反证法证明题(简单)(可编辑修改word版)

合集下载

反证法含答案.doc

反证法含答案.doc

3 a,b,c中至少有一个大于一。

6、已知a,b,c E R,a + b-^c = 0, abc = 1,求证:27、若函数/'(x)在区间[a.b]±.是增函数,那么方程/(.x) = 0在区间[a.b]±.至多只有一个实数根。

8、已知a.b,c 6(0,1),求证:(1 -a)/>,(1 -Z?)c,(1 -c)a 不能同时大于9、已知函数/(%) = «' +^^(a>l)x + 1⑴、证明:函数f(x)在(-1,+8)上为增函数;(2)、用反证法证明方程/(.r) = 0没有负数根。

10、组装甲、乙、丙三种产品,需要A、B、。

三种零件,每件甲产品用零件A、。

各2个,每件乙产品用零件A 2个,零件8 1个,每件丙产品用零件8、C各1个,如组装10件甲,5件乙,8件丙,则剩下2个A零件,1个C零件,B零件恰好用完,试证无论如何改变甲、乙、丙的件数,都不能将零件A、B、C用完。

反证法1、已知下列三个方程:x2 + 4ax - 4a + 3 = 0, x2 + (a - l)x + tz2 = 0, x2 + 2ax-2a = 0 f 至少有一个方程有实数根,求实数。

的取值范围。

2、已知函数/*(/)是(-oo,+oo)上的增函数,a,b G R ,对命题"若。

+ Z?20,贝ljf(o)+f0)2f(-。

)+/(2尸,写出其逆命题,判断其真假并证明你的结论。

3、已知Q,b,c,d e R ,且Q +Z? = c + d =1,。

+ /?』〉1 ;求证:a,b,c,d中至少有一个是负数。

4、已知面肱内有两条相交直线。

,力(交点为p)和面N平行;求证:面M 〃面N。

5、若a,b,c均为实数,Ka = x2 -2y — = y2 -2z + — ,c = z2 -2x-^- —;求证:2 3 6Q,b,c中至少有一个大于0.:.a-^-b + c >0 ,这与tz+Z? + c <0相矛盾;?.假设不成立;a,b,c中至少有一个大于0.36、假设Q,b,C都小于等于一2abc = 1;.\ a,b,c三者同为正或一正两负;a +b +c = 0;:. a,b f c中只能是一正两负;不妨设a > Q,b <Q,c <0 ,则b + c = -a,be =—,即b,c 为方程x1 + ax+ — = 0 的两个a a负根;A = a2-->0;.-.fl>V4>3 —=-,这假设相矛盾;a V 8 23Q,b,c中至少有一个大于二o27、假设方程/(.x) = 0在区间[,麟]上至少有两个根。

《反证法》练习题

《反证法》练习题

A 9.用反证法证明:“一个三角形中至多有一个钝角”时,应假设( ) A.一个三角形中至少有两个钝角 B.一个三角形中至多有两个钝角 C.一个三角形中至少有一个钝角 D.一个三角形中没有钝角
10.试证明命题“两直线相交有且只有一个交点”.并将下列过程补充完 整:
已知直线a,b,求证:直线a,b相交时只有一个交点P. 证明:假设a,b相交时___不__止__一__个__交__点__P___, 不妨设其他交点中有一个为P′,则点P和点P′既在直线a上又在直线b上,那 么经过P和P′的直线__________,这与___________________相矛盾,因此假 设不成立,所以两条直线相就交有只两有条一个交点.两点确定一条直线
7.用反证法证明:两条直线被第三条直线所截,如果同旁内角互补,那 么这两条直线平行.
已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.
求证:假设l1__不__平__行___l2,即l1与l2相交于一点P,
则∠1+∠2+∠P=____,所以∠1+∠2____180°, 这与______________1_8_0_°____矛盾,故假设<不成立,所以____.
11.试用举反例的方法说明下列命题是假命题. 举例:如果ab<0,那么a+b<0. 反例:设a=4,b=-3,ab=4×(-3)=-12<0,而a+b=4+(-3)=1>0. 所以,这个命题是假命题. (1)如果a+b>0,那么ab>0; (2)如果a是无理数,b是无理数,那么a+b是无理数; (3)两个三角形中,两边及其中一边的对角对应相等,则这两个三角形全等.
第四章 平行四边形
4.6 反证法希伯索斯 发现了无理数 2,导致了第一次数学危机, 2是无理数的证明如下:
假设 2是有理数,那么它可以表示成qp(p 与 q 是互质的两个正整数).

