实数完备性证明

合集下载

《数学分析》实数完备性七大定理证明与七大定理相互证明

《数学分析》实数完备性七大定理证明与七大定理相互证明

实数完备性的证明第一部分七个定理的证明1. 单调有界定理区间套定理证明:已知a n a n 1 (n),a n b n b l,由单调有界定理知{a n}存在极限,设lim a n = r,同理可知{b n}存在极限,设lim b n = rn ,由lim ( b nna n ) =0 得r r =0即r rn,有a n b n,令n ,有a n r r b n , n ,有a n r b n。

下面证明唯性。

用反证法。

如果不然。

则r i r2 , 同时对任意 a A , a r i , a D对任意b 有b r i b r2,不妨设r i r2 ,令r' r i r2 显然r i r' r22r A , r' B,这与A | B是R的一个分划矛盾。

唯-性得证。

定理证完。

2. 区间套定理确界定理证明:由数集A非空,知a A,不妨设a不是A的上界,另外,知b是A的上界,记[a i,b i ]=[a,b],用a i,b i的中点电虫二等分[a i,b i],如果引b i是A的上界,2 2则取[a2,b2】=[a i a i b i ];如果a i b i不是A的上界,则取[a?,2 2b2】=[a S , b i];用a2 , b2的中点邑匹二等分[a2 , b2】……如此继2 2续下去,便得区间套[a n , b n]。

其中a n不是A的上界,b n是A的上界。

n i由区间套定理可得,唯一的r [a n, b n],使lim a n = lim b n = r。

x A ,n nn nn i由 x b n ( n=1,2,),同理可证非空有下界数集有下确界。

定理证完 3. 确界定理T 有限覆盖定理证明:设E 是闭区间[a , b ]的一个覆盖。

定义数集A={x a |区间[a ,x ]在E 中存在有限子覆盖}从区间的左端点x a 开始.由于在E 中有一个开区间覆盖a ,因此a 及其右侧充分邻近的点均在 A 中.这就保证了数集A 是非空的.从数 集A 的定义可见,若x A,则整个区间[a ,x ] A.若A 无上界,则b A,那么[a ,b ]在E 中存在有限子覆盖. 若A 有上界,由确界定理可得r,使r=supA 。

实数完备性定理的等价性证明及其应用

实数完备性定理的等价性证明及其应用

实数完备性定理的等价性证明及其应用一、实数完备性定理的等价性证明:1.柯西收敛准则证明实数完备性:我们假设存在一个无穷序列{an},满足对于任意的正实数ε,都存在正整数N,使得当m > n > N时,有,am - an,< ε。

由于{an}是有序序列,它必然有上确界和下确界。

我们将上确界记为A,下确界记为B。

首先,我们来证明A和B是相等的。

假设A > B,那么A - B > 0,根据柯西收敛准则,我们可以找到正整数N1,使得当p > q > N1时,有,ap - aq, < A - B。

由于A是上确界,所以存在一个正整数n1,使得an1 > A - (A - B) = B。

同样地,我们可以找到正整数N2,使得当r >s > N2时,有,ar - as, < A - B。

由于A是上确界,所以存在一个正整数n2,使得an2 > A - (A - B) = B。

由于n1和n2是正整数,所以我们可以取N = max{N1, N2},使得当p > q > N时,有,ap - aq, < A- B。

但是,同时存在正整数n1和n2,使得an1 > B和an2 > B,与前面所述矛盾。

因此,A和B必然相等,记为C。

接下来,我们证明C是这个序列的极限。

假设对于任意的正实数ε,存在一个正整数N,使得当n > N时,有,an - C,< ε。

我们取ε =ε/2,那么根据柯西收敛准则,必然存在一个正整数N,使得当p > q >N时,有,ap - aq,< ε/2、由于C就是上确界和下确界,所以必然存在正整数n > N,使得,an - C,< ε/2、根据三角不等式,我们有,ap - C,≤ ,ap - aq, + ,aq - C,< ε/2 + ε/2 = ε。

