30m3液氨储罐设计说明书
立方米液氨储罐设计说明书

目录课程设计任务书220m3液氨储罐设计2课程设计内容3液氨物化性质及介绍31.设备的工艺计算31.1设计储存量31.2设备的选型的轮廓尺寸的确定31.3设计压力的确定41.4设计温度的确定41.5压力容器类别的确定42.设备的机械设计52.1设计条件52.2结构设计62.2.1材料选择62.2.2筒体和封头结构设计62.2.3法兰的结构设计6(1)公称压力确定7(2)法兰类型、密封面形式及垫片材料选择7(3)法兰尺寸72.2.4人孔、液位计结构设计8(1)人孔设计8(2)液位计的选择92.2.5支座结构设计10(1)筒体和封头壁厚计算10(2)支座结构尺寸确定122.2.6焊接接头设计及焊接材料的选取14(1)焊接接头的设计14(2)焊接材料的选取162.3强度校核162.3.1计算条件162.3.2内压圆筒校核172.3.3封头计算182.3.4鞍座计算202.3.5开孔补强计算213.心得体会224.参考文献22课程设计任务书20m3液氨储罐设计一、课程设计要求:1.按照国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。
2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。
3.工程图纸要求计算机绘图。
4.独立完成。
二、原始数据1.设备工艺设计2.设备结构设计3.设备强度计算4.技术条件编制5.绘制设备总装配图6.编制设计说明书四、学生应交出的设计文件(论文):1.设计说明书一份;2.总装配图一张(A1图纸一张)课程设计内容液氨物化性质及介绍液氨,又称为无水氨,是一种无色液体,有强烈刺激性气味。
氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。
液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。
液氨分子式NH3,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点-33.35℃,自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。
32立方米液氨储罐课程设计

第1章绪论1.1 液氨储罐结构的概述32㎥液氨储罐,壁厚δ=16mm ,材料正火14MnMoV,长度L=7610mm ,内径D=2200mm图1.1液氨储罐结构示意图1.2 1Cr21Ni5Ti不锈钢性能分析1Cr21Ni5Ti不锈钢的力学性能牌号纵向力学性能横向力学性能拉力强度MPa屈服点MPa伸长率(%)拉力强度MPa屈服点MPa伸长率(%)1Cr18Ni9Ti≥52020535---1Cr21Ni5Ti钢为铁素体-奥氏体型双相不锈钢,用于代替奥氏体型不锈钢1Cr18Ni9Ti。
1Cr21Ni5Ti比1Cr18Ni9Ti钢有更好的力学性能。
1Cr21Ni5Ti不锈钢的化学成分1Cr21Ni5Ti 加工工艺性能:1Cr21Ni5Ti 钢的冷、热加工性能良好。
其热加工温度为800~1050℃,950~1050℃时热塑性最好。
因该钢的屈服强度高,因而拉伸、弯曲等变形难度较大,所需加工变形力大。
1Cr21Ni5Ti 钢的淬火温度为950~1050℃。
其焊接性能良好,可用各种焊接方法进行焊接。
1Cr21Ni5Ti 不锈钢耐蚀性:1Cr21Ni5Ti 不锈钢在氧化性酸和有机酸中有很好的耐蚀性,一般无晶间腐蚀倾向,可代替1Cr18Ni9Ti 钢。
1Cr21Ni5Ti 不锈钢的焊接性能主要表现在以下几个方面:(1)高温裂纹:在这里所说的高温裂纹是指与焊接有关的裂纹。
高温裂纹可大致分为凝固裂纹、显微裂纹、HAZ(热影响区)的裂纹和再加热裂纹等。
(2)低温裂纹:在马氏体型不锈钢和部分具有马氏体组织的铁素体型不锈钢中有时会发生低温裂纹。
由于其产生的主要原因是氢扩散、焊接接头的约束程度以及其中的硬化组织,所以解决方法主要是在焊接过程中减少氢的扩散,适宜地进行预热和焊后热处理以及减轻约束程度。
(3)焊接接头的韧性:在奥氏体型不锈钢中为减轻高温裂纹敏感性,在成分设计上通常使其中残存有5%—10%的铁素体。
但这些铁素体的存在导致了低温韧性的下降。
液氨卧式储罐设计

前言本说明书为《31m3液氨储罐设计说明书》。
本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。
