高三数学 二项式定理

合集下载

二项式定理

二项式定理

二项式定理二项式定理是高中数学中与排列组合、多项式的概念性质联系比较紧密的内容。

在高考中,二项式定理的命题主要以选择、填空题的形式考查二项展开式的项、系数及其相关问题。

因此,复时要正确理解二项式定理、二项展开式的概念和性质,牢牢掌握二项展开式的通项公式是解答有关问题的关键。

同时,注意把握二项式与定积分及其它知识的联系。

其中,非标准二项式定理求解特殊项的问题是难点问题。

二项式定理的公式为(a+b)^n=C(n,0)*a^n+C(n,1)*a^(n-1)*b+。

+C(n,k)*a^(n-k)*b^k+。

+C(n,n)*b^n,其中n∈N*。

展开式的第k+1项为C(n,k)*a^(n-k)*b^k。

在求二项展开式的特定项问题时,实质上是考查通项T(k+1)=C(n,k)*b的特点。

一般需要建立方程求k,再将k的值代回通项求解。

注意k的取值范围为k=0,1,2,…,n。

特定项的系数问题及相关参数值的求解等都可依据上述方法求解。

二项式系数是二项展开式中各项的系数,记为C(n,k)。

项的系数是该项中非字母因数部分,包括符号等。

二项式系数具有对称性,在二项展开式中与首末两端等距离的两个二项式系数相等,即C(n,k)=C(n,n-k)。

二项式系数的增减性与最大值是:当k(n+1)/2时,二项式系数逐渐减小。

当n是偶数时,中间一项的二项式系数最大;当n是奇数时,中间两项的二项式系数最大。

各二项式系数的和等于2,即C(n,0)+C(n,1)+…+C(n,n)=2.奇数项的二项式系数之和等于偶数项的二项式系数之和,即C(n,0)+C(n,2)+…=C(n,1)+C(n,3)+…=2^(n-1)。

在高考中,常涉及多项式和二项式问题,主要考查学生的化简能力。

常见的命题角度有:(1)几个多项式和的展开式中的特定项(系数)问题;(2)几个多项式积的展开式中的特定项(系数)问题;(3)三项展开式中的特定项(系数)问题。

赋值法是一种重要的方法,适用于恒等式,用于求形如(ax+b)、(ax+bx+c)(a,b∈R)的式子展开式的各项系数之和。

二项式定理高中

二项式定理高中

二项式定理高中
二项式定理是高中数学中的一个重要概念,它是代数学中的一个基本公式,也是组合数学中的一个重要定理。

该定理表明,对于任意实数a和b以及正整数n,有如下公式:
(a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b + C(n,2)*a^(n-2)*b^2 + ... + C(n,n-1)*a*b^(n-1) + C(n,n)*b^n
其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数,其计算公式为:
C(n,k) = n! / (k!*(n-k)!)
二项式定理的应用非常广泛,它可以用于求解各种代数式的展开式,也可以用于计算组合问题中的方案数。

在高中数学中,二项式定理通常是在数学归纳法的证明中使用,也是学习排列组合的基础。

需要注意的是,二项式定理只适用于整数幂,对于非整数幂的情况,需要使用泰勒公式进行展开。

此外,在计算组合数时,需要注意排列和组合的区别,以及重复元素的情况。

总之,二项式定理是高中数学中的一个重要概念,它不仅具有理论意义,还有广泛的应用价值。

在学习过程中,需要认真理解其定义和应用方法,掌握相关的计算技巧,才能更好地应用于实际问题中。

高中数学选择性必修三 6 3 1 二项式定理

高中数学选择性必修三 6 3 1 二项式定理

跟踪训练3 (x-y)(x+y)8的展开式中x2y7的系数为_-__2_0_.(用数字作答)
解析 由二项展开式的通项公式可知,含 x2y7 的项可表示为 x·C78xy7- y·C68x2y6, 故(x-y)(x+y)8 的展开式中 x2y7 的系数为 C78-C68=8-28=-20.
四、二项式定理的应用
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7.如果
3
x2+1xn
的展开式中,x2
项为第
3
项,则自然数
n=__8__,其
x2

的系数为_2_8__.
解析
Tk+1=Ckn( 3
x2)n-k1xk=Ckn
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 6.若(x+a)10的展开式中,x7的系数为15,则a=_2__.(用数字填写答案) 解析 二项展开式的通项为 Tk+1=Ck10x10-kak,当 10-k=7 时,k=3,T4 =C310a3x7, 则 C310a3=15,故 a=12.
例4 (1)试求2 01910除以8的余数;
解 2 01910=(8×252+3)10. ∵其展开式中除末项为310外,其余的各项均含有8这个因数, ∴2 01910除以8的余数与310除以8的余数相同. 又∵310=95=(8+1)5,其展开式中除末项为1外,其余的各项均含有8 这个因数, ∴310除以8的余数为1,即2 01910除以8的余数也为1.
知识点二 二项展开式的通项
(a+b)n展开式的第 k+1 项叫做二项展开式的通项,记作Tk+1=Cknan-kbk . 思考 二项式系数与二项展开式中项的系数相同吗? 答案 一般不同.前者仅为Ckn ,而后者是字母前的系数,故可能不同.

二项式定理公式大全

二项式定理公式大全

二项式定理公式大全一、二项式定理基本公式。

1. 二项式定理。

- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中C_n^k=(n!)/(k!(n - k)!),n∈N^*。

- 例如,当n = 3时,(a +b)^3=C_3^0a^3b^0+C_3^1a^2b^1+C_3^2a^1b^2+C_3^3a^0b^3。

- 计算各项系数:- C_3^0=(3!)/(0!(3 - 0)!)=1- C_3^1=(3!)/(1!(3 - 1)!)=(3!)/(1!2!)=3- C_3^2=(3!)/(2!(3 - 2)!)=(3!)/(2!1!)=3- C_3^3=(3!)/(3!(3 - 3)!)=1- 所以(a + b)^3=a^3+3a^2b + 3ab^2+b^3。