介绍反证法及举例

介绍反证法及举例
用反证法在归谬中所导出的矛盾可以是与题设矛盾,与假设矛盾,与已知定义、公理、定理矛盾,自相矛盾等.
01
用反证法证明命题的一般步骤是什么?
2.反证法是一种常用的间接证明方法.
02
则C必定是在撒谎.
05
由A假, 知B真. 这与B假矛盾.
03
B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎。则C必定是在撒谎,为什么?
M:为了做出决断,旅游者被送到国王那里。苦苦想了好久,国王才说——
国王:不管我做出什么决定,都肯定要破坏这条法律。我们还是宽大为怀算了,让这个人自由吧。
1
2
3
4
5
6
唐·吉诃德悖论
说谎者悖论
M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。问,你来这里做什么?M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
M:一天,有个旅游者回答——
旅游者:我来这里是要被绞死。
M:这时,卫兵慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
∴ab + bc + ca = a(b + c) + bc < 0
与题设矛盾
若a = 0,则与abc > 0矛盾,
∴必有a > 0
同理可证:b > 0, c > 0
练习2.已知a + b + c > 0,ab + bc + ca > 0,
abc > 0, 求证:a, b, c > 0
幻灯片切换
反设②归谬③结论 方法小结: 1直接证明:直接从原命题的条件逐步推得结论成立. 正难则反!

