矩阵练习带答案详解
矩阵理论习题与答案

矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。
为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。
一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。
答案:矩阵的转置是将其行和列互换得到的新矩阵。
所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。
2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。
答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。
由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。
3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。
答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。
计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。
解特征多项式得到特征值λ1 = 5,λ2 = -1。
然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。
对于λ2 = -1,解得特征向量v2 = [1, -1]。
所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。
二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。
答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。
计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。
然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。
接下来,求解对称矩阵的特征值和特征向量。
将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。
最后,计算D^T和U的乘积D^TU,得到正交矩阵V。
矩阵与行列式练习题及解析

矩阵与行列式练习题及解析矩阵与行列式是线性代数的重要内容之一,对于理解和运用线性代数的基本概念和方法具有重要作用。
本文将为读者提供一些矩阵与行列式的练习题,并对其解析过程进行详细讲解,帮助读者掌握相关知识。
练习题一:已知矩阵A=⎡⎣⎢123456⎤⎦⎥,求A的转置矩阵AT。
解析:矩阵的转置是指将矩阵的行与列进行对调。
根据定义,矩阵AT的第i行第j列元素等于矩阵A的第j行第i列元素。
因此,可以得到矩阵A的转置矩阵AT=⎡⎣⎢143256⎤⎦⎥。
练习题二:已知矩阵B=⎡⎣⎢112233⎤⎦⎥,求B的逆矩阵B-1。
解析:矩阵的逆是指与之相乘得到单位矩阵的矩阵。
对于2×2的矩阵而言,可以通过下面的公式求得逆矩阵:B-1 = 1/(ad-bc) * ⎡⎣⎢dd-bb-cc-aa⎤⎦⎥,其中a、b、c、d分别代表B的对应元素。
根据此公式,可以得到矩阵B的逆矩阵B-1=⎡⎣⎢-1/3-2/30.5-1⎤⎦⎥。
练习题三:已知矩阵C=⎡⎣⎢100010001⎤⎦⎥,求C的行列式|C|。
解析:行列式是用来表征矩阵性质的量,对于3×3的矩阵而言,行列式的计算公式如下:|C| = a(ei-hf) - b(di-hg) + c(dg-ge),其中a、b、c、d、e、f、g、h、i分别代表矩阵C的对应元素。
带入矩阵C的值,可以得到|C|=0。
练习题四:已知矩阵D=⎡⎣⎢123456789⎤⎦⎥,求D的特征值和特征向量。
解析:特征值和特征向量是矩阵在线性变换过程中的重要指标,特征值是矩阵对应特征向量的线性变换因子。
首先,求解特征值需要解特征方程Det(D-λI)=0,其中λ为特征值,I为单位矩阵。
通过计算得到特征值λ1=0,λ2=15,λ3=-15。
然后,根据特征值求解对应的特征向量,即求解方程组(D-λI)X=0,其中X为特征向量。
求解过程中,可以得到特征向量X1=⎡⎢⎣-1-101⎤⎥⎦,X2=⎡⎢⎣111⎤⎥⎦,X3=⎡⎢⎣100-11⎤⎥⎦。
矩阵练习题及答案

矩阵练习题及答案一、选择题1. 矩阵的转置是指将矩阵的行和列互换,以下哪个矩阵不是A的转置?A. [a11 a12; a21 a22]B. [a21 a22; a11 a12]C. [a12 a22; a11 a21]D. [a22 a12; a21 a11]2. 矩阵的加法是元素对应相加,以下哪个矩阵不能与矩阵B相加?矩阵A = [1 2; 3 4]矩阵B = [5 6; 7 8]A. [4 3; 2 1]B. [6 7; 8 9]C. [1 2; 3 4]D. [5 6; 3 4]3. 矩阵的数乘是指用一个数乘以矩阵的每个元素,以下哪个矩阵是矩阵A的2倍?矩阵A = [1 2; 3 4]A. [2 4; 6 8]B. [1 0; 3 4]C. [0 2; 3 4]D. [1 2; 6 8]4. 矩阵的乘法满足结合律,以下哪个等式是错误的?A. (A * B) * C = A * (B * C)B. A * (B + C) = A * B + A * CC. (A + B) * C = A * C + B * CD. A * (B - C) ≠ A * B - A * C5. 矩阵的逆是满足AA^-1 = I的矩阵,以下哪个矩阵没有逆矩阵?A. [1 0; 0 1]B. [2 0; 0 2]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题6. 给定矩阵A = [1 2; 3 4],矩阵B = [5 6; 7 8],矩阵A和B的乘积AB的元素a31是________。
