《一元二次方程》教材课件ppt
合集下载
一元二次方程课件ppt

(4)原方程变形为 (xm)2 n 形式
(5)如果右边为非负数,直接开平方法 求出方程的解,如果右边是负数,一元二 次方程无解。
心动 不如行动
例1: 用配方法解方程
x26x70
解: 移项得:x26x7
配方得:x26x32732
即(x3)2 16
开平方得: x34
∴原方程的解为:x11, x27
范例研讨运用新知
x12;x21.
学习是件很愉快的事
淘金者
❖ 你能用分解因式法解下列方程吗?
1 .x2-4=0; 解:1.(x+2)(x-2)=0,
2.(x+1)2-25=0. 2.[(x+1)+5][(x+1)-5]=0,
∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
a,b,c满足什么条件时,方程的两根互
为相反数?
解:一元二次方程 a2 xb xc0a0的解为:
x 1 b 2 b a 2 4 a,x c 2 b 2 b a 2 4 ac
x1x2
b b24acb b24ac
2a
2a
b b 2a 2a
b0
❖用“因式分
解法”解一元 二次方程
回顾与复习 1
1.我们已经学过了几种解一元二次方程
1.x2 7;
2.3y2y1.4
解:1.一元二次方程解: 2.一元二次方程
x2 70
3y2 y 14 0
的两个根 x1 是7,x2 7. x27(x7)x (7).
的3两y2个y根1 是y1 4 3 (2y, y22)y (73 . 7).
3
(5)如果右边为非负数,直接开平方法 求出方程的解,如果右边是负数,一元二 次方程无解。
心动 不如行动
例1: 用配方法解方程
x26x70
解: 移项得:x26x7
配方得:x26x32732
即(x3)2 16
开平方得: x34
∴原方程的解为:x11, x27
范例研讨运用新知
x12;x21.
学习是件很愉快的事
淘金者
❖ 你能用分解因式法解下列方程吗?
1 .x2-4=0; 解:1.(x+2)(x-2)=0,
2.(x+1)2-25=0. 2.[(x+1)+5][(x+1)-5]=0,
∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
a,b,c满足什么条件时,方程的两根互
为相反数?
解:一元二次方程 a2 xb xc0a0的解为:
x 1 b 2 b a 2 4 a,x c 2 b 2 b a 2 4 ac
x1x2
b b24acb b24ac
2a
2a
b b 2a 2a
b0
❖用“因式分
解法”解一元 二次方程
回顾与复习 1
1.我们已经学过了几种解一元二次方程
1.x2 7;
2.3y2y1.4
解:1.一元二次方程解: 2.一元二次方程
x2 70
3y2 y 14 0
的两个根 x1 是7,x2 7. x27(x7)x (7).
的3两y2个y根1 是y1 4 3 (2y, y22)y (73 . 7).
3
《一元二次方程》数学PPT课件(10篇)

4-7x2=0
一般形式
二次项 一次项 常数项 系数 系数
3x2-5x+1=0
3 -5 1
1x2 +1x-8=0
1
-7x2 +4=0 或-7x2 +00x+4=0 -7
或7x2 - 4=0
7
1 -8
04 0 -4
抢答: 一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
二次项系数
一次项系数
例1:判断下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
(3)x+3y=36
(4)
1 x2
2 x
0
(5) x+1=0 (6) x2 6 (7)4x2 1 (2x 3)2 3
(8)( x )2 2 x 6 0
练习巩固
下列方程哪些是一元二次方程? 为什么? (1)7x2-6x=0 (2)2x2-5xy+6y=0
?
问题(1) 有一块矩形铁皮,长100㎝,宽50㎝,在
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形?
分析:
设切去的正方形的边长为xcm,
则盒底的长为 (100-2x)cm ,宽
为 (50-2x)cmБайду номын сангаас.
① 只含一个未知数;
②未知数的最高次数是2.
③ 都是整式方程;
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx的形c 式0,我们把
一般形式
二次项 一次项 常数项 系数 系数
3x2-5x+1=0
3 -5 1
1x2 +1x-8=0
1
-7x2 +4=0 或-7x2 +00x+4=0 -7
或7x2 - 4=0
7
1 -8
04 0 -4
抢答: 一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
二次项系数
一次项系数
例1:判断下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
(3)x+3y=36
(4)
1 x2
2 x
0
(5) x+1=0 (6) x2 6 (7)4x2 1 (2x 3)2 3
(8)( x )2 2 x 6 0
练习巩固
下列方程哪些是一元二次方程? 为什么? (1)7x2-6x=0 (2)2x2-5xy+6y=0
?
问题(1) 有一块矩形铁皮,长100㎝,宽50㎝,在
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形?
分析:
设切去的正方形的边长为xcm,
则盒底的长为 (100-2x)cm ,宽
为 (50-2x)cmБайду номын сангаас.
① 只含一个未知数;
②未知数的最高次数是2.
③ 都是整式方程;
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx的形c 式0,我们把
人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)