因此,C就是这个序列的极限,这就证明了实数完备性。

《数学分析》实数完备性七大定理证明与七大定理相互证明

《数学分析》实数完备性七大定理证明与七大定理相互证明

《数学分析》实数完备性七大定理证明与七大定理相互证明在数学分析中,实数完备性是一个非常重要的概念。

实数完备性是指实数轴上不存在任何空缺的性质,即任何实数序列都有收敛的子序列。

实数完备性可由七大定理进行证明,并且这七个定理之间也可以相互证明。

下面将对这七大定理进行证明,并且展示它们之间的相互证明。

第一个定理是确界定理(或称上确界定理)。

它的表述是:有上界的非空实数集必有上确界。

证明如下:先证明存在性,假设S是有上界的非空实数集,令M为S的一个上界,那么对于S中的任意元素x,都有x≤M。

接下来我们来证明M是S的上确界。

首先,我们要证明M是S的一个上界,即对于任意x∈S,x≤M。

其次,我们要证明对于任意ε>0,存在一个元素s∈S,使得M-ε<s≤M。

这两点都可以使用导致上确界的性质来证明。

因此,我们证明了确界定理。

第二个定理是区间套定理。

它的表述是:若{[an,bn]}是一个递减的闭区间序列,并且满足an≤bn,则存在一个唯一的实数x同时含于所有闭区间[an,bn]中。

证明如下:首先,我们证明了区间套的任意两个闭区间之间的交集不为空。

其次,我们证明了{an}是一个递增有上界的实数序列,{bn}是一个递减有下界的实数序列。

因此,根据实数完备性的定义,存在唯一的实数x满足an≤x≤bn,即x属于所有闭区间的交集。

第三个定理是柯西收敛准则。

它的表述是:一个实数序列是收敛的充分必要条件是它满足柯西收敛准则,即对于任意ε>0,存在自然数N,使得当m,n≥N时,有,am-an,<ε。

证明如下:首先,我们证明了柯西收敛准则蕴含了实数序列的有界性。

其次,我们证明了柯西收敛准则蕴含了实数序列的单调性。

因此,根据实数完备性的定义,实数序列的柯西收敛准则是实数序列收敛的充分必要条件。

第四个定理是实数域的离散性。

它的表述是:任意两个实数之间必存在有理数和无理数。

证明如下:假设a和b是两个实数,并且a<b。

实数完备性六个定理的互相证明

实数完备性六个定理的互相证明
n
0 , x S ,使得 x ,
记为 xn a ( n ) 。如果不存在实数 a,使 xn 收敛于 a,则称数列 xn 发散。
lim xn a 0 , N N , n N ,有 xn a 。

二、一些基本概念
1.有界集: 设 S 是一个非空数集,如果 M R ,使得 x S ,有 x M ,则称 M 是 S 的
一个上界;如果 m R ,使得 x S ,有 x m ,则称 m 是 S 的一个下界。当数集 S 既有上界,又有下界时,称 S 为有界集。
a1 b1 a b a b , b1 S ,则记 a2 , b2 = 1 1 , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 2 2 2 an 1 bn 1 an 1 bn 1 a b an1 , bn1 二等分为 , bn 1 ,若 n 1 n 1 , bn 1 S , an 1 , 、 2 2 2
则记 a2 , b2 =
a1 b1 a b , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 an 1 , bn 1 二等分为 2 2
an 1 bn 1 an 1 bn 1 a b , bn 1 ,若 n 1 n 1 非 s 的上界,则记 、 an 1 , 2 2 2 an 1 bn 1 a b an , bn = , bn 1 否则记 an , bn = an 1 , n 1 n 1 ;...,得到一列闭区间 2 2
上界,则记 a2 , b2 =