7. 矩阵的行列式是一个标量,可以表示矩阵的某些性质。
对于矩阵C = [2 1; 1 2],其行列式det(C)是________。
8. 矩阵的特征值是指满足Av = λv的非零向量v和标量λ。
对于矩阵D = [4 1; 0 3],其特征值是________。
9. 矩阵的迹是主对角线上元素的和。
对于矩阵E = [1 0; 0 -1],其迹tr(E)是________。
高等代数第四章矩阵练习题参考答案

第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=. 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB =正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB =二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是B .A AB BA - B AB BA +C 2()ABD BABAD 为对称矩阵,B 为反对称矩阵,C 当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么 A 是对称矩阵. A T A A B T A A - C 2A D T A A - 3.以下结论不正确的是 C .(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是BA AB 的第j 行元素全等于零; B AB 的第j 列元素全等于零;C BA 的第j 行元素全等于零;D BA 的第j 列元素全等于零; 5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是D A 222()2A B A AB B +=++ B 22()()A B A B A B -=+-C 222()AB A B =D 22()()AE A E A E -=+- 6.下列命题正确的是B . A 若AB AC =,则B C = B 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = D 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则 B. (A)当m n >时,必有行列式0AB ≠; (B)当m n >时,必有行列式0AB = (C)当n m >时,必有行列式0AB ≠; (D)当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是 C(A)如果矩阵A 的行列式0A =,则0A =; (B)如果矩阵A 满足20A =,则0A =;(C)n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D)对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为 C .A 123,,ααα.B 122331,,αααααα+++.C 234,,ααα.D 12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T 可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此A,B 中向量组均为线性相关的,而D 显然为线性相关的,因此答案为C.由可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件 C 时,n I A -必是可逆矩阵(A) n A A = B A 是可逆矩阵 C 0n A = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是 D(A)1A = B 0A = C T A A = D 0A ≠12.,,A B C 均是n 阶矩阵,下列命题正确的是 A(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有C (A) ACB E = B BAC E = C BCA E = D CBA E =14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是 D (A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵; (C) 若*0A ≠,则A 是可逆矩阵; D*.AA A = 15.