反证法数学最简单的例子

反证法数学最简单的例子

反证法数学最简单的例子
反证法是一种证明方法,用于证明某个命题的否定或矛盾。

它基于假设命题的否定为真,并通过逻辑推理的过程来得出矛盾的结论,从而证明原命题是成立的。

对于数学上最简单的例子,我们可以考虑证明一个整数是奇数。

以下是一个使用反证法证明某个整数是奇数的例子:
假设存在一个整数x,其中x是偶数。

根据偶数的定义,我们可以将x表示为2的倍数,即存在一个整数k使得x=2k。

根据这个假设,我们可以得出以下结论:
1. x是偶数,所以存在一个整数k使得x=2k。

2. 由于k也是整数,故存在一个整数n,使得k=2n。

现在我们可以将x用k和n来表示:
x=2k=2(2n)=4n
综上,我们得到结论x=4n。

此时我们来观察一下得到的结论。

我们知道4可以写成2的平方,所以x可以
写成2的平方乘以n,也就是说x是2的倍数。

然而,根据我们一开始的假设,x是偶数,x=2k,因此x也是2的倍数。

然而这与我们之前的结论矛盾,因为我们开始的时候假设x是一个奇数。

基于我们的假设推导出了矛盾的结论,说明我们的假设是错误的。

反设法的核心是通过推理达到矛盾,从而证明了原命题的成立。

因此,我们可以得出结论x 是一个奇数。

总结起来,反证法是一种重要的证明方法,可以用于解决各种数学问题。

这个简单的例子展示了反证法的使用过程,以及如何通过逻辑推理推导出矛盾,从而证明了原命题的成立。

当面对一些困难的问题时,反证法可以提供一个有效的解决思路,帮助我们理解问题的本质,并得出正确的结论。

反证法练习题

反证法练习题

反证法练习题证明题1.求证:两组对边的和相等的四边形外切于一圆.2.已知△ABC与△A′BC有公共边BC,且A′B+A′C>AB+AC.求证点A′在△ABC 的外部.3.求证:相交两圆的两个交点不能同在连心线的同侧.4.用反证法证明:直角三角形斜边上的中点到三顶点的距离相等.5.已知△ABC中,AB>AC,∠ABC和∠ACB的平分线相交于O点.求证:AO与BC不垂直.6.在同圆中,如果两条弦的弦心距不等,那么这两条弦也不等.7.求证:两条直线相交,只有一个交点.8.求证:一直线的垂线和非垂线一定相交.9.在四边形ABCD中,已知AB≠CD,求证AC,BD必不能互相平分.10.已知直线l1∥直线l2,直线m1∥直线 m2,且l1,m1相交于点P.求证l2与m2必相交.11.求证:若四边形的一组对边的中点连线等于另一组对边的和的一半,则另一组对边必互相平行.12.已知△ABC中,∠ACB=90°,以AB为直径作⊙O.求证C点必在⊙O上.13.已知△ABC与△A′BC有公共边BC,且∠BA′C<∠BAC.求证点A′在△ABC的外部.14.求证:梯形必不是中心对称图形.15.已知如图7-399,在△ABC中,AB=AC,P是△ABC内部的一点,且∠APB≠∠APC.求证PB≠PC.练习题提示证明题1.提示:设四边形ABCD中AB+CD=BC+DA.假设它不外切于圆,可作⊙O与AB,BC,CD 相切,则⊙O必不与DA相切.作D′A与⊙O相切并与射线CD相交于D′,则AB+CD′=BC+D′A.与已知条件左右各相减,得DD′=|DA-D′A|,但在△ADD′中这不可能;所以四边形ABCD外切于圆.2.提示:假设A′在△ABC内部,由练习题(已知:P为△ABC内任意一点,连接PB,PC.求证:BC<PB+PC<AB+AC)可知A′B+A′C<AB+AC,这与已知矛盾;所以A′不在△ABC 内部.设A′在边AB或AC上,显然有A′B+A′C<AB+AC,这也与已知矛盾.所以点A′在△ABC的外部.3.提示:设⊙O与⊙O′相交于点A,B.假设A,B在连心线OO′同侧.由于∠OO′B=∠OO′A,∠O′OB=∠O′OA,显然B与A重合,即⊙O与⊙O′相交于一点,这与已知矛盾;所以A,B不能同在连心线的同侧.4.提示:设直角△ABC的斜边AB的中点为D.假设AD=BD<CD,设法证出∠C为锐角,这与已知矛盾.假设AD=BD>CD,设法证出∠C为钝角,这也与已知矛盾.所以只有AD=BD=CD.5.提示:假设AO⊥BC.由于O是∠B、∠C的平分线的交点,所以AO是∠A的平分线.这样就有AB=AC,这与已知矛盾;所以AO与BC不垂直.6.提示:设AB,CD是⊙O的两条弦,OE⊥AB于E,OF⊥CD于F,且OE≠OF.假设AB=CD,则OE=OF,这与已知OE≠OF矛盾.所以假设不成立.所以AB≠CD.7.提示:设直线AB,CD相交于M.假设直线AB,CD另有一个交点N,这说明经过M,N两点有两条直线AB和CD,这与公理经过两点有且只有一条直线矛盾.故假设不成立.所以AB,CD只有一个交点.8.提示:设直线a⊥直线l,直线b不垂直于l.假设a和b不相交,则a∥b,从而b⊥l,但这与已知矛盾;所以a和b相交.9.提示:假设AC和BD互相平分,则可推出AB=CD,但这与已知矛盾;所以AC和BD 不能互相平分.10.提示:假设l2与m2不相交,则l2∥m2.因为l1∥l2.所以l1∥m2.因为m1∥m2,所以l1∥m1.这与已知l1与m1相交于点P矛盾.所以假设不成立.所以l2与m2必相交.11.提示:设M和N分别是四边形ABCD的边AB和CD的中点,并而MP+PN=MN.但假定AD不平行于BC,P不会在MN上,所以上面这个等式不成立;从而AD∥BC.12.提示:假设点C不在⊙O的圆周上,则点C在⊙O的内部或外部.(1)若C在⊙O内部,延长AC交⊙O于D,连接BD,则∠D=90°.因为∠ACB是△CDB 的外角,所以∠ACB>∠D.所以∠ACB>90°.这与已知∠ACB=90°矛盾.(2)若C在⊙O外部,设AC交⊙O于E,连接BE,则∠AEB=90°.因为∠AEB是△CEB 的外角,所以∠AEB>∠ACB,就有∠ACB<90°.这与已知∠ACB=90°矛盾.综合(1),(2)可知假设不成立.所以C点必在⊙O上.13.提示:假设A′在△ABC内部,由几何一第三章§8第5题可知∠BA′C>∠BAC,这与已知矛盾;所以A′不在△ABC内部.设A′在边AB或AC上,显然有∠BA′C>∠BAC,这也与已知矛盾.所以点A′在△ABC的外部.14.提示:设在梯形ABCD中,AD∥BC,AB不平行于CD.假设它是中心对称图形,O为对称中心.作A和B关于O的对称点A′和B′.则线段A′B′是边AB的对称图形.A′B′或位于BC上,或CD上,或AD上.但A′B′平行于AB,所以或BC或CD或AD平行于AB,这与已知矛盾;所以梯形ABCD不是中心对称图形.15.提示:假设PB=PC,则∠PBC=∠PCB.因为AB=AC,所以∠ABC=∠ACB,所以∠ABP=∠ACP.因为AB=AC,PB=PC,AP=AP,所以△ABP≌△ACP.所以∠APB=∠APC.这与已知∠APB≠APC矛盾.所以假设不成立,就有PB≠PC.。