实数完备性的六大基本定理的相互证明

实数完备性的六大基本定理的相互证明

1 确界原理非空有上(下)界数集,必有上(下)确界。

2 单调有界原理 任何单调有界数列必有极限。

3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。

4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。

5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。

) 直线上的有解无限点集至少有一个聚点。

6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。

一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。

关于实数完备性的6个基本定理

关于实数完备性的6个基本定理

其极限为无理数e,从而任一子列均收敛于e。
故{xn}在有理数域内没有收敛的子列。
6. 柯西收敛准则
在实数系中, {an}收敛
0,N ,m,n N ,有an am .
反例: {(1 1 )n }是满足Cauchy条件的有理数列, n
但其极限是无理数e. 即柯西收敛准则在有理数域不成立。
任取H的有限个元素,构成集合H *,
H * {( x1 r1, x1 r1 ),( x2 r2 , x2 r2 )( xn rn , xn rn )}
由于H *中的开区间都不含 2,且2n个端点都是有理数, 设这2n个有理数中与 2最靠近的数为 r, 则在r与 2之间所有有理数都在上述n个区间之外。 即H的任意有限覆盖不能盖住[1,2]Q .
n 但其极限是无理数e.
即数列的单调有界定理在有理数域不成立。
3. 区间套定理
若{[ an,bn ]}是一个区间套,则在实数系中存在唯一的点
,使 [an,bn],n 1,2,
反例:取单调递增有理数列{an},使an 2, 取单调递减有理数列{bn},使bn 2,
则 有理数域内构成闭区间套 [an ,bn ]Q, 其在实数系内唯一的公共点为 2 Q.
在有理数系中这六个命题不成立 。
1. 确界原理 在实数系中,任意非空有上(下)界的数集
必有上(下)确界。
反例:S {x | x2 2, x Q},sup S 2, inf S 2, 即S在有理数集没有确界。确界原理在有理数域不成立。
2. 单调有界定理; 在实数系中,单调有界数列必有极限。 反例:{(1 1)n }是单调有界有理数列,
实数完备性基本定理的等价性
实数基本定理等价性的路线 : 证明按以 下三条路线进行:

实数完备性的等价命题及证明

实数完备性的等价命题及证明

一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理) 设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则) 数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(1)(用确界定理证明单调有界定理)(2)(用单调有界定理证明区间套定理)(3)(用区间套定理证明确界原理)*(4)(用区间套定理证明有限覆盖定理)*(5)(用有限覆盖定理证明聚点定理)*(6)(用聚点定理证明柯西准则)*(7)(用柯西准则证明单调有界定理)(1)(用确界定理证明单调有界定理)〔证毕〕(返回)(2)(用单调有界定理证明区间套定理)设区间套.若另有使,则因.[证毕][推论]设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(返回)(3) (用区间套定理证明确界原理)证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕](返回)*(4)(用区间套定理证明有限覆盖定理)设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.[证毕][说明]当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.(返回)*(5)(用有限覆盖定理证明聚点定理)设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕][推论(致密性定理)]有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.(返回)*(6)(用聚点定理证明柯西准则)柯西准则的必要性容易由数列收敛的定义直接证得,这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.[证毕](返回)*(7)(用柯西准则证明单调有界原理) 设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ]在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.[例]证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证:(i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]。