设A 是5阶方阵,且0A ≠,则*A = D(A)A B 2A C 3A D 4A16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为BA 1n jk ki k a A =∑ B 1n kj ki k a A =∑ C 1n jk ik k a A =∑ D 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则C(A)A 是B 的伴随 B B 是A 的伴随 C B 是A '的伴随 D 以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = C (A)**00A CB ⎡⎤=⎢⎥⎣⎦ B **00A A C B B ⎡⎤=⎢⎥⎣⎦ C **00B AC A B ⎡⎤=⎢⎥⎣⎦ D **0A B A C A B B ⎡⎤=⎢⎥⎣⎦ 利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是 C (A) A B + B A B - C AB D AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么 D21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个 C(A)对称阵 B 对角阵 C 数量矩阵 D A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素 C(A) 全为零 B 只有一个为零(C ) 至少有一个为零 D 可能有零,也可能没有零23.设1320A⎡⎤=⎢⎥⎣⎦,则1A-= D(A)121136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦B131136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦C131126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦D121136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24.设111222333a b cA a b ca b c⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c bAP a c ba c b⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P= B(A)100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n≥阶矩阵1111a a aa a aA a a aa a a⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A的秩为1,则a必为A(A)1 B-1 C11n-D11n-矩阵A的任意两行成比例.26. 设,A B为两个n阶矩阵,现有四个命题:①若,A B为等价矩阵,则,A B的行向量组等价;②若,A B的行列式相等,即||||,A B=则,A B为等价矩阵;③若0Ax=与0Bx=均只有零解,则,A B为等价矩阵;④若,A B为相似矩阵,则0Ax=与0Bx=解空间的维数相同.以上命题中正确的是 DA ①, ③.B ②, ④.C ②,③. D③,④.当APPB1-=时,,A B为相似矩阵;相似矩阵的秩相等;齐次线性方程组基础解系所含解的个数即为其解空间的维数;三、填空题1.设A 为三阶方阵,*A 为A 的伴随矩阵,有2A =,则11()2*3A A --=11*||2A A A A --==,111()33A A --=,因此11111311()2*34(1)32A A A A A A ------=-=-=-=-. 2.设,AB 为4阶方阵,且3A =,则1(3)A --= 1/27 , 21BA B -= 9 ; 3.设A 是一个m n ⨯矩阵,B 是一个n s ⨯矩阵,那么是()'AB 一个s m ⨯阶矩阵,它的第i 行第j 列元素为1njk ki k a b =∑.4.n 阶矩阵A 可逆A 非退化 ||0A ≠⇔ A 与单位矩阵等价 ⇔ A 可以表示为一系列初等矩阵的乘积 .4.三阶对角矩阵000000a A b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 的伴随矩阵*A = 000000bc ac ab ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 5.设123023003A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则*1()A -=16A . 6.设0,1,2,i a i n ≠=,矩阵12100000000000n na a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的逆矩阵为 111121100000000000n n a a a a -----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 7.设,A B 都是可逆矩阵,矩阵00A C B ⎡⎤=⎢⎥⎣⎦的逆矩阵为1100B A --⎡⎤⎢⎥⎣⎦.8.设121331,,342424A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则(2)B A C -= . 9.A 既是对称矩阵,又是反对称矩阵,则A 为 零 矩阵.10.设方阵111222333b x c A b x c b x c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111222333b y c B b y c b y c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且2,3A B =-=则行列式A B += 4 .11.