10kV架空线路单相接地故障的定位方法分析
10kV配电线路单相接地故障及解决措施分析

10kV配电线路单相接地故障及解决措施分析摘要:随着我国经济的快速发展,人们的工作和生活对电能的需求也越来越大,供电工作也面临着越来越高的要求,在这种发展趋势下,保证供电的稳定性和连续性成为了供电部门的重要工作之一。
针对配电线路中的故障,供电部门应该及时地采取有效措施,为整个电力系统的稳定运行提供保证。
关键词:10kV配电线路;单相接地故障;解决措施在这个瞬息万变的社会,为了跟上时代的步伐,任何行业都需要做出相对应的改变。
随着社会经济的快速增长以及城市化速度的加快,电力企业必须要跟上时代的前进步伐,尤其是10kV的配电线路,必须要得到科学合理的安排,同时,高压线路的数量也需要不断增加,这样才能满足大多数用户的用电需求。
1.10kV配电线路采用单相接地时会发生的故障排除高压配电线路出现的故障往往是由操作人员的失误所导致的,一般都是工作人员在值班过程中未能及时发现问题并且科学合理地处理,这就导致了高压配电线路的中断,进而影响到了居民的日常生活。
在高压配电线路发生故障的事件中,很大一部分是非人为因素,例如导线断开和恶劣天气等。
在一些特殊的区域,天气的问题会导致线路出现故障,这些地方时常会有雷暴现象,再加上目前高压线路的防雷暴设备尚未完善,这样一来,一旦发生地闪和云闪等现象,产生的电压就会对高压配电线路造成非常不良的影响,这也就是俗称的10kV配电线路单相接地故障。
10kV架空线路故障定位及抢修支持系统的结构如图1所示:图1 功能结构图1.1 10kV配电线路单相接地故障的种类在众多的故障类型中,有一种比较特别的故障,称为稳定的接地,这种故障可以分为完全接地和不完全接地。
在这两种情况中,完全接地是金属性接地,一旦实际的线路中发生了完全接地的现象,那么这时线路中的相电压数值就会在一瞬间变为零,可以正常工作的线路中的电压数值则会发生正常的变化。
而另一种不完全接地的故障表现与前一种有所不同,这种接地类型属于非金属性,也就是利用高电阻接地或者使用电弧来接地的方法。
10kV配电线路单相接地故障分析

10kV配电线路单相接地故障分析摘要:随着电力系统的不断地发展过程中,10kV配电线路系统逐步成为电力系统中的重要组成部分,而且10kV配电线路涉及范围比较大,因此,在电力系统所有发生的故障统计中,单相接地故障统计数量占所有故障数量的五分之四左右。
因此,在电力系统故障的时候快速对故障位置进行定位,尽快的找到故障地点,排除故障,恢复供电,成为首当其冲的重要应对措施,目前的故障定位方法越来越制约电力系统故障排除的效率。
关键词:10kV;配电线路;单相接地;故障;措施随着人民的生活水平日益提高、人民的自我意识不断提升,人们对于权力维护的意识也逐渐增加,居民对电量使用的增加,也使得人们对供电企业产生了一定的要求。
因此这就要求供电企业在为广大人民群众提供便利的同时提高自身的服务质量,能够积极接受来自民众的意见,当出现各种突发状况时候积极、尽心尽力解决,才能更好的发展电力产业。
另外对于文章所述的单相接地等问题,我们也要不断从工作生活中想办法解决并尽量避免,也希望通过未来的技术发展等,我们的电力配置可以更好地为人民服务。
一、单相接地故障特点正常运行时,三相电压对称,每相都有一个超前对应相电压的电容电流流入大地,对地电容电流之和为0。
若A相发生单相接地,则其对地电压变为0,对地电容被短接,电容电流也变为0。
非故障相对地电压变为该相对A相的线电压,即幅值升高倍。
同时,故障线路零序电流等于系统中所有非故障原件(不包括故障线路本身)对地电容电流总和,方向由线路侧流向母线。