反证法解答题专项练习30题(有答案)ok

反证法解答题专项练习30题(有答案)ok

反证法解答题专项练习30题(有答案)1.求证:在△ABC中至多有两个角大于或等于60°.2.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.3.用反证法证明“三角形的三个内角中,至少有一个内角小于或等于60°”证明:假设所求证的结论不成立,即∠A _________ 60°,∠B _________ 60°,∠C _________ 60°,则∠A+∠B+∠C>_________ .这与_________ 相矛盾.∴_________ 不成立.∴_________ .4.用反证法证明(填空):两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.求证:l1_________ l2证明:假设l1_________ l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P _________ 180°_________所以∠1+∠2 _________ 180°,这与_________ 矛盾,故_________ 不成立.所以_________ .5.完形填空:已知:如图,直线a、b被c所截;∠1、∠2是同位角,且∠1≠∠2,求证:a不平行b.证明:假设_________ ,则_________ ,(两直线平行,同位角相等)这与_________ 相矛盾,所以_________ 不成立,故a不平行b.6.求证:在△ABC中,∠B≠∠C,则AB≠AC(提示:反证法)7.用反证法证明一个三角形中不能有两个角是直角.8.反证法证明:如果实数a、b满足a2+b2=0,那么a=0且b=0.9.如图,在△ABC中,AB=AC,P是△ABC内的一点,且∠APB>∠APC,求证:PB<PC(反证法)10.证明已知△ABC中不能有两个钝角.11.举反例说明下列命题是假命题.(1)一个角的补角大于这个角;(2)已知直线a,b,c,若a⊥b,b⊥c,则a⊥c.12.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.13.用反例证明命题“一个锐角与一个钝角的和等于一个平角”是假命题.14.用反证法证明:在同一平面内,a,b,c互不重合,若a∥b,b∥c,则a∥c.15.已知直线a,b,c,且a∥b,c与a相交,求证:c与b也相交.16.用反证法证明:(1)已知:a<|a|,求证:a必为负数.(2)求证:形如4n+3的整数k(n为整数)不能化为两个整数的平方和.17.用反证法证明:等腰三角形两底角必为锐角.18.求证:两个三角形有两条边对应相等,如果所夹的角不相等,那么夹角所对的边也不相等.19.用反证法证明下列问题:如图,在△ABC中,点D、E分别在AC、AB上,BD、CE相交于点O.求证:BD和CE不可能互相平分.20.在线段AB上依次取C、D、E三点,将AB分为四段,试说明至少有一段不小于AB,同时,至少有一段不大于AB.21.如图所示,在△ABC中,AB>AC,AD是内角平分线,AM是BC边上的中线,求证:点M不在线段CD上.22.已知a,b,c,d四个数满足a+b=1,c+d=1,ac+bd>1.求证:这四个数中至少有一个是负数.23.设a,b,c是不全相等的任意整数,若x=a2﹣bc,y=b2﹣ac,z=c2﹣ab.求证:x,y,z中至少有一个大于零.24.用反证法证明:一条线段只有一个中点.25.如图,在△ABC中,D、E两点分别在AB和AC上,求证:CD、BE不可能互相平分.26.能否找到7个整数,使得这7个整数沿圆周排成一圈后,任3个相邻数的和都等于29?如果能,请举一例.如果不能,请简述理由.27.将自然数1,2,3,…,21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.28.已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.29.已知:△ABC的三个外角为∠1,∠2,∠3.求证:∠1,∠2,∠3中至多有一个锐角.30.已知一平面内的任意四点,其中任何三点都不在一条直线上,试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一内角不大于45°?请证明你的结论.参考答案:1.