据正方形面积公式求解即可;②仿照(1)①先求出CP t =,进而求出222DP t =+,则222S DP t ==+;(2)先由函数图象可得当点P 运动到B 点时,26S DP ==,由此求出当2t =时,6S =,可设S 关于t 的函数解析式为()242S a t =-+,利用待定系数法求出2818S t t =-+,进而求出当281818S t t =-+=时,求得t 的值即可得答案;(3)①根据题意可得可知函数()242S t =-+可以看作是由函数22S t =+向右平移四个单位得到的,设()()()1221P m n Q m n m m >,,,是函数22S t =+上的两点,则()14m n +,,()24m n +,是函数()242S t =-+上的两点,由此可得121212044m m m m m m +=<<+<+,,则2144m m ++=,根据题意可以看作21321244m m t t m t ==+=+,,,则124t t +=;②由(3)①可得134t t =+,再由314t t =,得到143t =,继而得答案. 【小问1详解】 解:∵动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,∴当1t =时,点P 在BC 上,且1CP =,∵90C ∠=︒,CD =,∴DP ==∴23S DP ==,故答案为:3;②∵动点P 以每秒1个单位的速度从C 点出发,在BC 匀速运动,。

人教版数学七年级上册第一章《有理数》检测试试题(含答案)

人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。

人教版数学七年级上册第1章《有理数》单元质量检测卷1(含答案)