目录附:设计任务书 (2)第一章绪论 (3)(一)设计任务 (3)(二)设计思想 (3)(三)设计特点 (3)第二章材料及结构的选择与论证 (3)(一)材料选择 (3)(二)结构选择与论证 (3)第三章设计计算 (5)(一)计算筒体的壁厚 (5)(二)计算封头的壁厚 (6)(三)水压试验及强度校核 (6)(四)选择人孔并核算开孔补强 (7)(五)核算承载能力并选择鞍座 (9)(六)选择液面计 (9)(七)选择压力计 (10)(八)选配工艺接管 (10)第四章设计汇总 (11)第五章结束语 (12)第六章参考文献 (13)第一章绪论(一)设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。
(二)设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。
在设计过程中综合考虑了经济性,实用性,安全可靠性。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
(三)设计特点:容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。
常、低压化工设备通用零部件大都有标准,设计时可直接选用。
本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
第二章材料及结构的选择与论证(一)材料选择:纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。
液氨储罐说明书(太原理工大学)

课程设计(论文)题目:32M3液氨储罐的设计课程设计要求及原始数据(资料)一、课程设计要求1、按照国家压力容器设计标准、规范进行设计,掌握典型过程设备设计的过程。
2、设计计算采用手算,要求设计思路清晰,计算数据准确、可靠。
3、工程图纸要求计算机绘图。
4、独立完成。
二、原始数据本次课程设计的主要内容是设计液氨储罐,包括储罐的各种数据的确定,有储罐筒体的长度,公称直径的确定,罐体材料的选取,还有封头的确定,封头厚度筒体厚度的计算,附件的选取,包括各种法兰的选取,以及密封面的材料如何选,以及人孔的设计,人孔法兰和补强的计算。
最后还有焊接如何选取,焊料的选取,支座的材料类型还有位置的确定都是本次设计的主要内容。
本次设计在过程装备课程的基础上加强对知识的学习和应用,更好的学习和体会了在实际化工生产中知识的重要性,为我们打下牢固的实践基础。
1:材料选择与设备要求·············· - 1 -1.1:设计压力的确定·············· - 1 -1.2:关于筒体和封头的选材············ - 1 -1.3:计算压力:·················· - 2 -1.4封头的选择:················ - 2 - 2设计计算····················· - 3 -2.1:筒体长度的确定:·············· - 3 -2.2:筒体厚度的确定:·············· - 3 -2.3封头的厚度计算:··············· - 4 -2.3.压力试验:················· - 5 - 3法兰的选取···················· - 6 -3.1人孔的选取:················· - 6 -3.2:管法兰的设计················ - 7 - 4液位计的选取··················· - 9 - 5开孔补强的计算·················- 11 - 6 支座结构的设计·················- 12 -材料的确定:··················- 13 - 7焊接接头及焊条的设计··············- 15 - 焊条的选取:··················- 16 - 8参考文献····················- 17 - 9 总结······················- 18 -1:材料选择与设备要求1.1:设计压力的确定查得设计指导书表2-3 液化气体饱和蒸汽压及饱和液密度,得液化氨气在50℃蒸汽压为1.968MPa ,表压为1.868Mpa ,装有安全阀的压力容器,设计压力不低于安全阀的开启压力,安全阀的开启压力是根据工作压力确定的,一般可取p=(1.05—1.10)pw 。
20M3液氨储罐设计说明书