证明:假设一个三角形中有3个内角大于60°,则∠A>60°,∠B>60°,∠C>60°;∴∠A+∠B+∠C>180°,这与三角形内角和等于180°相矛盾,故在△ABC中至多有两个角大于或等于60°2.解:令b=4,c=5可以证明命题①不正确.若b=1,c=,可以证明命题③不正确.命题②正确,证明如下由c>1,且0<b<2,得0<<1<c.则c >>,c >>0故a2+ab+c=+(c ﹣)>03.解:证明:假设所求证的结论不成立,即∠A>60°,∠B>60°,∠C>60°,则∠A+∠B+∠C>180°.这与内角和为180°相矛盾.则假设不成立.则求证的命题正确.故答案为:>,>,>,180°,内角和180°,假设,求证的命题正确4.证明:假设l1不平行l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P=180°(三角形内角和定理),所以∠1+∠2<180°,这与∠1+∠2=180°矛盾,故假设不成立.所以结论成立,l1∥l25.证明:假设a∥b,∴∠1=∠2,(两直线平行,同位角相等.),与已知∠1≠∠2相矛盾,∴假设不成立,∴a不平行b6.证明:假设AB=AC,则,∠B=∠C,与已知矛盾,所以AB≠AC 假设三角形的三个内角A、B、C中有两个直角,不妨设∠A=∠B=90°,则A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,∴∠A=∠B=90°不成立;所以一个三角形中不能有两个直角8.证明:假设如果实数a、b满足a2+b2=0,那么a≠0且b≠0,∵a≠0,b≠0,∴a2>0,b2>0,∴a2+b2>0,∴与a2+b2=0出现矛盾,故假设不成立,原命题正确9.证明:①假设PB=PC.∵AB=AC,∴∠ABC=∠ACB.∵PB=PC,∴∠PBC=∠PCB.∴∠ABC﹣∠PBC=∠ACB﹣∠PCB,∴∠ABP=∠ACP,在△ABP和△ACP中∴△ABP≌△ACP,∴∠APB=∠APC.这与题目中给定的∠APB>∠APC矛盾,∴PB=PC是不可能的.②假设PB>PC,∵AB=AC,∴∠ABC=∠ACB.∵PB>PC,∴∠PCB>∠PBC.∴∠ABC﹣∠PBC>∠ACB﹣∠PCB,∴∠ABP>∠ACP,又∠APB>∠APC,∴∠ABP+∠APB>∠ACP+∠APC,∴180°﹣∠ABP﹣∠APB<180°﹣∠ACP﹣∠APC,∴∠BAP<∠CAP,结合AB=AC、AP=AP,得:PB<PC.这与假设的PB>PC矛盾,∴PB>PC是不可能的.综上所述,得:PB<PC10.证明:假设△ABC中能有两个钝角,即∠A<90°,∠B>90°,∠C>90°;所以∠A+∠B+∠C>180°,与三角形的内角和为180°矛盾;所以假设不成立,因此原命题正确,即△ABC中不能有两个钝角11.解:(1)如果设∠A=100°,那么∠A的补角=80°<100°,所以命题:“一个角的补角大于这个角”是假∵a⊥b,∴∠1=90°,∵b⊥c,∴∠2=90°,∴∠1=∠2,∴a∥c.故命题:“已知直线a,b,c,若a⊥b,b⊥c,则a⊥c”是假命题12.证明:假设PB≠PC不成立,则PB=PC,∠PBC=∠PCB;又∵AB=AC,∴∠ABC=∠ACB;∴∠ABP=∠ACP;∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC13.解:设一个锐角为30°,一个钝角为200°;则它们的度数和为230°≠180°,因此不是平角;故原命题是假命题14.解:假设a∥c不成立,则a,c一定相交,假设交点是P;则过点P,与已知直线b平行的直线有两条:a、c;与经过一点有且只有一条直线与已知直线平行相矛盾;因而假设错误.故a∥c15.证明:假设c∥b;∵a∥b,∴c∥a,这与c和a相交相矛盾,假设不成立;所以c与b也相交16.证明:(1)假设a≥0,则|a|=a,这与已知|a|>a 相矛盾,因此假设不成立,所以a必为负数;(2)假设4n+3的整数部分k能化成两个整数的平方和,不妨设这两个整数为α,β,则4n+3=α2+β2,因为(n+2)2+(﹣n2﹣1)≠α2+β2,所以假设不成立,故4n+3的整数k不能化为两个整数的平方和17.证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.已知:AB=A′B′,BC=B′C′,∠B≠∠B′,求证:AC≠A′C′.证明:假设AC=A′C′,在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SSS),∴∠B=∠B′,∴与已知,∠B≠∠B′矛盾,则假设不成立,∴AC≠A′C′.19.