人教版七年级上册第1章《有理数》单元质量检测卷一.选择题(共10小题,满分30分,每小题3分)1.的倒数是()A.﹣B.C.﹣2D.22.有理数2,1,﹣1,0中,最小的数是()A.2B.1C.﹣1D.03.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×1074.在下列各组中,表示互为相反意义的量的是()A.下降的反义词是上升B.羽毛球比赛胜3场与负3场C.增产5吨粮食与减产﹣5吨粮食D.向北走15km和向西走15km5.用四舍五入法将0.00519精确到千分位的近似数是()A.0.0052B.0.005C.0.0051D.0.005196.在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是()A.2B.﹣1C.﹣3D.﹣47.已知a在数轴上的位置如图所示,则|a+2|﹣|a﹣3|的值为()A.﹣5B.5C.2a﹣1D.1﹣2a8.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有()A.2种B.3种C.4种D.5种9.现定义一种新的运算:a*b=(a+b)2÷(b﹣a),例如:1*2=(1+2)2÷(2﹣1)=32÷1=9,请你按以上方法计算(﹣2)*1=()A.﹣1B.﹣2C.D.10.下列说法中,正确的有()①0是最小的整数;②若|a|=|b|,则a=b;③互为相反数的两数之和为零;④数轴上表示两个有理数的点,较大的数表示的点离原点较远.A.0个B.1个C.2个D.3个11.若m与﹣2互为相反数,则m的值为.12.﹣2020的绝对值等于.13.比较大小:﹣1﹣(填“>”“<”或“=”)14.如果收入100元记作+100,那么支出30元记作.15.学习了有理数的相关内容后,张老师提出了这样一个问题:“在8,﹣0.5,+,0,﹣3.7这五个有理数中,非负数有哪几个?”同学们经过思考后,小明举手回答说:“其中的非负数只有8和+这两个.”你认为小明的回答是否正确:(填“正确”或“不正确”),理由是:.16.数轴上,点B在点A的右边,已知点A表示的数是﹣2,且AB=5.那么点B表示的数是.17.定义新运算“※“,对任意有理数a,b,规定a※b=ab﹣b,如:1※2=1×2﹣2=0,则3※5的值为.18.已知a、b互为相反数,c、d互为倒数,那么2a+2b﹣5cd=.三.解答题(共7小题,满分58分)19.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)16÷()×()20.(10分)计算下列各式:(1);(2).21.(6分)计算:.小虎同学的计算过程如下:原式=﹣6+2÷1=﹣6+2=﹣4.请你判断小虎的计算过程是否正确,若不正确,请你写出正确的计算过程.22.(8分)把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,1,﹣3,﹣(﹣0.5),﹣|﹣|,+(﹣4).23.(8分)将下列各数填入相应的大括号里.,0.618,﹣3.14,260,﹣2,,﹣0.010010001…,0,0..正分数集合:{…};整数集合:{…};非正数集合:{…};有理数集合:{…};24.(8分)电影《我和我的祖国》讲述了新中国成立70年间普通百姓与共和国息息相关的故事,影片上映15天就斩获票房26亿元人民币,口碑票房实现双丰收.据统计,10月8日,该电影在重庆的票房收入为140万元,接下来7天的票房变化情况如下表(正数表示比前一天增加的票房,负数表示比前一天减少的票房)日期9日10日11日12日13日14日15日+38﹣100+40﹣38﹣76+5票房变化(万元)(1)这7天中,票房收入最多的是10月日,票房收入最少的是10月日:(2)根据上述数据可知,这7天该电影在重庆的平均票房收入为多少万元?25.(10分)阅读与计算:出租车司机小李某天上午营运时是在太原迎泽公园门口出发,沿东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接送八位乘客的行车里程(单位:km)如下:﹣3,+6,﹣2,+1,﹣5,﹣2,+9,﹣6.(1)将最后一位乘客送到目的地时,小李在什么位置?(2)将第几位乘客送到目的地时,小李离迎泽公园门口最远?(3)若汽车消耗天然气量为0.2m3/km,这天上午小李接送乘客,出租车共消耗天然气多少立方米?(4)若出租车起步价为5元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据倒数的定义,可知的倒数是2.故选:D.2.解:根据有理数比较大小的方法,可得﹣1<0<1<2,∴在2,1,﹣1,0这四个数中,最小的数是﹣1.故选:C.3.解:3504000=3.504×106,故选:B.4.解:表示互为相反意义的量:羽毛球比赛胜3场与负3场;故选:B.5.解:0.00519精确到千分位的近似数是0.005.故选:B.6.解:(﹣1)+(﹣3)=﹣4.故选:D.7.解:由a在数轴上的位置可知,﹣3<a<﹣2,∴a+2<0,a﹣3<0,∴|a+2|﹣|a﹣3|=﹣a﹣2﹣3+a=﹣5,故选:A.8.解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选:D.9.解:根据题中的新定义得:原式=(﹣2+1)2÷[1﹣(﹣2)]=1÷3=,10.解:①0是最小的整数,错误,没有最小的整数;②若|a|=|b|,则a=±b,故此选项错误;③互为相反数的两数之和为零,正确;④数轴上表示两个有理数的点,较大的数表示的点离原点较远,只有都是正数时较大的数表示的点离原点较远,故此选项错误.故选:B.二.填空题(共8小题,满分32分,每小题4分)11.解:∵﹣2的相反数是2,∴m=2.故答案为:2.12.解:根据绝对值的概念可知:|﹣2020|=2020,故答案为:2020.13.解:∵|﹣1|>||,∴.故答案为:<14.解:如果收入100元记作+100,那么支出30元记作﹣30.故答案为:﹣30.15.解:“非负数”就是“不是负数”,也就是0和正数,因此小明的回答是不正确的,因为非负数包括0和正数.故答案为:非负数包括0和正数.16.解:﹣2+5=3,故答案为:3.17.解:∵a※b=ab﹣b,∴3※5=3×5﹣5=15﹣5=10,故答案为:10.18.解:由题意知a+b=0,cd=1,则原式=2(a+b)﹣5cd=0﹣5=﹣5,故答案为:﹣5.三.解答题(共7小题,满分58分)19.解:(1)原式=﹣7﹣5﹣4+10=﹣6;(2)原式=16×(﹣)×(﹣)=.20.解:(1)==21;(2)=4×+(﹣)×+﹣1=2+(﹣)﹣1=1.21.解:小虎的计算不正确.正解:原式=﹣9+2××=﹣9+=﹣.22.解:如图所示:根据数轴的特点把这些数按从大到小的顺序用“>”连接起来为1>﹣(﹣0.5)>0>﹣|﹣|>﹣3>+(﹣4).23.解:正分数集合:{0.618,,0.…};整数集合:{ 260,﹣2,0…};非正数集合:{,﹣3.14,﹣2,﹣0.010010001…,0…};故答案为:0.618,,0.;260,﹣2,0;,﹣3.14,﹣2,﹣0.010010001…,0;,0.618,﹣3.14,260,﹣2,,0,0..24.解:(1)10月9日票房收入:140+38=178万元,10月10日票房收入:178﹣10=168万元,10月11日票房收入:168+0=168万元,10月12日票房收入:168+40=208万元,10月13日票房收入:208﹣38=170万元,10月14日票房收入:170﹣76=94万元,10月15日票房收入:94+5=99万元,因此10月12日最多,10月14日最少,故答案为:12,14.(2)(178+168+168+208+170+94+99)÷7=155万元答:这7天该电影在重庆的平均票房收入为155万元.25.解:(1)﹣3+6﹣2+1﹣5﹣2+9﹣6=﹣2km,答:将最后一位乘客送到目的地时,小李在迎泽公园门口西边2km处.(2)|﹣3|=3,|﹣3+6|=3,|﹣3+6﹣2|=1,|﹣3+6﹣2+1|=2,|﹣3+6﹣2+1﹣5|=3,|﹣3+6﹣2+1﹣5﹣2|=5,|﹣3+6﹣2+1﹣5﹣2+9|=4,|﹣3+6﹣2+1﹣5﹣2+9﹣6|=2.∵5>4>3=3=3>2=2>1,∴将第6位乘客送到目的地时,小李离迎泽公园门口最远.(3)(|﹣3|+|6|+|﹣2|+|1|+|﹣5|+|﹣2|+|9|+|﹣6|)×0.2=6.8m3答:这天上午小李接送乘客,出租车共消耗天然气6.8立方米.(4)解:(|6|﹣3+|﹣5|﹣3+|9|﹣3+|﹣6|﹣3)×1.2+8×5=56.8元,答:小李这天上午共得车费56.8元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档