又根据《EHA椭圆形封头内表面积及容积》查得:DN=1900mm时,总深度H=500mm,内表面积A=4.0624 ,容积V=0.9687
所以,封头设计为EHA1900×11-16MnR JB/T4746-2002
见下图
五 零部件的设计
1.人孔的设置
人孔即检查孔。压力容器开设检查孔目的是为了检查压力容器在使用过程中是否产生裂纹,变形,腐蚀等缺陷以及装拆设备的内部零部件,一般设备的公称直径在900mm以下时可根据需要设置适当数量的手孔,超过900mm时应开设人孔。人孔有圆形和长圆两种。人孔大小的设置原则是方便人的进出,因此,圆形人孔的公称直径规定为400~600mm,所以本次设计选择人孔公称直径为500 mm。
2.带补强圈的接管的焊接结构
作为开孔补强元件的补强圈,一方面要求尽量与补强出的壳体贴合紧密,另外与接管与壳体之间的焊接结构设计也应力求完善合理。
六 接管法兰的设计
PN2.5Mpa带颈对焊钢制管法兰及密封面尺寸
(mm)
公称直径DN
管外径
法兰外径D
法兰厚度C
法兰颈
法兰高度H
密封面d
密封面
螺栓孔中心圆直径k
N
A
B
20
25
105
16
40
40
6
40
56
2
75
25
32
115
16
46
46
6
40
65
2
85
32
38
140
18
56
56
6
42
76
2
100
40
45
上部:安全阀接口,气氨出口,放空口,液氨入口。
33立方米液氨储罐设计

33立方米液氨储罐设计1. 引言液氨储罐是用于储存液态氨的设备,广泛应用于化工、农业和制冷等领域。
本文将介绍一种33立方米液氨储罐的设计方案。
该储罐采用钢板焊接结构,具有坚固的强度和良好的密封性。
设计目标是确保储罐在工作条件下的安全可靠性,并满足相关标准和规范的要求。
2. 设计参数储罐的基本参数如下: - 容积:33立方米 - 材质:Q345钢- 温度:低温条件,设计工作温度为-33°C - 压力:设计压力为1.6MPa - 焊接材料:对焊钢管3. 结构设计3.1 外壳设计储罐采用圆筒形外壳设计,底部为圆锥形设计。
外壳材料选用Q345钢板,通过焊接工艺连接。
3.2 支撑设计储罐设置足够数量的支撑,以保证储罐在工作状态下能够承受压力和重力。
支撑结构采用钢材焊接而成。
3.3 进出口设计为了方便装料和排放气体,储罐设计有进出口管道。
进口管道通过安全阀进行安全控制,出口管道通过底阀进行液氨的排放。
3.4 密封设计储罐采用密封设计,以保证液氨不会泄漏。
密封件选用耐低温和耐腐蚀的材料,确保长期使用不出现渗漏问题。
4. 安全性设计4.1 压力安全储罐设计了安全阀,当压力超过设计压力时,安全阀自动打开,释放过高压力,以保证储罐不会发生爆炸等事故。
4.2 抗震安全储罐设置了抗震支撑结构,以提高整个储罐系统的抗震性能,确保在地震发生时,储罐能保持稳定且不会受到破坏。
4.3 安全排放储罐的底部设置了底阀,当需要排放液氨时,可通过打开底阀实现安全排放。
4.4 防腐蚀措施考虑到液氨的腐蚀性,储罐进行了合适的防腐蚀处理,以延长储罐的使用寿命。
5. 检验与验收储罐设计完成后,需要进行相关检验和验收。
- 设计抗压强度是否满足要求 - 安全系统工作是否正常 - 密封性能是否达标 - 各部位焊接质量是否符合要求6. 结论本文介绍了一种33立方米液氨储罐的设计方案,包括结构设计、安全性设计和检验与验收等内容。
储罐设计满足相关标准和规范要求,能够在安全可靠的情况下储存液态氨。
30m3液氨储罐设计说明书

30m3液氨储罐设计说明书前言本说明书为《30m3液氨储罐设计说明书》。
本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。
目录第一章绪论 (4)(一)设计任务 (4)(二)设计思想 (4)(三)设计特点 (4)第二章材料及结构的选择与论证 (4)(一)材料选择 (4)(二)结构选择与论证 (4)第三章设计计算 (6)(一)计算筒体的壁厚 (6)(二)计算封头的壁厚 (7)(三)水压试验及强度校核 (7)(四)选择人孔并开孔确定补强 (8)(五)核算承载能力并选择鞍座 (8)(六)选择液面计 (9)(七)选配工艺接管 (9)第四章设计汇总 (10)第五章结束语 (11)第六章参考文献 (11)第一章绪论(一)设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。
(二)设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。