证明:连接DE,假设BD和CE互相平分,∴四边形EBCD是平行四边形,∴BE∥CD,∵在△ABC中,点D、E分别在AC、AB上,∴AC不可能平行于AC,与已知出现矛盾,故假设不成立原命题正确,即BD和CE不可能互相平分20.解:假设每一段都小于AB,则四段之和小于AB,这与已知四段之和等于AB相矛盾,假设错误,所以至少有一段不小于AB ,同时,至少有一段不大于AB21.解:假设点M不在线段CD上不成立,则点M在线段CD上.延长AM到N,使AM=MN,连接BN;在△AMC和△NMB中,BM=CM,∠AMC=∠BMN,AM=MN,∴△AMC≌△NMB(SAS);∴∠MAC=∠MNB,BN=AC;∴BN>AB,即AC>AB;与AB>AC相矛盾.因而M在线段CD上是错误的.所以点M不在线段CD上22.证明:假设a、b、c、d都是非负数,∵a+b=c+d=1,∴(a+b)(c+d)=1.∴ac+bd+bc+ad=1≥ac+bd.这与ac+bd>1矛盾.所以假设不成立,即a、b、c、d中至少有一个负数23.证明:假设x,y,z都小于0,∵x=a2﹣bc,y=b2﹣ca,z=c2﹣ab,∴2(x+y+z)=2a2﹣2bc+2b2﹣2ca+2c2﹣2ab=(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ca+c2)=(a﹣b)2+(b﹣c)2+(c﹣a)2<0,∴这与(a﹣b)2+(b﹣c)2+(c﹣a)2≥0矛盾,故假设不成立,∴x,y,z中至少有一个大于零24.已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,又因为AM=AB=AN=AB,这与AM<AN矛盾,所以线段AB只有一个中点M25.证明:假设CD、BE可以互相平分.则连接DE.则四边形BCED是平行四边形.∴BD∥CE与△ABC相矛盾所以:CD、BE不可能互相平分26.解:不能.理由:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排则a1+a2+a3=29,a2+a3+a4=29,a3+a4+a5=29,a4+a5+a6=29,a5+a6+a7=29,a6+a7+a1=29,a7+a1+a2=29.将上述7式相加,得3×(a1+a2+a3+a4+a5+a6+a7)=29×7.所以,与a1+a2+a3+a4+a5+a6+a7为整数矛盾!所以不存在满足题设要求的7个整数27.解:假设所有相邻的三个数,它们的和都小于33,则它们的和小于等于32.∴这21个数的和的最大值小于等于:32×21÷3=224,但是实际上,1+2+3+…+21=(1+21)×21÷2=231>224,所以假设不成立,则命题得证,∴将自然数1,2,3…21这21个数,任意地放在一个圆周上,其中一定有相邻的三个数,它们的和大于等于3328.证明:用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3不整除b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾;(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2,=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾;同理分别设a=3m±2,b=3n±1或a=3m,b=3n±2,或a=3m±2,b=3n±2,代入a2+b2会得到相同的结论.由此可知,a,b都是3的倍数29.证明:因为三角形的每一个外角都与相邻的内角互补,因为当相邻的内角是钝角时,这个外角才是锐角,又因为三角形中最多只有一个内角是钝角,所以三角形的三个外角中最多只有一个锐角30.证明:能.(1)如图a,若四点A,B,C,D构成凸四边形.则必有一个内角≤90°.不妨设为∠A.这是因为,假设四个内角都大于90°,则360°=∠A+∠B+∠C+∠D>4×90°=360°.矛盾.则∠BAC+∠CAD≤90°.则∠BAC与∠CAD 中必有一个≤×90°=45°.故结论成立.(2)如图b.若四点A,B,C,D构成四边形.则△ABC 中必有一个内角≤×180°=60°.不防设∠A≤60°.又∠A=∠BAD+∠CAD≤60°.则∠BAD与∠CAD值中必有一个≤×60°<45°.故结论成立。