实数完备性基本定理的相互证明

实数完备性基本定理的相互证明

实数完备性基本定理的相互证明实数完备性基本定理是数学分析课程中的重要定理之一,它刻画了实数的重要性质。

本文将从两个角度介绍实数完备性基本定理的证明,即从实数的有序性和上确界性质出发进行证明,相互补充,帮助读者更好地理解该定理。

一、从实数的有序性进行证明实数完备性基本定理可以通过比较序列与实数性质的关系来证明。

首先引入柯西序列的概念。

柯西序列是指一列实数序列,其满足对于任意正实数ε,存在正整数N,当n,m≥N时,|an-am|<ε。

柯西序列的定义即表明了序列中的元素越来越接近,它与实数的有序性相对应。

接下来,我们需要证明实数集合所有的柯西序列都是收敛的。

假设{an}是一个柯西序列,为了证明该序列的收敛性,我们需要构造出一个实数α,使得该序列收敛于α。

为此,我们可以构造一个新的序列{bn},其中bn=sup{am: m≥n}。

首先,根据实数的上确界性质,该集合非空且有上界,因此sup存在。

其次,易知bn递增且有界(因为其满足an≤bn),所以该序列收敛于某一个实数α。

接下来,我们证明an收敛于α。

根据柯西序列的定义,对于任意给定的ε>0,存在正整数N,使得当m,n≥N时,有|am-an|<ε。

那么对于给定的ε>0,根据序列{bn}的收敛性,存在正整数M,使得当n≥M时,有|bn-α|<ε/2,同时根据序列{bn}的递增性质,有bn≥an。

于是可以得到:|an-α|=|an-bn+bn-α|≤|an-bn|+|bn-α|<ε/2+ε/2=ε这表明对于任意给定的ε>0,总存在正整数N=M,使得当n≥N 时,有|an-α|<ε。

因此,an收敛于α,柯西序列收敛于实数α。

这样,我们就证明了任意柯西序列都是收敛的,即实数集合中的柯西序列都有收敛性。

由此可得实数集合是完备的。

二、从实数的上确界性质进行证明实数完备性基本定理也可以通过实数的上确界性质进行证明。

实数的上确界性质是指,非空有上界的实数集合必有上确界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.七大定理循环证明:1.单调有界定理→区间套定理证明:已知n a ≤1+n a (∀n ), n a ≤n b ≤1b ,∴由单调有界定理知{n a }存在极限,设∞→n limna = r ,同理可知{n b }存在极限,设∞→n lim n b =r ' ,由∞→n lim (nna b-)=0得r r '-=0即r r '=∀n ,有n a ≤n b ,令∞→n ,有n a ≤r r '=≤n b ,∴∀n ,有n a ≤r ≤n b 。

下面证明唯一性。

用反证法。

如果不然。

则∃ 21r r ≠,同时对任意 A a ∈,1r a ≤,2r a ≤对任意b 有1r b ≥ 2r b ≥,不妨设21r r <,令221'r r r +=显然2'1r r r <<⇒A r ∈',B r ∈',这与B A |是R 的一个分划矛盾。

唯一性得证。

定理证完。

2.区间套定理→确界定理证明:由数集A 非空,知∃A a ∈,不妨设a 不是A 的上界,另外,知∃b 是A 的上界,记[1a ,1b ]=[a ,b ],用1a ,1b 的中点211b a +二等分[1a ,1b ],如果211b a+是A 的上界,则取[2a ,2b ]=[1a ,211b a+];如果211b a+不是A 的上界,则取[2a ,2b ]=[211b a +,1b ];用2a ,2b 的中点222b a+二等分[2a ,2b ]……如此继续下去,便得区间套[na ,nb ]。

其中n a 不是A 的上界,n b 是A 的上界。

由区间套定理可得,∃唯一的 ∞=∈1],[n n nb ar ,使∞→n lim n a =∞→n limn b = r 。

A x ∈∀,由≤x n b (n=1,2,……), 令∞→n ,≤x ∞→n lim n b = r ∴ r是A 的上界。

而,0>∀ε 由∞→n limna = r 知,a r N ,n N ,nεε-∃>∀有当知,0从而X ,a r A ,X n ε-∈∃使 ∴r=supA 。

同理可证非空有下界数集有下确界。

定理证完。

3.确界定理→有限覆盖定理证明:设E 是闭区间[b a ,]的一个覆盖。

定义数集A={a x ≥|区间[x a ,]在E 中存在有限子覆盖}从区间的左端点a x =开始.由于在E 中有一个开区间覆盖a ,因此a 及其右侧充分邻近的点均在A 中.这就保证了数集A 是非空的.从数集A 的定义可见,若∈x A,则整个区间[x a ,]⊂A.∴若A 无上界,则b ∈A,那么[b a ,]在E 中存在有限子覆盖.若A 有上界, 由确界定理可得∃r,使r=sup A 。