在设计过程中综合考虑了经济性,实用性,安全可靠性。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
(三)设计特点:容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。
常、低压化工设备通用零部件大都有标准,设计时可直接选用。
本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
第二章材料及结构的选择与论证(一)材料选择:纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。
如果纯粹从技术角度看,建议选用20R 类的低碳钢板, 16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济,且16MnR机械加工性能、强度和塑性指标都比较号,所以在此选择16MnR钢板作为制造筒体和封头材料。
立方米液氨储罐施工方案

立方米液氨储罐施工方案1. 引言立方米液氨储罐是用于存储和运输液化氨的重要设备,广泛应用于化工、农业和制冷等领域。
本文档将介绍立方米液氨储罐的施工方案,包括施工准备、施工流程、安全措施和质量控制等内容,并提供相关的 Markdown 文本格式。
2. 施工准备2.1 材料准备•立方米液氨储罐主体材料:碳素钢板•其他辅助材料:焊条、焊剂、螺栓等2.2 设备准备•焊接设备:电焊机、电焊割设备等•起重设备:吊车、起重机等•质量检测设备:焊缝检测仪器、材料强度测试仪器等2.3 施工场地准备•确保施工场地平整、无杂物•设置安全警示标志•确保施工场地通风良好3. 施工流程3.1 底板安装•清理施工场地•安装支撑架•安装底板3.2 罐体安装•安装罐体侧板•焊接罐体侧板与底板•安装罐体顶板•焊接罐体顶板与侧板3.3 罐体加工•焊接加固筋•安装进出料口、排气阀等附件•焊接进出料口、排气阀等附件3.4 焊接工艺•根据焊接规范施工•进行焊接前的预热处理•使用正确的电流和电压进行焊接•焊接后进行冷却处理3.5 焊缝检测•使用焊缝检测仪器对焊缝进行检测•检测焊缝的质量和强度4. 安全措施4.1 人员安全•施工人员必须穿戴防护装备,如安全帽、防护眼镜、防护手套等•施工人员必须经过专业培训,熟悉施工操作规范和安全操作流程•施工现场必须设置安全警示标志4.2 施工场地安全•施工场地必须保持干燥,防止液氨泄露•施工场地必须远离明火和易燃物品4.3 操作安全•施工人员必须熟悉液氨的性质,了解其安全操作规范•施工人员必须严格按照操作规范进行施工•确保焊接设备和起重设备的安全使用5. 质量控制5.1 材料质量控制•检查材料证书和相关质量文件•检查材料的表面质量和尺寸规格5.2 焊接质量控制•焊接前进行预热处理•使用正确的焊接参数进行焊接•检测焊缝质量和强度5.3 安全阀和压力表检测•安装和检测液氨储罐的安全阀和压力表•确保其正常工作并符合相关安全标准结论本文档介绍了立方米液氨储罐的施工方案,包括施工准备、施工流程、安全措施和质量控制等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30m3液氨储罐设计说明书前言本说明书为《30m3液氨储罐设计说明书》。
本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。
目录第一章绪论 (4)(一)设计任务 (4)(二)设计思想 (4)(三)设计特点 (4)第二章材料及结构的选择与论证 (4)(一)材料选择 (4)(二)结构选择与论证 (4)第三章设计计算 (6)(一)计算筒体的壁厚 (6)(二)计算封头的壁厚 (7)(三)水压试验及强度校核 (7)(四)选择人孔并开孔确定补强 (8)(五)核算承载能力并选择鞍座 (8)(六)选择液面计 (9)(七)选配工艺接管 (9)第四章设计汇总 (10)第五章结束语 (11)第六章参考文献 (11)第一章绪论(一)设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。
(二)设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。
在设计过程中综合考虑了经济性,实用性,安全可靠性。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
(三)设计特点:容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。