反证法典型例题

反证法典型例题
证:假设 a > b不成立,则 a ≤ b 若 a = b,则a = b, 与已知a > b矛盾, 若 a < b,则a < b, 与已知a > b矛盾, 故假设不成立,结论 a > b成立。
例3.已知a≠0,求证关于x的方程ax=b有且只有 一个根。
证:假设方程ax + b = 0(a ≠ 0)至少存在两个根,
证明: 假设c<0, 则a+b>0, ab<0. ab+bc+ca=ab+(a+b)c<0. 矛盾!假设不成立.
所以, a,b,c>0.
例7.已知0<a,b,c<1, 求证: (1-a)b, (1-b)c, (1-c)a不可能同时大于1/4.
证明: 假设(1-a)b, (1-b)c, (1-c)a同时大于1/4.
2 22
例9.已知A,B,C为三个正角. 且sin2A+sin2B+sin2C=1. 求证: A+B+C<900.
解:假设A+B+C ≥900, 由于A,B,C为三个正角, 所以 它们都为锐角, 且有cos(A+B)<cos(A-B). 1=sin2A+sin2B+sin2C=1-cos(A+B)cos(A-B)
所以假设不成立,2是有理数成立。
应用反证法的情形:
(1)直接证明困难; (2)需分成很多类进行讨论; (3)结论为“至少”、“至多”、“有无穷多个” 这一类的命题; (4)结论为 “唯一”类的命题。
正难则反!
例6.已知a+b+c>0, ab+bc+ca>0, abc>0. 求证: a,b,c>0