设A 为m 阶方阵,B 为n 阶方阵,已知,A a B b ==,则行列式00A B=ab mn )1(-.将A 的各列依次与B 的各列交换,共需要交换mn 次,化为00A B12.设A 为n 阶方阵,且0A ≠,则 在A 等价关系下的标准形为 n 阶 单位矩阵 .13. 设12221311A a -⎛⎫⎪=- ⎪ ⎪⎝⎭a为某常数,B 为43⨯的非零矩阵,且0BA =,则矩阵B 的秩为 1 .由0BA =可得A 的各列为齐次线性方程组0Bx =的解,A 的前两列线性无关,因此0Bx =的基础解系至少有两个解,因此()1r B ≤.又B 为非零矩阵,因此()1r B ≥.即() 1.r B =四、解答下列各题 1.求解矩阵方程1 25461321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;2 211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭; 3 142031121101X ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭;4 010100143100001201001010120X -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭解:11254635462231321122108X -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 212111132212104328/352/3111X --⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪-⎝⎭2.设033110123A ⎛⎫⎪= ⎪ ⎪-⎝⎭,2AB A B =+ ,求B 解:(2)A E B A -=.0332002332110020110123002121A E -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭.22A E -=,因此2A E -可逆.3..设1P AP -=Λ,其中1411P --⎛⎫= ⎪⎝⎭,1002-⎛⎫Λ= ⎪⎝⎭,求11A . 解:1,A P P -=Λ4.设3级方阵,A B 满足124A B B E -=-,证明:2A E -可逆,并求其逆. 证明:124A B B E -=-两边同左乘以A 得到24B AB A =-.因此有(2)4A E B A -=.由A 可逆可得2A E -,且111(2).4A E BA ---=5.设A 是一个n 级方阵,且()R A r =,证明:存在一个n 级可逆矩阵P 使1PAP -的后n r -行全为零.证明:()R A r =,因此矩阵A 可以经过一系列行初等变换化为后n r -行全为零.也即存在初等矩阵11,,,m P P P ,使得21m P P P A 后n r -行全为零. 21mP P P P =,则PA 的后n r -行全为零.由矩阵乘法运算可得1PAP -的后n r -行全为零.6.设矩阵,m n n m A B ⨯⨯,且,m n AB E <=,证明:A 的行向量组线性无关. 证明:由,m n AB E <=可得()()m r AB r A m =≤≤,因此()r A m =.因此A 的行向量组线性无关.7.如果,2A A =称A 为幂等矩阵.设B A ,为n 阶幂等矩阵,证明:B A +是幂等矩阵的充要条件是0.AB BA +=证明:当B A +时幂等阵时, 因此0.AB BA +=反之,当0.AB BA +=时有 B A +是幂等矩阵.。
(完整版)矩阵练习(带答案详解).docx

2
3
解:AB
A 2B
即( A
2I ) B
A..........................2分
2
2
3
1
4
3
1
而( A
2I )1
1
1
0
1
5
3 ....................3分
1
2
1
1
6
4
精彩文案
实用标准文档
1
4
3
4
2
3
所以B ( A 2I )1A
1
5
3
1
1
0
1
6
4
1
2
3
3
8
6
=2
9
6
四、解答题:
1
1
1
1
2
3
1.给定矩阵A2
1
3
,B
2
2
1
,求BTA及A1
3
4
4
3
4
3
解:
1
2
3
1
1
1
4
9
5
BTA 2
2
4
2
1
3
6
12
8
⋯⋯⋯⋯⋯⋯⋯..(5
3
1
3
3
4
4
4
8
6
分)
401
A11
1
1
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)
2
2
2
5
1
1
2
2
2
1
0
1
1
1
矩阵练习题及答案

矩阵练习题及答案矩阵练习题及答案矩阵是线性代数中的重要概念,也是许多数学问题的基础。
通过练习矩阵题目,我们可以加深对矩阵的理解,提高解决问题的能力。
下面,我将为大家提供一些矩阵练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算以下矩阵的和:A = [2 4][1 3]B = [3 1][2 2]答案:A + B = [5 5][3 5]2. 计算以下矩阵的乘积:A = [2 3][4 1]B = [1 2][3 2]答案:A * B = [11 10][7 10]3. 计算以下矩阵的转置:A = [1 2 3][4 5 6]答案:A^T = [1 4][2 5][3 6]二、进阶练习题1. 已知矩阵 A = [2 1][3 4]求矩阵 A 的逆矩阵。