解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
一元二次方程的解法ppt课件

的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根
是
公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=
,x
2=1
观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室
是
公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=
,x
2=1
观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室
《公式法》一元二次方程PPT课件 (共8张PPT)

= -q+(
)2
)2 =
-q
用配方法解一般形式的一元二次方程 解:把方程两边都除以 a,得x2 + x+ = 0
移项,得
配方,得 即 ∵4a2>0 x2 +
x2 +
x+(
x= )2 =)2 = +( )2
( x +
∴当b2-4ac≥0时, 解得 即 x= x= ±
x +
=±
用求根公式解一元二次方程的方法叫做
3、代入求根公式 :
X=
(a≠0, b2-4ac≥0)
4、写出方程的解: x1=?, x2=?
思考题: 1、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当
a,b,c 满足什么条件时,方程的两根为
互为相反数?
2、m取什么值时,方程 x2+(2m+1)x+m2-4=0
有两个相等的实数解
一元二次方程
用配方法解一元二次方程 2x2+4x+1=0 用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。 2.移项整理 得 x2+px=-q 3.在方程 x2+px= -q 的两边同加上一次项系数 p的一半的平方。
x2+px+( 4. 用直接开平方法解方程 (x+
)2
练习:用公式法解方程 1、 x2 x -1= 0
2、 2x2 - 2 x+1= 0
用公式法解一元二次方程的
小结
由配方法解一般的一元
一般步骤: 1、把方程化成一般形式。 并写出a,b,c的值。 2、求出b2-4ac的值。
一元二次方程ppt课件

一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。
根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。
根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看
一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
24.1 一元二次方程课件(共20张PPT)