初中数学反证法简单例子

初中数学反证法简单例子

初中数学反证法简单例子初中数学中的反证法是一种常用的证明方法,通过假设所要证明的命题不成立,然后推导出与已知事实相矛盾的结论,从而证明原命题一定成立。

下面我们来列举一些初中数学中常用的反证法的简单例子。

1. 命题:不存在任意两个不相等的正整数,使得它们的和等于它们的积。

假设存在两个不相等的正整数a和b,满足a + b = ab。

由于a和b不相等,不妨设a > b,那么有a > a/2 > b。

根据不等式性质,我们可以得到2a > a + b = ab,即2 > b。

但是正整数b不可能小于2,与假设矛盾。

因此,不存在任意两个不相等的正整数满足该条件。

2. 命题:存在一个无理数x,使得x的平方等于2。

假设不存在这样的无理数x,即对于任意实数x,x的平方不等于2。

那么我们可以考虑一个特殊的实数y,即y = √2。

根据无理数定义,√2不是有理数,因此是一个无理数。

而根据假设,y的平方不等于2,即y^2 ≠ 2。

然而,这与y = √2相矛盾。

因此,存在一个无理数x,使得x的平方等于2。

3. 命题:对于任意正整数n,2n不等于n的平方。

反证法证明:假设存在一个正整数n,使得2n = n^2。

可以将等式两边同时除以n,得到2 = n。

然而,这与n是一个正整数相矛盾。

因此,对于任意正整数n,2n不等于n的平方。

4. 命题:对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。

反证法证明:假设存在一个正整数n,使得n^2 + 3n + 2 = m^2,其中m是一个正整数。

可以将等式变形为n^2 + 3n + 2 - m^2 = 0。

这是一个关于n的二次方程,可以使用求根公式解得n = (-3 ± √(9 - 8(2 - m^2))) / 2。

由于n是一个正整数,因此根号内的值必须为正整数。

然而,当m取不同的正整数值时,根号内的值不可能为正整数,因此假设不成立。

因此,对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反证法证明题
例1. 已知∠A ,∠B ,∠C 为∆ABC 内角.
求证:∠A ,∠B ,∠C 中至少有一个不小于60o.
证明:假设∆ABC 的三个内角∠A ,∠B ,∠C 都小于60o,即∠A <60o,∠B <60o,∠C <60o,
所以∠A +∠B +∠C < 180O,
与三角形内角和等于180o矛盾,
所以假设不成立,所求证结论成立.
例2. 已知a ≠ 0 ,证明x 的方程ax =b 有且只有一个根.
证明:由于a ≠ 0 ,因此方程ax =b 至少有一个根x =b .
a 假设方程ax =
b 至少存在两个根,
不妨设两根分别为x1 , x2 且x1 ≠x2 ,
则ax1=b, ax2=b ,
所以ax1=ax2,
所以a(x1-x2 ) = 0 .
因为x1 ≠x2 ,所以x1 -x2 ≠ 0 ,
所以a = 0 ,与已知a ≠ 0 矛盾,
所以假设不成立,所求证结论成立.
例3. 已知a3+b3= 2, 求证a +b ≤ 2 .
证明:假设a +b > 2 ,则有a > 2 -b ,
所以a3> (2 -b)3即a3> 8 -12b + 6b2-b3,
所以a3> 8 -12b + 6b2-b3= 6(b -1)2+ 2 .
因为6(b -1)2+ 2 ≥ 2
所以a3+b3> 2 ,与已知a3+b3= 2 矛盾.
所以假设不成立,所求证结论成立.
例4. 设{a n}是公比为的等比数列,S n为它的前n 项和.
求证:{S n}不是等比数列.
证明:假设是{S }等比数列,则S 2=S ⋅S ,
n 2 1 3
2 2 2 2 1 1 1 即 a 2 (1+ q )2 = a ⋅ a (1+ q + q 2 ) .
因为等比数列 a 1 ≠ 0 ,
所以(1+ q )2 = 1+ q + q 2 即 q = 0 ,与等比数列 q ≠ 0 矛盾, 所以假设不成立,所求证结论成立.
例 5. 证明 是无理数.
m 证明:假设 是有理数,则存在互为质数的整数 m ,n 使得 =
.
n
所以 m = 2n 即 m 2 = 2n 2 ,
所以 m 2 为偶数,所以m 为偶数.
所以设 m = 2k (k ∈ N *) ,
从而有4k 2 = 2n 2 即 n 2 = 2k 2 .
所以n 2 也为偶数,所以 n 为偶数. 与 m ,n 互为质数矛盾.
所以假设不成立,所求证 是无理数成立.
例 6. 已知直线 a , b 和平面,如果 a ⊄
, b ⊂,且 a / /b ,求证a / /。

证明:因为 a / /b , 所以经过直线 a , b 确定一个平面。

因为 a ⊄
,而 a ⊂

所以 与是两个不同的平面.
因为b ⊂,且b ⊂ ,
所以
= b .
下面用反证法证明直线 a 与平面没有公共点.假设
直线 a 与平面
有公共点 P ,则 P ∈ = b ,
即点 P 是直线 a 与 b 的公共点, 这与 a / /b 矛盾.所以 a / /.
例 7.已知 0 < a , b , c < 2,求证:(2 - a )c , (2 - b )a ,(2 - c )b 不可能同时大于 1
证明:假设(2 - a )c , (2 - b )a ,(2 - c )b 都大于 1,
即 (2 - a )c>1, (2 - b )a>1, (2 - c )b>1,
则(2 - a )c (2 - b )a (2 - c )b >1 …①
(2 - a ) + a
又因为设 0 < a , b , c < 2,(2 - a ) a ≤ 2
= 1,
同理 (2 - b ) b≤1, (2 - c ) c≤1,
所以(2 - a )c (2 - b )a (2 - c )b ≤1 此与①矛盾. 所以假设不成立,所求证结论成立.
1 + y 1 + x 例 8.若 x , y > 0,且 x + y >2,则

中至少有一个小于 2
x
y
1 + y 1 + x 证明:假设
≥2,
≥2,
x
y
因为 x , y > 0,所以1+ y ≥ 2x ,1+ x ≥ 2 y ,
可得 x + y ≤2 与 x + y >2 矛盾. 所以假设不成立,所求证结论成立.
例 9.设 0 < a , b , c < 1,求证:(1 - a )b , (1 - b )c , (1 - c )a ,不可能同时大于 1
4
1 1 1
证明:假设设(1 - a )b > , (1 - b )c > , (1 - c )a > ,
4 4
4 1
则三式相乘:ab < (1 - a )b •(1 - b )c •(1 - c )a <

64
⎡(1 - a ) + a ⎤ 2
1
又∵0 < a , b , c < 1 ∴ 0 < (1 - a )a ≤ ⎢⎣
2 ⎥⎦ = 4 同理: (1 - b )b ≤ 1
, 4 (1 - c )c ≤ 1
4
1
以上三式相乘: (1 - a )a •(1 - b )b •(1 - c )c ≤
与①矛盾
64
所以原式成立
例 10. 设二次函数 f (x ) = x 2 + px + q ,求证: f (1) ,
f (2) ,
f (3) 中至少有一个不小于 1
. 2
证明:假设 f (1) , f (2) ,
f (3) 都小于 1
, 2
则 f (1) + 2 f (2) + f (3) < 2.
(1)
另一方面,由绝对值不等式的性质,有
f (1) + 2 f (2) + f (3) ≥ f (1) - 2 f (2) + f (3) (2)
= (1 + p + q ) - 2(4 + 2 p + q ) + (9 + 3 p + q ) = 2
(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确.。

相关文档
最新文档