答案:A 的逆矩阵为 A^-1 = [4/5 -1/5] [-3/5 2/5]2. 已知矩阵 A = [1 2][3 4]求矩阵 A 的特征值和特征向量。
答案:A 的特征值为λ1 = 5,λ2 = -1对应的特征向量为 v1 = [1][1]v2 = [-2][1]3. 已知矩阵 A = [2 1][3 4]求矩阵 A 的奇异值分解。
答案:A 的奇异值分解为A = U * Σ * V^T其中,U = [-0.576 -0.817][-0.817 0.576]Σ = [5.464 0][0 0.365]V^T = [-0.404 -0.914][0.914 -0.404]三、实际应用题1. 一家工厂生产 A、B、C 三种产品,其销售量分别为 x1、x2、x3。
已知每天销售的总量为 100 个,且销售收入满足以下关系:2x1 + 3x2 + 4x3 = 3003x1 + 2x2 + 5x3 = 3204x1 + 3x2 + 6x3 = 380求解方程组,得到每种产品的销售量。
答案:解方程组得到 x1 = 30,x2 = 20,x3 = 50。
高中矩阵练习题及讲解详细解析

高中矩阵练习题及讲解详细解析### 高中矩阵练习题及详细解析#### 练习题一:矩阵的基本运算题目:给定两个2x2矩阵 A 和 B:\[ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B= \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \]求矩阵 A 和 B 的加法和乘法结果。
解析:首先进行矩阵加法,即对应元素相加:\[ A + B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8\end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \]接下来进行矩阵乘法,根据矩阵乘法的定义:\[ A \times B = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \]#### 练习题二:矩阵的行列式和逆矩阵题目:已知矩阵 C:\[ C = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \]求矩阵 C 的行列式和逆矩阵。
解析:首先计算矩阵 C 的行列式,使用公式:\[ \text{det}(C) = 2\cdot3 - 1\cdot4 = 6 - 4 = 2 \]接着计算逆矩阵,使用公式:\[ C^{-1} = \frac{1}{\text{det}(C)} \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1.5 & -0.5 \\ -2 & 1 \end{bmatrix} \]#### 练习题三:矩阵的特征值和特征向量题目:给定矩阵 D:\[ D = \begin{bmatrix} 4 & -1 \\ 1 & 3 \end{bmatrix} \]求矩阵 D 的特征值和对应的特征向量。
矩阵运算练习题及

矩阵运算练习题及解答矩阵运算练习题及解答矩阵运算是线性代数中的重要内容之一,它在各个领域都有广泛的应用。
通过对矩阵的加法、乘法等基本运算进行练习,可以帮助我们更好地理解和掌握矩阵运算的相关概念和性质。
本文将为大家提供一些矩阵运算的练习题及其详细解答,以便读者巩固相关知识。
1. 矩阵加法设矩阵A、B分别为:A = [2 3 -1],B = [1 4 2]求矩阵A和B的和。
解答:两个矩阵的和等于对应元素相加。
根据题目给出的矩阵A和B,可以直接进行相加。
A +B = [2+1 3+4 -1+2] = [3 7 1]因此,矩阵A和B的和为[3 7 1]。
2. 矩阵乘法设矩阵A、B分别为:A = [1 2 3],B = [4 5 6]求矩阵A和B的乘积。
解答:两个矩阵相乘的结果可通过将矩阵A的每一行与矩阵B的每一列进行对应元素相乘并相加得到。
A ×B = [(1×4 + 2×5 + 3×6)] = [32]因此,矩阵A和B的乘积为[32]。
3. 转置矩阵设矩阵A为:A = [1 2 3; 4 5 6; 7 8 9]求矩阵A的转置。
解答:转置矩阵是将原矩阵的行变为列,并将列变为行得到的新矩阵。
根据题目给出的矩阵A,可以进行转置操作。
A的转置记为AT,且AT的第i行第j列元素等于A的第j行第i 列元素。
A的转置为:AT = [1 4 7; 2 5 8; 3 6 9]因此,矩阵A的转置为:[1 4 7; 2 5 8; 3 6 9]4. 矩阵的数量积设矩阵A、B分别为:A = [1 2 3],B = [4; 5; 6]求矩阵A和B的数量积。
解答:矩阵的数量积等于矩阵A的行向量与矩阵B的列向量的数量积,即矩阵A与矩阵B的乘积。
A ×B = [(1×4 + 2×5 + 3×6)] = [32]因此,矩阵A和B的数量积为[32]。
5. 矩阵的逆设矩阵A为:A = [1 2; 3 4]求矩阵A的逆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题:1.若A ,B 为同阶方阵,则22))((B A B A B A -=-+的充分必要条件是BAAB =。
2. 若n 阶方阵A ,B ,C 满足I ABC =,I 为n 阶单位矩阵,则1-C=AB。
3. 设A ,B 都是n 阶可逆矩阵,若⎪⎪⎭⎫ ⎝⎛=00A B C ,则1-C =⎪⎪⎭⎫ ⎝⎛--0011B A 。
4. 设A=⎪⎪⎭⎫⎝⎛--1112,则1-A =⎪⎪⎭⎫ ⎝⎛2111。