常、低压化工设备通用零部件大都有标准,设计时可直接选用。
本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
第二章材料及结构的选择与论证(一)材料选择:纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。
如果纯粹从技术角度看,建议选用20R类的低碳钢板,16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济,且16MnR机械加工性能、强度和塑性指标都比较号,所以在此选择16MnR钢板作为制造筒体和封头材料。
(二)结构选择与论证:1.封头的选择:从受力与制造方面分析来看,球形封头是最理想的结构形式。
但缺点是深度大,冲压较为困难;椭圆封头浓度比半球形封头小得多,易于冲压成型,是目前中低压容器中应用较多的封头之一。
平板封头因直径各厚度都较大,加工与焊接方面都要遇到不少困难。
从钢材耗用量来年:球形封头用材最少,比椭圆开封头节约,平板封头用材最多。
因此,从强度、结构和制造方面综合考虑,采用椭圆形封头最为合理。
2.人孔的选择:压力容器人孔是为了检查设备的内部空间以及安装和拆卸设备的内部构件。
人孔主要由筒节、法兰、盖板和手柄组成。
一般人孔有两个手柄。
选用时应综合考虑公称压力、公称直径(人、手孔的公称压力与法兰的公称压力概念类似。
公称直径则指其简节的公称直径)、工作温度以及人、手孔的结构和材料等诸方面的因素。
人孔的类型很多,选择使用上有较大的灵活性,其尺寸大小及位置以设备内件安装和工人进出方便为原则。
通常可以根据操作需要,在这考虑到人孔盖直径较大较重, 可选择回转盖对焊法兰人孔。
3.法兰的选择:法兰连接主要优点是密封可靠、强度足够及应用广泛。
缺点是不能快速拆卸、制造成本较高。
压力容器法兰分平焊法兰与对焊法兰。
平焊法兰又分为甲型与乙型两种。
甲型平焊法兰有PN0.25 MPa 0.6 MPa 1.0 MPa1.6 MPa,在较小范围内(DN300 mm ~2000 mm)适用温度范围为-20℃~300℃。
乙型平焊法兰用于PN0.25 MPa~1.6 MPa压力等级中较大的直径范围,适用的全部直径范围为DN300 mm ~3000 mm,适用温度范围为-20℃~350℃。
对焊法兰具有厚度更大的颈,进一步增大了刚性。
用于更高压力的范围(PN0.6 MPa~6.4MPa)适用温度范围为-20℃~45℃。
法兰设计优化原则:法兰设计应使各项应力分别接近材料许用应力值,即结构材料在各个方向的强度都得到较充分的发挥。
法兰设计时,须注意以下二点:管法兰、钢制管法兰、垫片、紧固件设计参照原化学工业部于1997年颁布的《钢制管法兰、垫片、紧固件》标准(HG20592~HG20635-1997)的规定。
4.液面计的选择:液面计是用以指示容器内物料液面的装置,其类型很多,大体上可分为四类,有玻璃板液面计、玻璃管液面计、浮子液面计和浮标液面计。
在中低压容器中常用前两种。
玻璃板液面计有透光式和反射式两种结构,其适用温度一般在0~250℃。
但透光式适用工作压力较反射式高。
玻璃管液面计适用工作压力小于1.6MPa,介质温度在0~250℃的范围。
液面计与容器的连接型式有法兰连接、颈部连接及嵌入连接,分别用于不同型式的液面计。
液面计的选用:(1)玻璃板液面计和玻璃管液面计均适用于物料内没有结晶等堵塞固体的场合。
板式液面计承压能力强,但是比较笨重、成本较高。
(2)玻璃板液面计一般选易观察的透光式,只有当物料很干净时才选反射式。
(3)当容器高度大于3m 时,玻璃板液面计和玻璃管液面计的液面观察效果受到限制,应改用其它适用的液面计。
液氨为较干净的物料,易透光,不会出现严重的堵塞现象,所以在此选用玻璃管液面计。
5.鞍座的选择:鞍式支座是应用最广泛的一种卧式支座。
从应力分析看,承受同样载且具有同样截面几何形状和尺寸的梁采用多个支承比采用两个支承优越,因为多支承在粱内产生的应力较小。
所以,从理论上说卧式容器的支座数目越多越好。
但在是实际上卧式容器应尽可能设计成双支座,这是因为当支点多于两个时,各支承平面的影响如容器简体的弯曲度和局部不圆度、支座的水平度、各支座基础下沉的不均匀性、容器不同部位抗局部交形的相对刚性等等,均会影响支座反力的分布。
因此采用多支座不仅体现不出理论上的优越论反而会造成容器受力不均匀程度的增加,给容器的运行安全带来不利的影响。
所以一台卧式容器支座一般情况不宜多于二个。
在此选择鞍式双支座,一个F 型,一个S 型。