2. 二项展开式的通项公式。

- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k =0,1,·s,n)。

- 例如,在(x + 2)^5中,其通项公式为T_k + 1=C_5^kx^5 - k2^k。

当k = 2时,T_3=C_5^2x^5 - 22^2。

- 计算C_5^2=(5!)/(2!(5 - 2)!)=(5×4)/(2×1)=10- 所以T_3=10x^3×4 = 40x^3二、二项式系数的性质。

1. 对称性。

- 在二项式(a + b)^n的展开式中,与首末两端“等距离”的两项的二项式系数相等,即C_n^k=C_n^n - k。

- 例如,在(a + b)^5的展开式中,C_5^1=C_5^4,C_5^2=C_5^3。

- 计算C_5^1=(5!)/(1!(5 - 1)!)=5,C_5^4=(5!)/(4!(5 - 4)!)=5;C_5^2=(5!)/(2!(5 - 2)!)=10,C_5^3=(5!)/(3!(5 - 3)!)=10。

高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解专题9 二项式定理知识点一 二项式定理(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C k n a n -k b k +…+C n n b n (n ∈N *).(1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n 的二项展开式,展开式中一共有n +1项. (3)二项式系数:各项的系数C kn (k ∈{0,1,2,…,n })叫做二项式系数. 知识点二 二项展开式的通项(a +b )n 展开式的第k +1项叫做二项展开式的通项,记作T k +1=C k n an -k b k . 【例1】(2023•上海)设423401234(12)x a a x a x a x a x -=++++,则04a a +=.【例2】(2022•上海)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n =.【例3】(2021•浙江)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =;234a a a ++=.知识点三二项展开式的通项 求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是字母的指数为0(即0次项).(2)对于有理项,一般是先写出通项公式,求其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数集,再根据数的整除性来求解.(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.【例4】(2022•新高考Ⅰ)8(1)()y x y x-+的展开式中26x y 的系数为(用数字作答).【例5】(2022•天津)523)x 的展开式中的常数项为.【例6】(2023•驻马店期末)若7102910012910(2)(1)(1)(1)(1)x x a a x a x a x a x +-=+-+-+⋯⋯+-+-,则5a =.【例7】(2023•海淀区模拟)已知5()x a +的展开式为5432543210p x p x p x p x p x p +++++,若3415p p -=,则a =.知识点四余数和整除的问题利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.【例8】(2022秋•杨浦区校级期末)504除以17的余数为.【例9】(2023•沈阳模拟)若20232023012023(1)x a a x a x +=++⋯+,则0242022a a a a +++⋯+被5除的余数是.【例10】(2022•多选•庆阳期末)下列命题为真命题的是() A .61()x x -展开式的常数项为20B .1008被7除余1 C .61()x x-展开式的第二项为46x -D .1008被63除余1知识点五 二项式系数的性质1.对称性:在(a +b )n 的展开式中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -mn2.增减性与最大值 增减性:当k <n +12时,二项式系数是逐渐增大的;当k >n +12时,二项式系数是逐渐减小的. 最大值:(1)当n 为偶数时,中间一项的二项式系数2C n n最大;当n 为奇数时,中间两项的二项式系数12C n n-,12C n n+相等,且同时取得最大值(2)求二项式系数最大的项,根据二项式系数的性质对(a +b )n 中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大; ②当n 为偶数时,中间一项的二项式系数最大. (3)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx )n (a ,b ∈R )的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第k +1项最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1,解出k ,即得出系数的最大项. 3.各二项式系数的和(1)C 0n +C 1n +C 2n +…+C n n =2n ;(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -14.二项展开式中系数和的求法(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可,对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【例11】(2022•北京)若443243210(21)x a x a x a x a x a -=++++,则024(a a a ++=) A .40B .41C .40-D .41-【例12】(2023•新乡开学)若二项式*(2()n x n N∈的展开式中只有第5项的二项式系数最大,则展开式中2x 项的系数为() A .1120-B .1792-C .1792D .1120【例13】(2023•慈溪市期末)若二项式*(12)()n x n N +∈的展开式中第6项与第7项的系数相等,则此展开式中二项式系数最大的项是() A .3448x B .41120x C .51792x D .61792x【例14】(2022秋•葫芦岛期末)设n ∈N +,化简=+++-12321666n n n n n n C C C C ( )A .7nB .C .7n ﹣1D .6n ﹣1【例15】已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值:(1)a 0+a 1+a 2+…+a 5;(2)|a 0|+|a 1|+|a 2|+…+|a 5|;(3)a 1+a 3+a 5.(4)a 0+a 2+a 4;(5)a 1+a 2+a 3+a 4+a 5; (6)5a 0+4a 1+3a 2+2a 3+a 4.【例16】(2023•泰州期末)若6652360136()x y a y a xy a x y a x +=++⋯++⋯+,则220246135()()a a a a a a a +++-++的值为()A .0B .32C .64D .128【例17】(2023•静安区期末)在23(3)nx x -+的二项展开式中,533r n r n rnC x--称为二项展开式的第1r +项,其中0r =,1,2,3,⋯,n .下列关于23(3)nx x -+的命题中,不正确的一项是()A .若8n =,则二项展开式中系数最大的项是1426383C xB .已知0x >,若9n =,则二项展开式中第2项不大于第3项的实数x 的取值范围是3540()3x <…C .若10n =,则二项展开式中的常数项是44103C D .若27n =,则二项展开式中x 的幂指数是负数的项一共有12项 【例18】(2023秋•泰兴市月考)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++-,则()A .001132n n n n b a b a b a -+-++-=-B .0101012()nn nb b b a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++D .21201(1)4()4n n n n b b n b a a a ++++=+++【例19】(2023•江宁区期末)二项式定理是产生组合恒等式的一个重要源泉,由二项式定理可得:0122*1111(1)(,),1n nn m mn n n n n n C C x C x C x x n N x R C C m n -+++++=+∈∈=+等,则012111231nn n n n C C C C n ++++=+.【例20】(2022•玄武区期末)在231(1)(1)(1)n x x x +++++⋯++的展开式中,含2x 的系数是n a ,8a =;若对任意的*n N ∈,*n N ∈,20n n a λ⋅-…恒成立,则实数λ的最小值是.【例21】(2019•江苏)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =.(1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值.同步训练1.(2021•上海)已知二项式5()x a +展开式中,2x 的系数为80,则a =.2.(2021•上海)已知(1)n x +的展开式中,唯有3x 的系数最大,则(1)n x +的系数和为.3.(2020•浙江)二项展开式52345012345(12)x a a x a x a x a x a x +=+++++,则4a =,135a a a ++=.4.(2020•新课标Ⅲ)262()x x+的展开式中常数项是(用数字作答).5.(2020•天津)在522()x x+的展开式中,2x 的系数是.6.(2023•郫都区模拟)已知921001210(1)(1)x x a a x a x a x --=+++⋯+,则8a =45-.7.(2020•新课标Ⅰ)25()()y x x y x++的展开式中33x y 的系数为()A .5B .10C .15D .208.(2023•湖北模拟)51(1)(12)x x+-的展开式中,常数项是() A .9-B .10-C .9D .109.(2023•曲靖模拟)已知4520222023(1)(12)(12023)(12022)x x x x -++++-展开式中x 的系数为q ,空间有q 个点,其中任何四点不共面,这q 个点可以确定的直线条数为m ,以这q 个点中的某些点为顶点可以确定的三角形个数为n ,以这q 个点中的某些点为顶点可以确定的四面体个数为p ,则(m n p ++=) A .2022B .2023C .40D .5010.(2023•徐汇区期末)1002被9除所得的余数为() A .1B .3C .5D .711.已知f (x )=(3x 2+3x 2)n 的展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.12(2023•河源期末)5(21)x y --的展开式中含22x y 的项的系数为() A .120-B .60C .60-D .3013.(2023•怀化期末)已知10111012n n C C =,设2012(23)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋯+-,下列说法:①2023n =,②20233n a =-,③0121n a a a a +++⋯+=,④展开式中所有项的二项式系数和为1.其中正确的个数有() A .0B .1C .2D .314(2023•青原区期末)若28(1)(1)ax x x -+-的展开式中含2x 的项的系数为21,则(a =) A .3-B .2-C .1-D .115.(2023•常熟市月考)今天是星期五,经过7天后还是星期五,那么经过1008天后是()A .星期三B .星期四C .星期五D .星期六16.(2023•南海区月考)已知012233222281n n n nn n n C C C C C +++++=,则123nn n n n C C C C ++++等于()A .15B .16C .7D .817.(2022•浙江)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =,12345a a a a a ++++=.。