5. 设⎪⎪⎭⎫ ⎝⎛--=111111A , ⎪⎪⎭⎫⎝⎛--=432211B .则=+B A 2⎪⎪⎭⎫ ⎝⎛--731733。
6.设⎪⎪⎪⎭⎫⎝⎛=300020001A ,则1-A =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛310002100017.设矩阵 1 -1 3 2 0,2 0 10 1A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,T A 为A 的转置,则B A T=⎪⎪⎪⎭⎫⎝⎛-160222.8. ⎪⎪⎪⎭⎫⎝⎛=110213021A ,B 为秩等于2的三阶方阵,则AB 的秩等于 2 .二、判断题(每小题2分,共12分)1. 设B A 、均为n 阶方阵,则 kk k B A AB =)((k 为正整数)。
……………( × )2. 设,,A B C 为n 阶方阵,若ABC I =,则111CB A ---=。
……………………………( × )3. 设B A 、为n 阶方阵,若AB 不可逆,则,A B 都不可逆。
……………………… ( × )4. 设B A 、为n 阶方阵,且0AB =,其中0A ≠,则0B =。
……………………… ( × ) 5. 设C B A 、、都是n 阶矩阵,且I CA I AB ==,,则C B =。
……………………( √ ) 6. 若A 是n 阶对角矩阵,B 为n 阶矩阵,且AC AB =,则B 也是n 阶对角矩阵。
…( × ) 7. 两个矩阵A 与B ,如果秩(A )等于秩(B ),那么A 与B 等价。
…………( × ) 8. 矩阵A 的秩与它的转置矩阵T A 的秩相等。
……………………………………( √ )三、选择题(每小题3分,共12分)1.设A 为3×4矩阵,若矩阵A 的秩为2,则矩阵TA 3的秩等于(B )(A) 1 (B) 2 (C) 3 (D) 42.假定A 、B 、C 为n 阶方阵,关于矩阵乘法,下述哪一个是错误的 ( C ) (A))(BC A ABC = (B))(kB A kAB = (C )BA AB = (D)CB CA B A C +=+)(3. 已知B A 、为n 阶方阵,则下列性质不正确的是( A )(A) BA AB = (B) )()(BC A C AB =(C ) BC AC C B A +=+)( (D) CB CA B A C +=+)( 4. 设I PAQ =,其中P 、Q 、A 都是n 阶方阵,则( D )(A )111---=Q P A (B )111---=P Q A (C )PQ A=-1(D)QP A =-15. 设n 阶方阵A ,如果与所有的n 阶方阵B 都可以交换,即BA AB =,那么A 必定是( B )(A)可逆矩阵 (B)数量矩阵(C)单位矩阵 (D)反对称矩阵 6. 两个n 阶初等矩阵的乘积为( C )(A )初等矩阵 (B )单位矩阵(C)可逆矩阵 (D)不可逆矩阵 7. 有矩阵23⨯A ,32⨯B ,33⨯C A )(A )AC (B )BC(C)ABC (D )C AB -8. 设A 与B 为矩阵且AC CB =,C 为m n ⨯的矩阵,则A 与B 分别是什么矩阵( D )(A) n mm n ⨯⨯ (B) m n n m ⨯⨯(C) n nm m ⨯⨯ (D ) m m n n ⨯⨯9.设A 为n 阶可逆矩阵,则下列不正确的是 ( B )(A) 1A -可逆 (B) I A +可逆 (C ) 2A -可逆 (D) 2A 可逆10.B A ,均n 阶为方阵,下面等式成立的是 ( B ) (A) BA AB = (B )TTTB A B A +=+)( (C) 111)(---+=+B A B A (D )111)(---=B A AB11.设B A ,都是n 阶矩阵,且0=AB ,则下列一定成立的是( C )(A ) 0=A 或0=B (B )B A ,都不可逆 (C )B A ,中至少有一个不可逆 (D)0=+B A12.设B A ,是两个n 阶可逆方阵,则()[]1-TAB 等于( A )(A)()1-TA ()1-T B (B) ()1-TB ()1-T A(C )()TB 1-T A )(1- (D)()TB 1-()1-T A13.若B A ,都是n 阶方阵,且B A ,都可逆,则下述错误的是( A )(A)B A +也可逆 (B)AB 也可逆 (C )1-B 也可逆 (D)11--B A 也可逆 14.B A ,为可逆矩阵,则下述不一定可逆的是 ( B ) (A )AB (B )B A + (C)BA (D )BAB15.设B A ,均为n 阶方阵,下列情况下能推出A 是单位矩阵的是 ( D )(A )B AB = (B)BA AB = (C)I AA = (D)I A=-116.设B A ,都是n 阶方阵,则下列结论正确的是( D )(A )若A 和B 都是对称矩阵,则AB 也是对称矩阵 (B )若0≠A 且0≠B ,则0≠AB(C)若AB 是奇异矩阵,则A 和B 都是奇异矩阵(D)若AB 是可逆矩阵,则A 和B 都是可逆矩阵17. 若B A 与均为n 阶非零矩阵,且0=AB ,则( A ) (A)n A R <)( (B)n A R =)( (C)0)(=A R (D)0)(=B R四、解答题:1. 给定矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=443312111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=343122321B ,求A B T 及1-A 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=6848126594443312111313422321A B T …………………..