第三章 设计计算(一)计算筒体的壁厚:因为液氨的储量为30m 3,按原化工部1985年颁布实施的有关贮罐尺寸和质量的行业标准(《卧式椭圆形封头贮罐系列》HG5-1580-85),取D i =2700mmP c —设计压力 储罐的最高工作温度为40℃,此时氨的饱和蒸汽压为1.55MP a ,取此压强的1.10倍作为设计压力,故a c MP P 705.155.110.1=⨯=在操作温度-5~40℃的范围内,估计筒体壁厚大约为16mm ,在《常用容器钢板(管)许用应力表》中按设计温度40℃,板厚6~16mm 间插值取得a t MP 75.200][=σ焊接接头采用V 坡口双面焊接,采用全部无损检测,其焊接接头系数由焊接接头系数表查得φ=1.00钢板负偏差由《钢板厚度负偏差表》查得C 1=0.8 mm ;液氨为轻微腐蚀,腐蚀裕量由(壳体、封头腐蚀裕量表)查得C 2=2 mm 。
液氨储罐是内压薄壁容器,按公式计算筒体的设计厚度为: mm C P D P ct i c d 515.13200.175.20022700705.1][22=+⨯⨯⨯=+-⋅=ϕσδ 考虑到钢板负偏差,所以筒体厚度应再加上C 1,即13.515+0.8=14.315根据钢板的厚度规格,查《钢板的常用厚度表》,圆整为δn =16mm(二)计算封头的壁厚:采用标准椭圆形封头,各参数与筒体相同。
封头的设计厚度 mm C P D P ct i c d 515.13200.175.20022700705.1][22=+⨯⨯⨯=+-⋅=ϕσδ 考虑到钢板负偏差,所以封头厚度应再加上C 1,即12.515+0.8=14.315 mm根据钢板的厚度规格,查《钢板的常用厚度表》,圆整为δn =16mm ,可见跟筒体等厚。
(三)水压试验及强度校核:先按公式确定水压试验时的压力t P 为: ⎪⎩⎪⎨⎧=⨯==MPa P P t c t 13.2705.125.1][][25.1σσ a t MP P 13.2=,水压试验时的应力为a e e i t t MP D P 91.2181)28.016(2)]28.016(2700[13.22)(=⨯--⨯--+⨯=+=ϕδδσ 查表得厚度为16mm 的16MnR 钢板的钢材屈服极限a s MP 345=σ故在常温水压试验时的许用应力为a s MP 5.3103459.09.0=⨯=σ故s t σσ9.0< 因此满足水压试验要求(四)选择人孔并确定开孔补强:根据储罐是在常温下及最高工作压力为1.705 MPa 的条件下工作,人孔的标准按公称压力为2.5 MPa 等级选取,考虑到人孔盖直径较大较重,故选用水平吊盖人孔(GH21524-2004),公称直径450mm ,突面法兰密封面。
该人孔标记为:人孔RF Ⅳ(A ·G)450-2.5 GH21524-2004另外,还要考虑人孔补强,确定补强圈尺寸,由于人孔的筒节不是采用无缝钢管,故不能直接选用补强圈标准。
本设计所选用的人孔筒节内径为mm d i 450=,壁厚m δ=10mm查表得人孔的筒体尺寸为Φ480×10由标准查得补强圈尺寸为:内径D i =484外径D o =760经过开孔补强的有关计算取补强圈厚度 mm 16'=δ(五)核算承载能力并选择鞍座:首先粗略计算鞍座负荷储罐总质量:123W=W W W ++ ,式中1W —罐体的质量,Kg2W —水压试验时水的质量,Kg3W —附件的质量,Kg1. 罐体质量W 1:储罐公称容积为303m ,筒体公称直径N D =2700 mm ,那么每米长的容积为5.733m ,由《材料与零部件》查得封头容积2V =2.80553m /m ,则3173.58055.22212=⨯+⨯=+=L LV V V解得L=4.43,取L=4.5即取L=4500罐体的自重由《压力容器设计手册》可查得,公称直径DN=2700,壁厚16=n δ的筒体的重量为7238Kg ,封头自重为1016Kg ,故罐体自重Kg W 92701016272381=⨯+=2. 水压试验时水的质量W 2:储罐的总容积312396.3173.55.48055.222m LV V V =⨯+⨯=+=故水压试验时罐内水重Kg W 313962=3. 其他附件质量W 3:人孔质量约为200Kg ,其他接管总和按350Kg 计4. 设备总质量W:Kg W W W W 41216550313969270321=++=++=查《压力容器设计手册》得,公称直径为2800,高度H=250的A 型鞍座单个允许载荷447kN>403.9168Kn,故其承载能力足够。