2022届高三数学第10章 第2节 二项式定理

2022届高三数学第10章 第2节 二项式定理

二项式定理[考试要求] 会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1na n-1b+…+C rna n-rb r+…+C nnb n(n∈N*);(2)通项公式:Tr+1=C rna n-rb r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n ,C1n,…,C nn.2.二项式系数的性质(1)0≤r≤n时,C rn 与C n-rn的关系是C rn=C n-rn.(2)二项式系数先增后减中间项最大当n为偶数时,第n2+1项的二项式系数最大,最大值为Cn2n;当n为奇数时,第n+12项和n+32项的二项式系数最大,最大值为.3.各二项式系数和(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C nn=2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n+…=C1 n +C3n+C5n+…=2n-1.[常用结论](1)C0n=1;(2)C nn=1;(3)C mn=C n-mn;(4)C mn+1=C m-1n+C mn.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)C rna n-rb r是(a+b)n的展开式中的第r项.( )(2)二项展开式中,系数最大的项为中间一项或中间两项.( )(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.( )(4)通项Tr+1=C rna n-rb r中的a和b不能互换.( )[答案] (1)×(2)×(3)√(4)√二、教材习题衍生1.(1-2x)4展开式中第3项的二项式系数为( ) A .6 B .-6 C .24D .-24A [(1-2x)4展开式中第3项的二项式系数为C 24=6.故选A.] 2.二项式⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 3y 2的系数是( )A .5B .-20C .20D .-5A [二项式⎝ ⎛⎭⎪⎫12x -2y 5的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫12x 5-r (-2y)r.根据题意,得⎩⎨⎧5-r =3,r =2,解得r =2.所以x 3y 2的系数是C 25⎝ ⎛⎭⎪⎫123×(-2)2=5.故选A.]3.C 02 019+C 12 019+C 22 019+…+C 2 0192 019C 02 020+C 22 020+C 42 020+…+C 2 0202 020的值为( )A .1B .2C .2 019D .2 019×2 020A [原式=22 01922 020-1=22 01922 019=1.故选A.]4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________. 8 [令x =1,则a 0+a 1+a 2+a 3+a 4=0;令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.]考点一 二项式展开式的通项公式的应用形如(a +b)n 的展开式问题二项展开式中的特定项,是指展开式中的某一项,如第n 项、常数项、有理项等,求解二项展开式中的特定项的关键点如下:①求通项,利用(a +b)n 的展开式的通项公式T r +1=C r n an -r b r(r =0,1,2,…,n)求通项.②列方程(组)或不等式(组),利用二项展开式的通项及特定项的特征,列出方程(组)或不等式(组).③求特定项,先由方程(组)或不等式(组)求得相关参数,再根据要求写出特定项.[典例1-1] (1)(多选)若⎝ ⎛⎭⎪⎫2x 2-3x 5的展开式中含x α(α∈R)项,则α的值可能为( ) A .-5 B .1 C .2D .7(2)若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.(3)(2019·浙江高考)在二项式(2+x)9的展开式中,常数项是________;系数为有理数的项的个数是________.(1)ABD (2)-2 (3)16 2 5 [(1)易知⎝⎛⎭⎪⎫2x 2-3x 5的展开式的通项T r +1=C r 5(2x 2)5-r·⎝ ⎛⎭⎪⎫-3x r =C r 525-r (-3)r x 10-3r ,其中r =0,1,2,…,5.令r =1,则10-3r =7;令r =3,则10-3r =1;令r =5,则10-3r =-5.令10-3r =2,则r =83∉N ,所以α的值可能为7,1,-5,故选ABD.(2)⎝⎛⎭⎪⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ·x-r 2=C r 5a 5-r ·x10-52r ,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2. (3)由题意,(2+x)9的通项为T r +1=C r 9(2)9-r x r (r =0,1,2,…,9),当r =0时,可得常数项为T 1=C 09(2)9=162;若展开式的系数为有理数,则r =1,3,5,7,9,有T 2, T 4, T 6, T 8, T 10共5个项.]点评:已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.形如(a +b)n (c +d)m 的展开式问题求解形如(a +b)n(c +d)m的展开式问题的思路(1)若n ,m 中一个比较小,可考虑把它展开得到多个,如(a +b)2(c +d)m =(a 2+2ab +b 2)(c +d)m ,然后展开分别求解.(2)观察(a +b)(c +d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x 2)5(1-x)2.(3)分别得到(a +b)n ,(c +d)m 的通项公式,综合考虑.[典例1-2] (1)(2020·全国卷Ⅰ)⎝ ⎛⎭⎪⎫x +y 2x (x +y)5的展开式中x 3y 3的系数为( )A .5B .10C .15D .20(2)(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是( )A .-3B .-2C .2D .3(3)若(x 2-a)⎝ ⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为30,则a 等于( )A .13B .12C .1D .2(1)C (2)D (3)D [(1)因为(x +y)5的展开式的第r +1项T r +1=C r 5x5-r y r,所以⎝⎛⎭⎪⎫x +y 2x (x +y)5的展开式中x 3y 3的系数为C 35+C 15=15.故选C. (2)能够使其展开式中出现常数项,由多项式乘法的定义可知需满足:第一个因式取x 2项,第二个因式取1x 2项得x 2×1x2×C 45(-1)4=5;第一个因式取2,第二个因式取(-1)5得2×(-1)5×C 55=-2,故展开式的常数项是5+(-2)=3,故选D.(3)由题意得⎝ ⎛⎭⎪⎫x +1x 10的展开式的通项公式是T k +1=C k 10·x 10-k ·⎝ ⎛⎭⎪⎫1x k =C k 10x 10-2k ,⎝⎛⎭⎪⎫x +1x 10的展开式中含x 4(当k =3时),x 6(当k =2时)项的系数分别为C 310,C 210,因此由题意得C 310-aC 210=120-45a =30,由此解得a =2,故选D.]点评:求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.形如(a +b +c)n 的展开式问题求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解.(2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量.[典例1-3] (1)将⎝ ⎛⎭⎪⎫x +4x -43展开后,常数项是________.(2)⎝ ⎛⎭⎪⎫x 2-2x +y 6的展开式中,x 3y 3的系数是________.(用数字作答)(1)-160 (2)-120 [(1)⎝ ⎛⎭⎪⎫x +4x -43=⎝⎛⎭⎪⎫x -2x 6展开式的通项是C k 6(x)6-k·⎝⎛⎭⎪⎫-2x k=(-2)k ·C k 6x 3-k.令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.