若中性点经消弧线圈接地,则故障点电流增加一个电感分量,流经故障点的电流则变为全系统对地电容电流和该电感电流的相量和。
二、10kV配电线路单相接地故障常见原因(一)自然因素10kV配电线路的工程长时间暴露与野外环境,此时该工程就会受到诸多自然因素的影响,较为常见的有风暴、暴雨、树枝压迫等等,在此类因素的影响下会使线路单相接地不良好,从而引发单相接地故障。
10kV线路单相断线接地故障分析

10kV线路单相断线接地故障分析发布时间:2021-05-13T10:02:11.037Z 来源:《基层建设》2020年第30期作者:王立娜[导读] 摘要:文章重点分析了10kV单相接地故障的特征,在此基础上讲解了负荷侧单相接地的危害,最后讲解了单相接地的查找方法和有效的防范措施,望能为有关人员提供到一定的帮助和参考。
云南电网有限责任公司楚雄供电局云南楚雄 675000摘要:文章重点分析了10kV单相接地故障的特征,在此基础上讲解了负荷侧单相接地的危害,最后讲解了单相接地的查找方法和有效的防范措施,望能为有关人员提供到一定的帮助和参考。
关键词:小电流接地;单相接地;处理1、前言近年来,我国经济的快速发展,同时也促进了电力行业的发展。
在电力系统生产的过程中,为能有效确保到供电的安全稳定性、降低企业的投入成本就应当对配电网中单相接地中存在的故障展开分析和研究,寻找出科学合理的解决措施。
2、单相接地故障的象征在实际运行中,10kV配网线路单相接地故障约为10kV接地故障的五分之四左右。
10kV线路为属于中性点不接地系统,单相接地故障可分为电源侧单相接地和负荷侧单相接地。
2.1电源侧单相接地电源侧单相接地又可分为金属性接地和非金属性接地。
金属性接地指故障相直接接地,故障相与大地同电位,非故障相Up(相)升至UL(线);非金属性接地是指故障相非直接接地,如通过高阻接地等,故障相电压降低但与大地仍有电位差,而非故障相Up(相)有所升高。
单相接地故障发生后,配网网络的线电压仍保持对称状态,一般可持续运行一两个小时。
2.2负荷侧单相接地当10kV线路在断线负荷侧接地时,线路三相对地绝缘从电源侧看是良好的,系统的电压基本无变化。
断线相的电流值稍稍降低,但它几乎不影响总电流,因此很容易被认为是三相负载变化,不可能从变电站的电压和电流变化中反映出故障。
但此故障还是存在事故安全隐患的。
3、负荷侧单相接地分析图1线路负荷端接地示意图由图1可知,电源输出三相对称线电压,我们虚拟1个三相对称星型接线电源等效。
试论10kV电力系统单相接地故障分析与处理方法

试论10kV电力系统单相接地故障分析与处理方法10kV电力系统是现代电力系统中常见的一种电压等级,而单相接地故障是在10kV电力系统中比较常见的故障之一。
这种故障如果处理不及时和有效,就有可能对电力系统的安全稳定运行产生影响。
本文将从10kV电力系统单相接地故障的原因、特点及处理方法等方面进行论述,以便于更好地理解和处理此类故障。
1. 设备故障:10kV电力系统中的变电所、配电室、开关设备等设备在长期运行中可能会出现故障,例如设备内部的绝缘击穿、接触不良等问题,从而导致设备出现单相接地故障。
2. 外部因素:10kV电力系统所处的环境中可能存在各种外部因素,如雷电、动物触碰、人为操作失误等,这些因素也可能导致单相接地故障的发生。
3. 设计缺陷:有些10kV电力系统在设计上可能存在一些缺陷,如绝缘距离不足、接地装置设置不当等,这些设计缺陷也有可能引发单相接地故障。
二、10kV电力系统单相接地故障的特点1. 故障电流大:单相接地故障时,故障线路上的电流会突然增大,有可能远远超过正常运行时的电流值。