(5分)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=-2121252121211041A ……………………………………………………(5分) 2. 求解矩阵方程=⎪⎪⎪⎭⎫ ⎝⎛X 110011101⎪⎪⎪⎭⎫ ⎝⎛521234311解:02110011101≠= ................................2分1110011101-⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=11111111121 ...........................3分⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=301222012X ............................. 3分3. 求解矩阵方程B XA =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=011220111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112011111B解:因为6-=A 所以A 可逆 ……………….…………………….(2分)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=-31313131********311A ………………………(4分) 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-==-3465323131323431311BA X ……………………………..(4分)4. 求解下面矩阵方程中的矩阵X :⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解:令⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=021102341,010100001,100001010C B A ,则B A ,均可逆,且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=--010100001,10000101011B A所以⎪⎪⎪⎭⎫⎝⎛--==--20143111211B C A X5. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=321011324A ,求矩阵B ,使其满足矩阵方程B A AB 2+=.解:B A AB 2+=即A B I A =-)2(..........................2分而.461351341121011322)2(11⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛--=---I A ...................3分 所以 A I A B 1--=)2(⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=321011324461351341=.9122692683⎪⎪⎪⎭⎫⎝⎛-----.........................3分五、证明题1. 若A 是反对称阵,证明2A 是对称阵。
证明:因为A 是反对称阵,所以A A T -= (3分)22))(()()(A A A A A AA A T T T T =--===,所以2A 为对称阵。
(5分)2.设矩阵,A B 及A B +都可逆,证明11A B --+也可逆。
证明:因为,A B ,A B +可逆,故11,A B --,1()A B -+存在,.........3分所以有()()()()11111111111()()()()A B B A B A A B I B A A A B A A B A A A B A B A A A A I-----------++=++=++=++==......4分故11A B --+可逆,其逆为()1B A B A -+....................... 1分3.已知B A ,为n 阶方阵,且B A B A B B A A +=-==222)(,,, 证明:0=+BA AB证明:B A BA AB B A B A +=--+=-222)(……………4分所以0=+BA AB ……………4分4.设B A ,为两个n 阶方阵,试证明:22))((B A B A B A -=+-的充要条件是BA AB =。
证明:充分性: 因为BA AB =所以2222))((B A B BA AB A B A B A -=--+=+-……… 4分必要性:因为22))((B A B A B A -=+-,即2222B A B BA AB A -=--+ 所以BA AB =……… 8分5. A 是反对称矩阵,B 是对称矩阵,证明:AB 是反对称矩阵的充要条件是BA AB =。
证明: 充分性:因为A A T -=,B B T =, BA AB =所以AB BA A B AB TTT-=-==)(,即AB 是反对称矩阵……… 4分 必要性:因为AB 是反对称矩阵,即AB AB T-=)( 又BA A B AB TTT-==)( 所以BA AB =……… 8分。