(2)⎝ ⎛⎭⎪⎫x 2-2x +y 6表示6个因式x 2-2x +y 的乘积,在这6个因式中,有3个因式选y ,其余的3个因式中有2个选x 2,剩下一个选-2x,即可得到x 3y 3的系数,即x 3y 3的系数是C 36C 23×(-2)=20×3×(-2)=-120.]点评:二项式定理研究两项和的展开式,对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.[跟进训练]1.若⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中常数项为1516,则实数a 的值为( )A .±2B .12C .-2D .±12A [⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式的通项为T k +1=C k 6(x 2)6-k ·⎝ ⎛⎭⎪⎫1ax k =C k 6⎝ ⎛⎭⎪⎫1a k x 12-3k ,令12-3k =0,得k =4.故C 46·⎝ ⎛⎭⎪⎫1a 4=1516,即⎝ ⎛⎭⎪⎫1a 4=116,解得a =±2,故选A.]2.(2021·全国统一考试模拟演练)(1+x)2+(1+x)3+…+(1+x)9的展开式中x 2的系数是( )A .60B .80C .84D .120D [(1+x)2+(1+x)3+…+(1+x)9=1+x 2[1-1+x8]1-1+x=1+x10-1+x2x.所以x 2的系数为C 310=120,故选择D.]3.⎝ ⎛⎭⎪⎪⎫x -13x -y 6的展开式中含xy 的项的系数为( ) A .30 B .60 C .90D .120B [展开式中含xy 的项来自C 16(-y)1⎝⎛⎭⎪⎪⎫x -13x 5,⎝ ⎛⎭⎪⎪⎫x -13x 5展开式通项为T r +1=(-1)r C r5x5-43r ,令5-43r =1⇒r =3,⎝⎛⎭⎪⎪⎫x -13x 5展开式中x 的系数为(-1)3C 35,所以⎝ ⎛⎭⎪⎪⎫x -13x -y 6的展开式中含xy 的项的系数为C 16(-1)C 35(-1)3=60,故选B.] 考点二 二项式系数的和与各项的系数和问题(1)系数和问题常用“赋值法”求解赋值法是指对二项式中的未知元素赋值,从而求得二项展开式的各项系数和的方法.求解有关系数和题的关键点如下:①赋值,观察已知等式与所求式子的结构特征,确定所赋的值,常赋的值有:-1,0,1等.②求参数,通过赋值,建立参数的相关方程,解方程,可得参数值. ③求值,根据题意,得出指定项的系数和.(2)二项式系数和:(a +b)n的展开式中二项式系数的和为C 0n +C 1n +…+C nn =2n. [典例2] (1)在⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( )A .50B .70C .90D .120(2)若(x +2+m)9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.(1)C (2)-3或1 [(1)令x =1,则⎝ ⎛⎭⎪⎫x +3x n =4n ,所以⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数和为4n,又二项式系数和为2n,所以4n2n =2n =32,解得n =5.二项展开式的通项T r +1=C r 5x 5-r⎝ ⎛⎭⎪⎫3x r =C r 53r x5-32r ,令5-32r =2,得r =2,所以x 2的系数为C 2532=90,故选C.(2)令x =0,则(2+m)9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9,又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39,∴(2+m)9·m 9=39, ∴m(2+m)=3, ∴m =-3或m =1.]点评: (1)利用赋值法求解时,注意各项的系数是指某一项的字母前面的数值(包括符号).(2)在求各项的系数的绝对值的和时,首先要判断各项系数的符号,然后将绝对值去掉,再进行赋值.[跟进训练]1.在二项式(1-2x)n 的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为( )A .-960B .960C .1 120D .1 680C [因为偶数项的二项式系数之和为2n -1=128,所以n -1=7,n =8,则展开式共有9项,中间项为第5项,因为(1-2x)8的展开式的通项T r +1=C r 8(-2x)r =C r 8(-2)r x r,所以T 5=C 48(-2)4x 4,其系数为C 48(-2)4=1 120.]2.(a +x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a =________. 3 [设(a +x)(1+x)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,①令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.]考点三 二项式系数的性质二项展开式系数最大项的求法如求(a +bx)n (a ,b ∈R)的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1, 从而解出k 来,即得.二项式系数的最值问题[典例3-1] 设m 为正整数,()x +y 2m 展开式的二项式系数的最大值为a ,()x +y 2m +1展开式的二项式系数的最大值为b ,若15a =8b ,则m =________.7 [()x +y 2m 展开式中二项式系数的最大值为a =C m 2m ,()x +y 2m +1展开式中二项式系数的最大值为b =C m +12m +1,因为15a =8b ,所以15C m 2m =8C m +12m +1,即152m !m !m !=82m +1!m !m +1!,解得m =7.]项的系数的最值问题[典例3-2] 已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,则在⎝ ⎛⎭⎪⎫2x -1x 2n 的展开式中,二项式系数最大的项为________,系数的绝对值最大的项为________.-8 064 -15 360x 4 [由题意知,22n -2n =992,即(2n -32)(2n +31)=0,故2n=32,解得n =5.由二项式系数的性质知,⎝ ⎛⎭⎪⎫2x -1x 10的展开式中第6项的二项式系数最大,故二项式系数最大的项为T 6=C 510(2x)5⎝ ⎛⎭⎪⎫-1x 5=-8 064. 设第k +1项的系数的绝对值最大,则T k +1=C k 10·(2x)10-k ·⎝ ⎛⎭⎪⎫-1x k =(-1)k C k 10·210-k·x 10-2k ,令⎩⎨⎧C k 10·210-k ≥C k -110·210-k +1,C k10·210-k ≥C k +110·210-k -1, 得⎩⎨⎧C k 10≥2C k -110,2C k10≥C k +110,即⎩⎨⎧11-k≥2k,2k +1≥10-k 解得83≤k≤113.∵k ∈Z ,∴k =3.故系数的绝对值最大的项是第4项,T 4=-C 310·27·x 4=-15 360x 4.]点评:二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C nn ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.[跟进训练]1.二项式⎝⎛⎭⎪⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( )A .3B .5C .6D .7D [根据⎝⎛⎭⎪⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,得n =20,∴⎝ ⎛⎭⎪⎪⎫3x +13x 20的展开式的通项为T r +1=C r 20·(3x)20-r ·⎝ ⎛⎭⎪⎪⎫13x r =(3)20-r ·C r 20·x20-4r 3,要使x 的指数是整数,需r 是3的倍数且0≤r≤20,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项.]2.已知(1+3x)n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.C 715(3x)7和C 815(3x)8[由已知得Cn -2n+C n -1n+C n n=121,则12n·(n-1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x)7和T 9=C 815(3x)8.]。