2. 导致相间故障:单相接地故障有可能会引起相间故障,对电力系统的其他线路产生影响。
3. 安全隐患大:单相接地故障会导致线路和设备的绝缘受损,存在着较大的安全隐患,一旦处理不当就可能引发火灾、电击等事故。
1. 及时排除故障原因:一旦发生单相接地故障,首先要及时排除故障的具体原因,找出是设备故障、外部因素还是设计缺陷引起的故障,以便有针对性地采取后续处理措施。
2. 绝缘检测和维修:对发生单相接地故障的设备和线路进行绝缘检测,找出绝缘击穿、绝缘老化等问题,并及时进行维修和更换,保证设备和线路的正常运行。
3. 接地处理:针对发生单相接地故障的设备和线路进行接地处理,提高绝缘等级,减少接地故障的发生概率。
4. 故障检测与消除:在电力系统中设置故障检测装置,一旦发生单相接地故障能够及时报警并消除故障,保证电力系统的安全可靠运行。
10kV配电线路单相接地故障定位新方法的研究和应用

接地 线 路注 入特 定 频 率 的 电流 信 号 , 用 信 号 寻 迹 原 理 即可 实现 故 障选 线并 可确 定故 障 点 。
( 1 ) 测 试信 号 发 生装 置 : 当线 路 发 生 单 相 接 地 故 障时 , 该 装置 可 向 1 0 k V故 障 线路 注入 异 频 检 测 信号 , 以使 手持 信号 检 测 装 置 根 据此 信 号 进 行 故 障
条 拉 合 以 寻 找故 障 线 路 , 工作量 较大 。 故 障测 距 法 受 路 径 阻抗 、 线 路 负荷 和 电源 参 数 的影 响 较大 , 对 于带 有 多分 支 的农 网配 电线路 , 阻抗 法 无 法排 除伪 故 障点 。
1 0 k V架空线路发 生故 障后 , 停 电 快 速 准 确 定 位
集 中在单 相接 地 故 障定 位 方 面 , 主要 分 为 逐条 拉 线 法、 故 障测 距法 、 在线 监测 法 和信号 注 入法 等 。
逐 条 拉 线 法 是 根 据 系 统 中 的 某 一 条 线 路 发
生 单 相接 地 故 障时 , 线路 中有零 序 电压 产生 , 如
果 操作人员将 某一条 线路拉 开 后 , 零 序 电压 就 消
.
8 3・
贵 州电力技术
第 l 6卷
负 荷 电流 。
( 5 ) 操 作人 员 远离 高 压 , 巡 查 人 员 在 地 面 通 过
绝 缘杆 操作 , 安全 可 靠 。
( 3 ) 手持数据接收装置 : 用 于 接 收 并 显 示 信 号 检测 装置 发 回 的测 量 数 据 ( 负 荷 电流 、 异 频电流 ) , 从 而判 断单 相接 地故 障 的故 障点 。
定位。
10kv配电网单相接地故障及处理方法的分析

2020.1 EPEM53电网运维Grid Operation摘要:分析小电流接地系统10kV配电网最为常见的单相接地故障,探讨故障的成因、危害以及具体的表现形式,分析优化解决路径,加强技术支持系统应用等,提高故障消除的时效性。
关键词:10kV配电网;单相接地故障;接地故障区域10kV 配电网单相接地故障及处理方法的分析国家电网福建省电力有限公司大田县供电公司 廖尚誉在发生单相接地故障时10kV 配电网需局部停电以便查找消除故障,这将会对生产生活的连续性造成一定的影响。
10kV 配电网的运行管理人员只有按照分层分析方法进行灵活的技术调整,才能够全面提高电网运行的安全稳定性。
1 10kv 配电网单相接地故障1.1 单相接地故障特征单相接地故障的发生与天气情况有关,一般来说,晴朗的天气出现单相接地故障的概率较低,而如果降水较为密集、雷电活动频繁、风力超过六级、24小时降雪量超过10mm,则单相接地故障发生的概率将会显著的提高。