同学们再见!
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义
①
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义
①
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这三个方程是不是一元一次方程?有何特点?
特点:
x2 2 0
2x2 19x 24 0
x2 x 72 0
5x2 10x 2.2 0
①都是整式方程;
②只含一个未知数;
③未知数的最高次数是2.
x2 2 0
2x2 19x 24 0
5x2 10x 2.2 0
一元二次方程的概念
只含有一个未知数(一元),并且未 知数的最高次数是2(二次)的整式方程 叫做一元二次方程
(a≠0、a、b、c为常数)
问题情境
(1)正方形桌面的面积是2m2,求它的边长?
m2
xm 解:设正方形桌面的边长是
x2 2
化简得x2 - 2 = 0
(2)矩形花圃一面靠墙,另外三面所围的栅栏的总
长度是19米。如果花圃的面积是24m2,求花圃的长和
宽?
解:设花圃的宽是 xm, 则花圃
的长是 (19 2x)m. 。
x 1
• (4) x 2 4 (x 2)2
精讲点拨
★.判断一个方程是否是一元二次方程不能只看表 面、而是能化简必须先化简、然后再查看这个方 程未知数的最高次数是否是2。
x2 2 0
2x2 19x 24 0
5x2 10x 2.2 0
a x 2+ b x + c = 0
(a、b、c为常数且a ≠ 0)
一元二次方程的一般形式
我们把形如 ax2 bx c 0 (a,b,c为常数,a≠0)称
为一元二次方程的一般形式。
为什么要限制a≠0, b,c可以为零吗?
练习巩固
1.关于x的方程(k-3)x2 + 2x-1=0,
当k ≠3 时,是一元二次方程. 2.关于x的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0, 当k ≠±1 时,是一元二次方程. 当k =-1 时,是一元一次方程.
-4 -3 -2 -1 0 1 2 3 4
2)你能写出方程x2 x 0 的根吗?
0或1 即:平方后是它本身的数是哪些?
例题讲解
已知关于x的一元二次方程 (a 1)x2 x a2 1 0的一根是x 0
则a的值为B
A.1 B.-1 C.1或-1 D.0
?
拓展提高
1.已知方程x2+mx-12=0的一个根是x=-2,
一元二次方程:a≠0 一般形式: “=”的右边必须为0
课堂练习
完成《时》P1的2、5两题
感谢您的阅读! 为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载!
练习巩固
若关于x的方程2mx(x-1)-nx(x+1)=1,化成 一般形式后为4x2-2x-1=0,求m、n的值。
比较系数法
(m-3)x2-(m-1)x-m=0(m≠3)
3x(x-1)=5(x+2)
二次项 一次项 常数项 系数 系数
2
1Hale Waihona Puke 4-420
3
-1
-1
4
0
-5
m-3 1-m -m
例题例讲题解讲解
• 将下列方程化为一般形式,并分别指出它们的二次 项、一次项和常数项及它们的系数:
• (1) 3x(x 1) 5(x 2) 解: 3x2 3x 5x 10 3x2 3x 5x 10
二次项系数 一次项系数
a x 2+ b x + c = 0
(a、b、c为常数且a ≠ 0) a x 2 又叫二次项
b x叫一次项
c为常数项
注意:二次项、二次项系数、 一次项、一次项系数、常数项 都是包括符号的
抢答:
一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
求m的值。 m=-4
2.方程(x-1)(x+3)(x -2)=0的解为_x1_=_1_,x_2=_-_3_,x_3=_2__.
4.已知m是方程x2+x-2014=0的一个根,
求m2+m的值为 2014
3x2 8x 10 0
二 次 项 : 3 x2 . 其 系 数 为 3 .一 次 项 : - 8 x , 其 系数 为 - 8
常数项为-10
精讲点拨
★.一元二次方程的一般形式中“=”的左边最多 三项、其中一次项、常数项可以不出现、但二次 项必须存在、而且左边通常按x的降幂排列:特别 注意的是“=”的右边必须整理成0。
方程解的定义是怎样的呢?
能使方程左右两边相等的 未知数的值就叫方程的解
思考:
你能否说出下列方程的解? 1) x2 36 0 2) (x 1)(x 3) 0 3) (x 6)(x 3) 0
一元二次方程的根的情况与一元一 次方程有什么不同吗?
练习:
1)下面哪些数是方程x2 x 6 0 的根?
x 根据题意,得 x(19 2x) 24
化简得 -2x2 19x -24 0
问题情境
(4)新年到了,好朋友之间互相发信息问候成 为新的拜年方式,某朋友圈的所有的人都发给 其他人一条信息,一共发了72条信息,这个朋 友圈一共有多少人?
解: 这个朋友圈一共有x人
由题意得 x(x 1) 72
化简得:x2 x 72 0
一元二次方程
早知内容:
1、方程:含有未知数的等式叫方程 2、方程的解:能使方程左右两边相等的未知数的值就 叫方程的解
3、方程的根:一元方程的解又叫方程的根 3、一元一次方程:含有一个未知数,并且未知数的最 高次数为1的整式方程 4、二元一次方程:含有两个未知数,并且未知数的项最 高次数为1的整式方程 5、分式方程:分母中含有未知数的方程 6、根式方程:根号下含有未知数的方程 7、一元二次方程:含有一个未知数,并且未知数的最高 次数为2的整式方程 8、一元二次方程的一般形式:ax2+bx+c=0
问题情境
(4)我校图书馆的藏书在两年内从5万册增加 到7.2万册,平均每年增长的百分率是多少?
解: 设平均每年增长的百分率是x.
根据题意,得 5(1 x)2 7.2
化简得5x2 10x 2.2 0
x2 2 0
2x2 19x 24 0
x2 x 72 0
5x2 10x 2.2 0
一元二次方程特点: ①是整式方程; ②只含一个未知数; ③未知数的最高次数是2.
看
(1)x2 x 1 是
谁
眼