二项式定理的基本概念和应用

二项式定理的基本概念和应用

二项式定理的基本概念和应用二项式定理,又称为“二项式展开定理”,是数学中的一个重要定理,它描述了一个二项式的幂的展开式。

本文将对二项式定理的基本概念和应用进行探讨,希望能够对读者理解和应用该定理起到一定的帮助。

1. 二项式定理的基本概念二项式定理是指将一个二项式的幂展开成一系列项的规律。

表达式的形式如下:$(a + b)^n = \sum_{k=0}^{n}C_n^k \cdot a^{n-k} \cdot b^k$其中,$(a + b)^n$表示一个二项式的幂,$C_n^k$表示组合数,即从n个元素中选取k个元素的组合数。

2. 二项式定理的证明二项式定理的证明可以通过多种方法进行,其中较为常见的有以下两种方法:数学归纳法和组合数学方法。

这里简要介绍一下数学归纳法的证明思路。

首先,在n=1的情况下,二项式定理成立:$(a + b)^1 = a^1 + b^1$接下来,假设当n=m时,二项式定理也成立,即$(a + b)^m = \sum_{k=0}^{m}C_m^k \cdot a^{m-k} \cdot b^k$我们需要证明当n=m+1时,定理也成立。

通过展开$(a + b)^{m+1}$,我们可以得到:$(a + b)^{m+1} = (a + b)^m \cdot (a + b)$根据假设得到的等式,我们将其代入上述公式:$(a + b)^{m+1} = \left(\sum_{k=0}^{m}C_m^k \cdot a^{m-k} \cdotb^k\right) \cdot (a + b)$我们可以对上述公式进行分配律的展开:$(a + b)^{m+1} = \left(\sum_{k=0}^{m}C_m^k \cdot a^{m-k+1} \cdot b^k\right) + \left(\sum_{k=0}^{m}C_m^k \cdot a^{m-k} \cdotb^{k+1}\right)$我们可以对上述等式进行一些变换和合并得到:$(a + b)^{m+1} = \sum_{k=0}^{m}\left(C_m^k \cdot a^{m-k+1} \cdot b^k + C_m^k \cdot a^{m-k} \cdot b^{k+1}\right)$进一步化简,我们得到:$(a + b)^{m+1} = \sum_{k=0}^{m}\left((C_m^k + C_m^{k-1}) \cdota^{m-k+1} \cdot b^k\right)$我们可以观察到$(C_m^k + C_m^{k-1})$的表达式,它可以化简成组合数的形式:$C_{m+1}^k$,于是上述等式可以再次化简为:$(a + b)^{m+1} = \sum_{k=0}^{m+1}\left(C_{m+1}^k \cdot a^{m+1-k} \cdot b^k\right)$因此,根据数学归纳法,我们可以得出结论:对于任意的非负整数n,二项式定理都成立。