在小电流接地系统发生单相接地故障时,10kV 配电网故障相的对地电压会显著的降低,降低幅度超过70%,非故障相的相电压会升高40%~80%,系统线电压仍然保持对称,线电压有效值依然处于正常供电电压,故障电流值较小,可以给用户继续稳定供电1~2个小时,但随着电网长期非正常运行,如果没有迅速采取事故处理措施,将对用户的正常供电和电力设备造成严重的威胁。
如果线路持续保持故障状态,将增加对绝缘薄弱处击穿的可能,进而发展为相间短路,造成事故跳闸,扩大停电范围。
1.2 单相接地故障的原因不可抗力原因。
不可抗力是造成单相接地故障的主要原因之一,在风力超过十级、强对流天气或者其它泥石流、滑坡、洪涝、鸟害等自然灾害影响下,极易发生单相接地故障。
受极端雨雪、冰雹或雷电的影响下,易造成由绝缘子单相击穿、导线单相断线、避雷器遭受破坏等设备故障引起的单相接地故障。
而在大风天气中,易引起树枝触碰导线、飘浮物挂碰导线,甚至发生树木倾倒压导线、电力杆塔坍塌等线路走廊遭受严重破坏的事件,从而形成单相接地故障。
试论10kV电力系统单相接地故障分析与处理方法

试论10kV电力系统单相接地故障分析与处理方法10kV电力系统是电力系统中常见的一种电压等级,而单相接地故障是在电力系统中经常发生的故障之一。
接地故障的发生会对电力系统的安全稳定运行造成影响,因此对接地故障的分析和处理显得尤为重要。
本文将从10kV电力系统单相接地故障的原因、特点、分析方法以及处理方法进行论述,希望能给读者提供一定的参考和帮助。
一、10kV电力系统单相接地故障的原因:在10kV电力系统中,单相接地故障的原因可能有很多,主要包括以下几个方面:1.设备老化:电力系统中的设备如变压器、开关、断路器等随着使用时间的增加会逐渐老化,老化设备可能造成电气绝缘的减弱,导致接地故障的发生。
2.操作失误:操作人员在操作设备的过程中,如果操作不当或疏忽大意,可能会导致设备出现故障,进而引发接地故障。
3.外部环境影响:外部环境的影响也是引发单相接地故障的重要原因,比如雷击、动物触碰、植被生长等都可能导致接地故障的发生。
二、10kV电力系统单相接地故障的特点:1.电压波动:在接地故障发生后,电压波动较大,甚至可能导致电力系统的停电。
2.过流保护动作:接地故障引起的过电流可能会导致过流保护装置的动作,从而影响电力系统的正常运行。
3.设备振动和声响:接地故障造成的故障电流通过设备会产生振动和声响,这也是接地故障的一个特点。
4.绝缘破坏:接地故障可能导致电气设备的绝缘破坏,进而影响设备的正常运行和安全性。
三、10kV电力系统单相接地故障的分析方法:1.现场检查:一旦接地故障发生,首先需要进行现场检查,查找故障点的具体位置,可以通过巡视设备、检测电流及电压等方式进行检查。
2.故障特征分析:通过对接地故障特征的分析,比如电压波动、设备振动和声响等特点,可以初步确定接地故障的性质和范围。
3.设备运行参数分析:对相关设备的运行参数进行分析,比如电流、电压、功率因数等参数的变化,以确定接地故障的具体原因和影响。
4.数据记录分析:通过对电力系统运行数据的记录进行分析,可以找出故障点并确定故障原因,以便制定相应的处理方案。
10kV线路单相接地故障判断与处理

(3)确 定 单 相 接 地 区 域 后 ,对 配 网 自动 化 系 统 全 覆 盖 的 变 电 站 ,首 先 试 拉 三 相 电 流 不 平 衡 的 线 路 ,其 次 结 合 配 网 自动 化 系 统 、故 障 指 示 仪 提 供 的 信 息 分 段 试 拉 ; 对 配 网 自动 化 系 统 没 有 完 全 覆 盖 的 变 电 站 ,首 先 试 拉 非 配 网 自动 化 线 路 ,其 次 试 拉 配 网 自动 化 线 路 ;对 非 配 网 自 动 化 系 统 的 变 电 站 ,按 照 调 度 规 程 试 拉 接 地 原 则 进 行 试 拉 。