∴r x ∀,都有∈x A 。

事实上,,0)( x r -∀,y ∃使得x x r r y =--)( 。

[y a ,]在E 中存在有限子覆盖,∴[x a ,]⊂[y a ,]在E 中存在有限子覆盖下证b <r 。

用反证法。

如果不然,r ≤b ,则r ∈[b a ,]。

因此,在E 中存在有一开区间覆盖αE覆盖r 。

0a ∃,0b ∈αE ,使0a 0b r 。

由上面论证知0a ∈A ,也即区间[0a a ,]在E 中存在有限子覆盖,向这个有限子覆盖再加上开区间αE ,即成为[b a ,]的覆盖。

∴0b ∈ A ,与r=sup A 矛盾。

定理证完。

4.用有限覆盖定理证明聚点定理证明:设E为直线上有界无穷点集,则存在M>o,使Ec[一M,M]中任何点不是E的聚点,则对每一个x∈[一M,M],必存在相应的6。

>o,使得在U(x,8。

)内至多含有E的有限多个点。

设H一{U(x,文)|x∈[一M,M])。

则H是[一M,M]的一个开覆盖。

由有限覆盖定理,H中存在有限个开覆盖U(x,,艿。

,)(j一1,2,3。

……)构成[一M,M]的一个开覆盖,当然也覆盖了E。

由邻域U(x,,文,)的原意,在其内至多含有E的有限多个点x,(j一1,2,3,……)。

故E为有限点集,这与题设E为无穷点集相矛盾。

故[一M,M]中至多有E的一个聚点。

5.用聚点定理证明致密性定理证明:若数列{x。

}中含有无限多个相等的项,则由这些项组成的子列是一个常数列,显然收敛。

若数列{x。

}不含有无限多个相等的项,则由聚点定理,点集{x。

}至少有一个聚点,记为x。

,由聚点的等价定义令£1—1,存在x。

1∈U(xo,£1)n{x。

}且x。

1≠Xo;令£2一min{1/2,J xn 】一xo f),存在x 。

2∈U (xo ,£2)n{x 。

)且x 。

2≠xo(显然x 。

2≠x 。

1);令ek —min{1/k ,I x 。

k —xo{),存在x 。

k ∈U (x 。

,£k)n{x 。

)且x 。

k ≠xo(显然x 。

k ≠x 。

i ,i 一1,2,3,……k 一1); 从而得到{x 。

)的子列{x 。

t),它的各项互不相 同,且Ix 。

k —xo I<£k ≤1/k 。

于是{x 。

k)收敛于x 。

6.紧致性定理→柯西收敛定理证明:必要性。

已知}{n x 收敛,即R r ∈∃,∞→n lim n x =r ,即0 ε∀,,当N n ,有|n x -r|2ε 。

因此,只要Nn ,Nm ,有|n x -m x |=|n x -r+r-m x |≤|n x -r|+|r-m x |ε 。

充分性。

先证}{n x 有界。

对1=ε,N ∃,当N n ,N m ,有|n x -m x |1 。

取定n =N+1,则只要N n ,有|n x -0n x |1 ,从而|n x |=|n x -0n x +0n x |1 +|0n x |,令M=max (|1x |,……,|N x |,1+|0n x |),则|n x | M (n ∀)。

下证}{n x 有极限存在。

}{n x 有界,由紧致性定理可得,∃}{n x 的子数列}{kn x 且收敛于r 。

即0 ε∀,K ∃,当K k 时,有|kn x -r|2ε 。

另外,1N ∃,当1N n ,1N m ,有|n x -m x |2ε 。

取N=max (1+K n ,1N ),则只要N n ,取N k 0,则|n x -r|=|n x -0k x +0k x -r|=|n x -0k x |+|0k x -r|ε 。

∴∞→n lim n x =r 。

定理证完。

7.柯西收敛定理→单调有界定理证明:设}{n x 是单调上升有上界的实数列。

用反证法和柯西收敛定理。

若}{n x 不存在极限。

则0 ε∃,N ∀,∃N n ,有n x -N x =|n x -N x |ε 。

依次取1N =1,1n ∃ 1N ,使1n x -1x 0ε≥,=1n ,12n n∃,使2n x -1n x 0ε≥,……,kN =1-k n , kn∃kN ,使kn x -1-k n x 0ε≥。