最新高三数学专题复习资料二项式定理

最新高三数学专题复习资料二项式定理

第三节二项式定理1.能利用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理2.二项式系数的性质1.二项式(x+y)n的展开式的第k+1项与(y+x)n的展开式的第k+1项一样吗?提示:尽管(x+y)n与(y+x)n的值相等,但它们的展开式形式是不同的,因此应用二项式定理时,x,y的位置不能随便交换.2.二项式系数与项的系数一样吗?提示:不一样.二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.1.(x -y )n 的二项展开式中,第r 项的系数是( )A .C r nB .C r +1nC .C r -1nD .(-1)r -1C r -1n 解析:选D 本题中由于y 的系数为负,故其第r 项的系数为(-1)r -1C r -1n .2.(1+x )7的展开式中x 2的系数是( ) A .42 B .35 C .28 D .21解析:选D 依题意可知,二项式(1+x )7的展开式中x 2的系数等于C 27×15=21.3.C 16+C 26+C 36+C 46+C 56+C 66的值为( )A .62B .63C .64D .65解析:选B 因为C 16+C 26+C 36+C 46+C 56+C 66=(C 06+C 16+C 26+C 36+C 46+C 56+C 66)-C 06=26-1=63.4.⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则n 等于________.解析:∵展开式中只有第6项的二项式系数最大, ∴n =10. 答案:105.(A.嘉兴模拟)(x +1)9的展开式中x 3的系数是________.(用数字作答) 解析:依题意知:(x +1)9的展开式中x 3的系数为C 69=C 39=9×8×73×2×1=84.答案:841.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题.2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n 项; (2)求二项展开式中的特定项;(3)已知二项展开式的某项,求特定项的系数.[例1] (1)(A.浙江高考)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .210(2)(A.四川高考)在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .10(3)(A.湖南高考)⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .20(4)使⎝⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为( ) A .4 B .5 C .6 D .7[自主解答] (1)由题意知f (3,0)=C 36C 04,f (2,1)=C 26C 14,f (1,2)=C 16C 24,f (0,3)=C 06C 34,因此f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,选C.(2)只需求(1+x )6的展开式中含x 2项的系数即可,而含x 2项的系数为C 26=15,故选C.(3)由二项展开式的通项可得,第四项T 4=C 35⎝ ⎛⎭⎪⎫12x 2·(-2y )3=-20x 2y 3,故x 2y 3的系数为-20,选A.(4)T r +1=C r n(3x )n -r·x -32r =C r n ·3n -r ·xn -r -32r =C r n ·3n -r·xn -5r 2(r =0,1,2,…,n ),若T r +1是常数项,则有n -52r =0,即2n =5r (r =0,1,…,n ),当r =0,1时,n =0,52,不满足条件;当r =2时,n =5.[答案] (1)C (2)C (3)A (4)B互动探究若本例(2)中的条件“n ∈N *”改为“n ≥3”,其他条件不变,则展开式中的有理项最少有________项.解析:由本例(2)中的自主解答可知:T r +1=C r n3n -rxn -5r2(r =0,1,2,…,n ).即当⎝⎛⎭⎪⎫n -5r 2为整数时,T r +1为有理项.显然当n =3时,r 的取值最少,有r =0,r =2, 即有理项为T 1、T 3两项. 答案:2求二项式展开式有关问题的常见类型及解题策略(1)求展开式中的第n 项.可依据二项式的通项公式直接求出第n 项; (2)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可.(3)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项公式写出第r +1项,由特定项得出r 值,最后求出其参数.1.若二项式⎝ ⎛⎭⎪⎫x -2x n 的展开式中第5项是常数项,则正整数n 的值可能为( )A .6B .10C .12D .15解析:选C T r +1=C r n(x )n -r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r n x n -3r 2,当r =4时,n -3r 2=0,又n ∈N *,所以n =12.2.(A.金华模拟)⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式中x 的系数是________.解析:⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式x 的项为2x ·C 4410(-x )4+x C 0414(-x )0=2x +x =3x .所以x 的系数为3.答案:3[例2] (1)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( )A .5B .6C .7D .8(2)若C 3n +123=C n +623(n ∈N *)且(3-x )n =a 0+a 1x +a 2x 2+…+a n x n,则a 0-a 1+a 2-…+(-1)n a n =________.[自主解答] (1)由题意得:a =C m 2m ,b =C m 2m +1, 所以13C m 2m =7C m 2m +1,∴132mm !·m !=72m +1mm +1,∴72m +1m +1=13,解得m =6,经检验为原方程的解,选B.(2)由C 3n +123=C n +623,得3n +1=n +6(无整数解)或3n +1=23-(n +6),解得n =4,问题即转化为求(3-x )4的展开式中各项系数和的问题,只需在(3-x )4中令x =-1即得a 0-a 1+a 2-…+(-1)n a n =[3-(-1)]4=256.[答案] (1)B (2)256方法规律 赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f 1f 12,偶数项系数之和为a 1+a 3+a 5+…=f 1f 12.1.设(1+x )n =a 0+a 1x +…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( )A .15x 3B .20x 3C .21x 3D .35x 3解析:选B 在(1+x )n =a 0+a 1x +…+a n x n 中,令x =1得2n =a 0+a 1+a 2+…+a n .令x =0,得1=a 0,∴a 1+a 2+…+a n =2n -1=63,∴n =6.而(1+x )6的展开式中系数最大的项为T 4=C 36x 3=20x 3.2.(A.丽水模拟)若(1-2x )2 014=a 0+a 1x +…+a 2 013x 2 013+a 2 014x 2 014(x ∈R ),则a 12+a 222+…+a 2 01322 013+a 2 01422 014的值为( ) A .2 B .0 C .-1 D .-2解析:选C 令x =0,则a 0=1,令x =12,则a 0+a 12+a 222+…+a 2 01322 013+a 2 01422 014=0,∴a 12+a 222+…+a 2 01322 013+a 2 01422 014=-1.—————————————[课堂归纳——通法领悟]——————————————1个公式——二项展开式的通项公式通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点:(1)C r n an -r b r是第r +1项,而不是第r 项; (2)通项公式中a ,b 的位置不能颠倒;(3)通项公式中含有a ,b ,n ,r ,T r +1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”.3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”;(2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;(3)展开式中第r +1项的二项式系数与第r +1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.前沿热点(十六)与二项式定理有关的交汇问题1.二项式定理作为一个独特的内容,在高考中总有所体现,常常考查二项式定理的通项、项的系数、各项系数的和等.2.二项式定理作为一个工具,也常常与其他知识交汇命题,如与数列交汇、与不等式交汇、与函数交汇等.因此在一些题目中不仅仅考查二项式定理,还要考查其他知识,其解题的关键点是它们的交汇点,注意它们的联系即可.[典例](B.陕西高考)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15[解题指导] 先寻找x >0时f (x )的取值,再寻找f [f (x )]的表达式,再利用二项式定理求解.