(2)x2 1 是
力
好
(3)x2 3x 2 y=0 不是 !
尝试练习
• 1判断下列方程是否为一元二次方程? • (1) 3x 2 5y 3
• (2) x2 4
• (3) x 2 1 x2
特点:
x2 2 0
2x2 19x 24 0
x2 x 72 0
5x2 10x 2.2 0
①都是整式方程;
②只含一个未知数;
③未知数的最高次数是2.
x2 2 0
2x2 19x 24 0
5x2 10x 2.2 0
一元二次方程的概念
只含有一个未知数(一元),并且未 知数的最高次数是2(二次)的整式方程 叫做一元二次方程
(a≠0、a、b、c为常数)
问题情境
(1)正方形桌面的面积是2m2,求它的边长?
m2
xm 解:设正方形桌面的边长是
x2 2
化简得x2 - 2 = 0
(2)矩形花圃一面靠墙,另外三面所围的栅栏的总
长度是19米。如果花圃的面积是24m2,求花圃的长和
宽?
解:设花圃的宽是 xm, 则花圃
的长是 (19 2x)m. 。
x 1
• (4) x 2 4 (x 2)2
精讲点拨
★.判断一个方程是否是一元二次方程不能只看表 面、而是能化简必须先化简、然后再查看这个方 程未知数的最高次数是否是2。
x2 2 0
2x2 19x 24 0
5x2 10x 2.2 0
a x 2+ b x + c = 0
(a、b、c为常数且a ≠ 0)
一元二次方程的一般形式
我们把形如 ax2 bx c 0 (a,b,c为常数,a≠0)称
为一元二次方程的一般形式。
为什么要限制a≠0, b,c可以为零吗?
练习巩固
1.关于x的方程(k-3)x2 + 2x-1=0,
当k ≠3 时,是一元二次方程. 2.关于x的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0, 当k ≠±1 时,是一元二次方程. 当k =-1 时,是一元一次方程.
-4 -3 -2 -1 0 1 2 3 4
2)你能写出方程x2 x 0 的根吗?
0或1 即:平方后是它本身的数是哪些?
例题讲解
已知关于x的一元二次方程 (a 1)x2 x a2 1 0的一根是x 0
则a的值为B
A.1 B.-1 C.1或-1 D.0
?
拓展提高
1.已知方程x2+mx-12=0的一个根是x=-2,
一元二次方程:a≠0 一般形式: “=”的右边必须为0
课堂练习
完成《时》P1的2、5两题
感谢您的阅读! 为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载!
练习巩固
若关于x的方程2mx(x-1)-nx(x+1)=1,化成 一般形式后为4x2-2x-1=0,求m、n的值。
比较系数法
(m-3)x2-(m-1)x-m=0(m≠3)
3x(x-1)=5(x+2)
二次项 一次项 常数项 系数 系数
2
1Hale Waihona Puke 4-420
3
-1
-1
4
0
-5
m-3 1-m -m
例题例讲题解讲解
• 将下列方程化为一般形式,并分别指出它们的二次 项、一次项和常数项及它们的系数:
• (1) 3x(x 1) 5(x 2) 解: 3x2 3x 5x 10 3x2 3x 5x 10
二次项系数 一次项系数
a x 2+ b x + c = 0
(a、b、c为常数且a ≠ 0) a x 2 又叫二次项
b x叫一次项
c为常数项
注意:二次项、二次项系数、 一次项、一次项系数、常数项 都是包括符号的
抢答:
一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
求m的值。 m=-4
2.方程(x-1)(x+3)(x -2)=0的解为_x1_=_1_,x_2=_-_3_,x_3=_2__.
4.已知m是方程x2+x-2014=0的一个根,
求m2+m的值为 2014
3x2 8x 10 0
二 次 项 : 3 x2 . 其 系 数 为 3 .一 次 项 : - 8 x , 其 系数 为 - 8
常数项为-10
精讲点拨
★.一元二次方程的一般形式中“=”的左边最多 三项、其中一次项、常数项可以不出现、但二次 项必须存在、而且左边通常按x的降幂排列:特别 注意的是“=”的右边必须整理成0。
方程解的定义是怎样的呢?
能使方程左右两边相等的 未知数的值就叫方程的解
思考:
你能否说出下列方程的解? 1) x2 36 0 2) (x 1)(x 3) 0 3) (x 6)(x 3) 0
一元二次方程的根的情况与一元一 次方程有什么不同吗?
练习:
1)下面哪些数是方程x2 x 6 0 的根?
x 根据题意,得 x(19 2x) 24
化简得 -2x2 19x -24 0
问题情境
(4)新年到了,好朋友之间互相发信息问候成 为新的拜年方式,某朋友圈的所有的人都发给 其他人一条信息,一共发了72条信息,这个朋 友圈一共有多少人?
解: 这个朋友圈一共有x人
由题意得 x(x 1) 72
化简得:x2 x 72 0
一元二次方程
早知内容:
1、方程:含有未知数的等式叫方程 2、方程的解:能使方程左右两边相等的未知数的值就 叫方程的解
3、方程的根:一元方程的解又叫方程的根 3、一元一次方程:含有一个未知数,并且未知数的最 高次数为1的整式方程 4、二元一次方程:含有两个未知数,并且未知数的项最 高次数为1的整式方程 5、分式方程:分母中含有未知数的方程 6、根式方程:根号下含有未知数的方程 7、一元二次方程:含有一个未知数,并且未知数的最高 次数为2的整式方程 8、一元二次方程的一般形式:ax2+bx+c=0
问题情境
(4)我校图书馆的藏书在两年内从5万册增加 到7.2万册,平均每年增长的百分率是多少?
解: 设平均每年增长的百分率是x.
根据题意,得 5(1 x)2 7.2
化简得5x2 10x 2.2 0
x2 2 0
2x2 19x 24 0
x2 x 72 0
5x2 10x 2.2 0
一元二次方程特点: ①是整式方程; ②只含一个未知数; ③未知数的最高次数是2.
看
(1)x2 x 1 是
谁
眼
(2)x2 1 是
力
好
(3)x2 3x 2 y=0 不是 !
尝试练习
• 1判断下列方程是否为一元二次方程? • (1) 3x 2 5y 3
• (2) x2 4
• (3) x 2 1 x2