把它们相加,得到kn x -1x 0εk ≥ ∴G ∀,01εx G k -∀ ,有G x kn,与}{n x 有界矛盾,故}{n x 必有极限。

定理证完。

二.七大定理相互证明1.单调有界定理→确界定理证明:已知实数集A 非空。

∃A a ∈,不妨设a 不是A 的上界,另外,知∃b 是A 的上界,记1a =a ,1b =b ,用1a ,1b 的中点211b a +二等分[1a ,1b ],如果211b a +B ∈,则取2a =1a ,2b =211b a +;如果211b a +A ∈,则取2a =211b a +,2b =1b ;……如此继续下去,便得两串序列}{n a }{n b 。

其中A a n ∈单调上升有上界(例如1b ),B b n ∈单调下降有下界(例如1a )并且nn a b -=211a b -)(∞→n 。

由单调有界定理,知∃r ,使∞→n lim na= r 。

由∞→n lim(nna b-)=0 有∞→n lim na+(nna b-)= r}{n b 是A 的上界,∴A x ∈∀,有≤x n b (n=1,2,……),令∞→n ,≤x ∞→n lim nb = r ∴ r 是A 的上界。

而,0>∀ε 由∞→n lim na = r 知,a r N ,n N ,n εε-∃>∀有当知,0从而X ,a r A ,X n ε-∈∃使 ∴r=supA 。

同理可证非空有下界数集有下确界。

定理证完。

2.确界定理→单调有界定理证明:设}{n x 是单调上升有上界的实数列。

由确界定理可得,∃r ,使r=sup }{n x 。

rx n n ≤∀∴有,,并且εε-∃∀r x ,x ,N N 有0r x x r N n n N ≤≤≤-∀∴ε有, ,即ε||r xn-∴∞→n limnx = r 。

单调下降有下界情况的证明同用实数基本定理对此定理的证明。

定理证完。

3.确界定理→区间套定理证明:由[1+n a ,1+n b ] ⊂[n a ,n b ],知}{n a 是单调上升有上界的实数列,}{n b 是单调下降有下界的数列。

且1b 是n a 的上界,1a 是nb 的下界。

设∞→n lim na= r ,∞→n lim n b=r ',由确界定理对的证明知r=sup }{n a ,r '=inf }{n b 。

由∞→n lim(nna b-)=0得r r '-=0即r r '==sup }{n a =inf }{n b∴∀n ,有n a ≤r ≤n b 。

唯一性证明同用实数基本定理对区间套定理的证明(即一.3)。

定理证完。

4.确界定理→有限覆盖定理证明:设E 是闭区间[b a ,]的一个覆盖。

定义数集A={a x ≥|区间[x a ,]在E 中存在有限子覆盖}从区间的左端点a x =开始.由于在E 中有一个开区间覆盖a ,因此a 及其右侧充分邻近的点均在A 中.这就保证了数集A 是非空的.从数集A 的定义可见,若∈x A,则整个区间[x a ,]⊂A.∴若A 无上界,则b ∈A,那么[b a ,]在E 中存在有限子覆盖.若A 有上界, 由确界定理可得∃r,使r=supA 。

∴r x ∀,都有∈x A 。

事实上,,0)( x r -∀,y ∃使得x x r r y =--)( 。

[y a ,]在E 中存在有限子覆盖,∴[x a ,]⊂[y a ,]在E 中存在有限子覆盖下证b <r 。

用反证法。

如果不然,r ≤b ,则r ∈[b a ,]。

因此,在E 中存在有一开区间覆盖αE覆盖r 。

0a ∃,0b ∈αE ,使0a 0b r 。

由上面论证知0a ∈A ,也即区间[0a a ,]在E 中存在有限子覆盖,向这个有限子覆盖再加上开区间αE ,即成为[b a ,]的覆盖。

相关文档
最新文档