[解析] x >0时,f (x )=-x <0,故f [f (x )]=⎝⎛⎭⎪⎫-x +1x 6,其展开式的通项公式为T r +1=C r6·(-x )6-r·⎝ ⎛⎭⎪⎫1x r=(-1)6-r ·C r 6·(x )6-2r ,由6-2r =0,得r =3,故常数项为(-1)3·C 36=-20.[答案] A[名师点评] 解决本题的关键有以下几点: (1)正确识别分段函数f (x ); (2)正确判断f (x )的符号; (3)正确写出f [f (x )]的解析式; (4)正确应用二项式定理求出常数项.(A.安徽高考)设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________.解析:由题图可知a 0=1,a 1=3,a 2=4,由题意知⎩⎪⎨⎪⎧C 1n ·1a=a 1=3,C 2n ·1a 2=a 2=4,故⎩⎪⎨⎪⎧na =3,n n -1a2=8,可得⎩⎨⎧n =9,a =3.答案:31.在⎝ ⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40 解析:选D T r +1=C r 5(2x 2)5-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r ·25-r ·C r 5·x10-3r, 令10-3r =1,得r =3.所以x 的系数为(-1)3·25-3·C 35=-40.2.在(1+x )2-(1+3x )4的展开式中,x 的系数等于( ) A .3 B .-3 C .4 D .-4解析:选B 因为(1+x )2的展开式中x 的系数为1,(1+3x )4的展开式中x 的系数为C 34=4,所以在(1+x )2-(1+3x )4的展开式中,x 的系数等于-3.3.(A.金华模拟)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112 D .168解析:选D (1+x )8展开式中x 2的系数是C 28,(1+y )4的展开式中y 2的系数是C 24,根据多项式乘法法则可得(1+x )8(1+y )4展开式中x 2y 2的系数为C 28C 24=28×6=168.4.⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40解析:选D 由题意,令x =1得展开式各项系数的和为(1+a )·(2-1)5=2,∴a =1.∵二项式⎝⎛⎭⎪⎫2x -1x 5的通项公式为T r +1=C r 5(-1)r ·25-r·x 5-2r ,∴⎝⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中的常数项为x ·C 35(-1)322·x -1+1x·C 25·(-1)2·23·x =-40+80=40.5.在(1-x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n 中,若2a 2+a n -3=0,则自然数n 的值是( )A .7B .8C .9D .10解析:选B 易知a 2=C 2n ,a n -3=(-1)n -3·C n -3n =(-1)n -3C 3n ,又2a 2+a n -3=0,所以2C 2n +(-1)n -3C 3n =0,将各选项逐一代入检验可知n =8满足上式. 6.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12解析:选D 512 012+a =(13×4-1)2 012+a ,被13除余1+a ,结合选项可得a =12时,512 012+a 能被13整除.7.(A.新课标全国卷Ⅱ)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)解析:二项展开式的通项公式为T r +1=C r 10x10-r a r,当10-r =7时,r =3,T 4=C 310a 3x 7,则C 310a 3=15,故a =12. 答案:128.(A.山东高考)若⎝ ⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.解析:T r +1=C r 6(ax 2)6-r ⎝ ⎛⎭⎪⎫b x r =C r 6a 6-r b r x 12-3r ,令12-3r =3,得r =3,故C 36a 3b 3=20,所以ab =1,a 2+b 2≥2ab =2,当且仅当a =b =1或a =b =-1时,等号成立.答案:29.(B.浙江高考)设二项式⎝⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________.解析:因为⎝ ⎛⎭⎪⎪⎫x -13x 5的通项T r +1=C r 5(x )5-r ·⎝⎛⎭⎪⎪⎫-13x r =(-1)r C r 5x 5-r 2x -r 3=(-1)r C r 5x15-5r 6. 令15-5r =0,得r =3,所以常数项为(-1)3C 35x 0=-10.即A =-10. 答案:-1010.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求: (1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|. 解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)∵(1-2x )7展开式中a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7) =1 093-(-1 094)=2 187. 11.若某一等差数列的首项为C11-2n 5n-A2n -211-3n,公差为⎝ ⎛⎭⎪⎫52x -253x 2m的展开式中的常数项,其中m 是7777-15除以19的余数,则此数列前多少项的和最大?并求出这个最大值.解:设该等差数列为{a n },公差为d ,前n 项和为S n . 由已知得⎩⎨⎧11-2n ≤5n ,2n -2≤11-3n ,又n ∈N *, ∴n =2,∴C 11-2n 5n -A 2n -211-3n =C 710-A 25=C 310-A 25=10×9×83×2-5×4=100, ∴a 1=100.∵7777-15=(76+1)77-15=7677+C 177·7676+…+C 7677·76+1-15 =76(7676+C 177·7675+…+C 7677)-14=76M -14(M ∈N *),∴7777-15除以19的余数是5,即m =5.∴⎝ ⎛⎭⎪⎫52x -253x 2m 的展开式的通项是T r +1=C r 5·⎝ ⎛⎭⎪⎫52x 5-r ⎝ ⎛⎭⎪⎫-253x 2r =(-1)r C r 5⎝ ⎛⎭⎪⎫525-2rx 53r -5(r =0,1,2,3,4,5),令53r -5=0,得r =3,代入上式,得T 4=-4,即d =-4,从而等差数列的通项公式是a n =100+(n -1)×(-4)=104-4n .设其前k 项之和最大,则⎩⎨⎧104-4k ≥0,104-4k +10,解得k =25或k =26,故此数列的前25项之和与前26项之和相等且最大,S 25=S 26=a 1+a 252×25=100+104-4×252×25=1 300.12.从函数角度看,组合数C r n 可看成是以r 为自变量的函数f (r ),其定义域是{r |r ∈N ,r ≤n }.(1)证明:f (r )=n -r +1rf (r -1); (2)利用(1)的结论,证明:当n 为偶数时,(a +b )n 的展开式中最中间一项的二项式系数最大.解:(1)证明:∵f (r )=C r n=n !rn -r,f (r -1)=C r -1n =n !r -1n -r +1,∴n -r +1r f (r -1)=n -r +1r ·n !r -1n -r +1=n !rn -r.则f (r )=n -r +1rf (r -1)成立. (2)设n =2k , ∵f (r )=n -r +1rf (r -1),f (r -1)>0, ∴f r f r -1=2k -r +1r . 令f (r )≥f (r -1),则2k -r +1r≥1,则r ≤k +12(等号不成立).∴当r =1,2,…,k 时,f (r )>f (r -1)成立.反之,当r =k +1,k +2,…,2k 时,f (r )<f (r -1)成立. ∴f (k )=C k 2k 最大,即(a +b )n 的展开式中最中间一项的二项式系数最大. [冲击名校]1.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2 D .-1解析:选D 已知(1+ax )(1+x )5的展开式中,x 2的系数为C 25+a C 15=5,则a =-1.2.(A.湖州模拟)⎝ ⎛⎭⎪⎫2x +a x 6的展开式中1x 2的系数为-12,则实数a 的值为________.解析:二项式⎝ ⎛⎭⎪⎫2x +a x 6展开式中第r +1项为T r +1=C r 6·(2x )6-r⎝ ⎛⎭⎪⎫a x r=C r 6·26-r ·a r ·x 3-r ,当3-r =-2,即r =5时,含有1x2的项的系数是C 56·2·a5=-12,解得a =-1.答案:-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理
1. 知识精讲:
(1)二项式定理:()n
n n r r n r n n n n n n
b C b a C b a C a C b a +++++=+--ΛΛ110(*
∈N n )
其通项是=+1r T r
r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555
156b a C T T n n -+==
亦可写成:=+1r T r n r n a
b a C )(
()()()n n n n r
r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n
x C x C x C x C x +++++=+-ΛΛ101(*
∈N n )
其中,r
n C ——二项式系数。