根 据 日常 O-相 接 地 故 障 出 现 的 特 征 进 行 分 类 ,单 相 接 地 故 障 可 归 纳 为 四类 ,具 体 如 下 。
(1)完 全 接 地 。 如 果 发 生 一 相 完 全 接 地 ,则 故 障 相 的 电压 降 到 零 ,非 故 障 相 的 电 压 升 高 到 线 电 压 ,此 时 电 压 互 感 器 开 口 三 角 处 出 现 100V电 压 。 ’ (2)不 完 全 接 地 。 当 发 生 一 相 不 完 全 接 地 时 ,即 通 过 高 电 阻 或 电 弧 接 地 ,中 性 点 电 位 偏 移 ,这 时 故 障 相 的 电 压 降 低 ,但 不 为 零 ,非 故 障 相 的 电 压 升 高 ,它 们 大 于 相 电 压 ,但 达 不 到 线 电 压 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10kV架空线路单相接地故障的定位方法分析
发表时间:2018-11-14T16:04:50.920Z 来源:《防护工程》2018年第20期作者:张雄标
[导读] 近年来,经常出现10kV架空线路单相接地故障,影响了配网系统的正常运转,降低了供电质量,必须找准故障线路,科学定位故障线路区段
广东电网有限责任公司清远供电局 511500
摘要:近年来,经常出现10kV架空线路单相接地故障,影响了配网系统的正常运转,降低了供电质量,必须找准故障线路,科学定位故障线路区段,明确故障点,借助新的信息技术科学定位故障点。
文章首先分析了10kV架空线路单相接地故障定位与选线的必要性,然后探究了具体的故障定位方法。
关键词:10kV架空线路;单相接地故障;供电系统;故障定位;故障选线
1 10kV架空线路单相接地故障定位的意义
10kV架空线路发生单相接地故障频率较高,故障发生后可能造成故障跳闸,电气装置损坏、继电保护性设备不动作,配电线路大规模断电等问题。
这些故障问题的出现会为配网带来巨大的经济损失,引发较为复杂的事故与伤亡问题。
引发架空线路故障问题的原因十分复杂,其中单相接地故障就是主要原因之一。
单相接地故障会引发多方面的危害性问题,具体体现在:第一,因为现阶段大多数10kV输电线变压器一端选择三角形接法,尚未设置消弧线圈,某一线路出现单相接地故障,其他线路对地工频电压就会相对上升,使得用电设备走向过电压运行模式,从而形成两点、多点的故障短路以及相间短路问题,造成严重的跳闸停电问题,也可能导致电缆烧毁,引发严重的经济损失性问题。
第二,通常的配电网都选择中性点接地模式。
一旦线路出现单相接地故障,因为无法形成低阻抗短路回路,就会导致接地短路电流变小,出现小电流接地的问题,更重要的是电网结构一般呈现出树形结构,单端电源供电。
因此,一旦出现单相接地故障,则很难判断究竟故障所在的具体相路、方位,也就是无法准确定位故障位置。
现阶段,针对这一问题依然选择拉路法,依靠这一方法来实施单相接地选线,或者通过人工巡视的方法来目测故障接地的具体位置,这无疑会加剧供电部门故障排除的成本投入,也影响供电恢复的时间,从而引发更为严重的单相接地问题。
从以上分析能够看出,10kV架空线路单相接地故障问题不仅会影响架空线路自身的运转与运行,影响供电质量,还可能造成其他较为严重的供电系统危害和风险,而且当前的故障定位技术也相对落后,无法同现代化自动化的电力系统相适应,亟待改进和发展。