而系数是字母前的常数。

例1.n n
n n n n C C C C 13
21393-++++Λ等于 ( ) A .n
4 B 。

n
43⋅ C 。

134-n D.3
1
4-n 解:设n
n
n n n n n C C C C S 13
21393-++++=Λ,于是: n n n n n n n C C C C S 333333
3221++++=Λ=133333
32210
-+++++n
n n n n n n C C C C C Λ
故选D
例2.(1)求7
(12)x +的展开式的第四项的系数;
(2)求91
()x x
-的展开式中3
x 的系数及二项式系数解:(1)7
(12)x +的展开式的第四项是333317(2)280T C x x +==,
∴7
(12)x +的展开式的第四项的系数是280. (2)∵9
1()x x
-的展开式的通项是9921991
()(1)r r
r r r r r T C x
C x x
--+=-=-, ∴923r -=,3r =,
∴3x 的系数339(1)84C -=-,3
x 的二项式系数3984C =.
(2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的
二项式系数相等,即ΛΛ,,,,22110k
n n k n n n n n n n n n n C C C C C C C C ---====
②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。

如果
二项式的幂指数是偶数,中间一项的二项式系数最大,即n 偶数:()
1
22
m ax
+==n n n r
n
T C C ;
如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,即
()
1
211
212
12
1max
+++-+-====n n n n
n n
r n
T T C C C 。

③所有二项式系数的和用赋值法可以证明等于n 2即n
n n n n C C C 210=+++Λ;
奇数项的二项式系数和与偶数项的二项式系数和相等,即
131202-=++=++n n n n n C C C C ΛΛ
例3.已知727
0127(12)x a a x a x a x -=++++L ,求:
(1)127a a a +++L ; (2)1357a a a a +++; (3)017||||||a a a +++L . 解:(1)当1x =时,7
7
(12)(12)1x -=-=-,展开式右边为
0127a a a a ++++L
∴0127a a a a ++++L 1=-,
当0x =时,01a =,∴127112a a a +++=--=-L , (2)令1x =, 0127a a a a ++++L 1=- ①
令1x =-,7
012345673a a a a a a a a -+-+-+-= ②
①-② 得:7
13572()13a a a a +++=--,∴ 1357a a a a +++=7
132
+-.
(3)由展开式知:1357,,,a a a a 均为负,0248,,,a a a a 均为正,
∴由(2)中①+② 得:7
02462()13a a a a +++=-+,
∴ 7
0246132
a a a a -++++=,
∴017||||||a a a +++=L 01234567a a a a a a a a -+-+-+-
702461357()()3a a a a a a a a =+++-+++=
例4.(1)如果在n
x x ⎪⎪⎭⎫

⎛+4
21 的展开式中,前三项的系数成等差数列,求展开式中的有理项。

(2)求3
21⎪⎪⎭
⎫ ⎝⎛-+x x 的展开式的常数项。

解:(1)展开式中前三项的系数分别为1,2n ,8
)
1(-n n ,
由题意得:2×2n =1+8
)
1(-n n 得n =8。

设第r+1项为有理项,4
3168
12
1
r r r r x
c T -+⋅⋅=,则r 是4的倍数,所以r=0,4,8。

有理项为2
954
12561
,835,x T x T x T =
=
=。

【思维点拨】 求展开式中某一特定的项的问题时,常用通项公式,用待定系数法确定r 。

(2)
3
21⎪⎪⎭
⎫ ⎝⎛-+x x 6
1⎪⎪⎭
⎫ ⎝⎛-=x x ,其展开式的通项为
()2
2
66111r
r
r
r
r x x
C T ⎪⎪⎭⎫ ⎝⎛-=-+()22661r r r r x C ---=,令02r 26=-—r 得3=r
所以,常数项为
204-=T
【思维点拨】 密切注意通项公式的使用。

(3)二项式定理的应用:近似计算和估计、证不等式,如证明:()N n n n n
∈≥>,322取
()n
n 112+=的展开式中的四项即可。

例5、 若n 为奇数,则77
771
2211---++++n n n n n n n C C C Λ被9除得的余数是 ( ) A .0 B 。

2 C 。

7
解:77
771
2211---++++n n n n n n n C C C Λ()11918--=-=n
n =()()119199
11
1
1--+-++----n
n n n n n n
C C Λ
因为n 为奇数,所以原式=()2]9199
[11
1
1--++----n n n n n n
C C Λ
所以,其余数 为9 – 2 = 7,选C 例6:当N n ∈且n >1,求证3)11(2<+
<n
n
证明: 2111111)11(1221=+>++++=+n
C n C n C n C n n n
n n n n n Λ
()()()()()n n
n n n n n n n n n n n n 12321!1!321!212112⋅⋅--++--+-+
=⎪⎭

⎝⎛+ΛΛ 2
112112122
121212!1!31!212112-⎪
⎭⎫
⎝⎛-+
=++++<++++<--n n n ΛΛ .
32131
<-
-n 从而3)11(2<+<n n 【思维点拨】这类是二项式定理的应用问题,它的取舍根据题目而定。

2.重点难点: 二项式定理,和二项展开式的性质。

3.思维方式:一般与特殊的转化,赋值法的应用。

4.特别注意:①二项式的展开式共有n+1项,r r
n r
n b a
C -是第r+1项。

②通项是=+1r T r
r n r n b a C - (r=0,1,2,……,n )中含有r n b a T r ,,,,1+五个元素,只要知道其
中四个即可求第五个元素。

③注意二项式系数与某一项系数的异同。

④当n 不是很大,|x |比较小时可以用展开式的前几项求n
x )1(+的近似值。

相关文档
最新文档