因此,必须加强10kV架空线路单相接地故障的定位技术和方法的研究,发挥这些方法的积极作用。
2 10kV架空线路单相接地故障的定位方法
2.1 以往的故障定位模式
10kV架空线路配电网单相接地故障定位通常采用人为的巡检的方法,故障查找工作者要围绕故障线路来巡查、寻找,逐渐排除发现故障点,最终解决故障。
这样的方法往往会延长时间,也会加大人力、物力等的投入与消耗,而且会影响用户的正常用电,影响供电服务质量。
由此可见,传统的单相接地故障定位方法具有一定的局限性,需要改进和优化。
2.2 改进后的故障定位模式
2.2.1 阻抗法。
当故障发生时,可以通过测量故障线路的电流、电压,来计算故障回路的阻抗,再假设架空线路为均匀性,其长度与阻抗则成正比,根据这一关系,就能大致计算得出故障线路的位置。
这一故障定位法最明显的优势体现在:成本低、简便安全;然而其也存在缺陷,那就是很容易受到路径阻抗、电源参数等因素的影响。
通常阻抗法适合应用在结构相对基础、线路较为清晰、简单的架空线路中。
同时,阻抗法还存在一些弱点,那就是不能有效识别真正的故障点,也无法及时排除伪故障点。
因此,阻抗法不适合用在分支较多、结构复杂的配网线路中,一般来说,阻抗法只作为一种附加的辅助性方法用在架空线路单相接地故障定位,将阻抗法同S注入法、行波法等有效配合起来,能够更加有效地定位故障。
2.2.2 注入法。
交流注入法的具体工作过程为:依靠重合器将发生故障的线路隔离出来,再输入高压信号,并使电流控制在100~200mA。
再利用检测器顺着架空线路来逐级检查,自隔离部位的初始位置开始到末尾慢慢检查,一旦发现被检测区段的前后存在两倍以上的信号差,就能初步断定故障点大概在这一位置。
这种检测方法也存在一些缺点和弊端,这是由于通常情况下,架空线路和地面之间存在一定距离,更长的距离达到10米,期间电流也相对较小。
然而,因为所测算的信号同流经线路的信号之间成正比。
这种定位检测方法无需过高的精度,对于故障点附近较为明显、强度较高的信号,检测器就能将其准确地检测出,进而科学定位故障点。
2.2.3 行波法。
架空线路出现故障问题时,会对应出现行波,可以根据行波在母线与故障点间来回往返所花费的时间来对应测算故障的实际距离,或者通过分析行波抵达线路两侧的时间差来对应测算出故障距离。
这种故障定位法就是行波法,主要的行波法包括四大类。
A 类行波定位:就是通过依靠故障发生时出现的行波来具体分析单端故障所在的位置。
B类行波定位:就是通过依靠故障发生时出现的行波来具体分析双端故障所在的位置。
C类行波定位:当线路发生故障后,认为地把脉冲信号输入。
E型行波定位:当单线接地故障出现后,在开关重合闸的一刹那来输入电流脉冲。
同时,行波的运行会受到故障点的干扰,因为位于故障点之前和之后的波形会差异较大,位于故障点的相位差也会发生畸变,在已经定位故障区域的基础上,凭借行波能量对应发现故障点。
由于10kV配网拓扑结构相对简单、稳定,根据S、V的关系,能够知道行波达到故障点的时长,对应算出行波能量。
假设故障区域的行波能量忽然上升,则意味着能量较高的点为故障点,具体可以运用以下公式计算:
式中:i为节点行波;j为频带;x为离散点个数。
行波法的故障检测法其构造相对简单,便于操作,而且不容易受到各种变化性因素的影响,行波法在实际运用中,要想切实发挥故障定位的功能,就要重点捕捉行波波头,明确波头抵达的具体时间来明确故障的位置。
行波法在故障定位中也存在一些弱点和问题,那就是由于行波信号属于传播性质的混合信号,这些信号可能会对行波定位故障的精准度带来影响,因为不同的传播方式,有不同的频率分量,对应的传播速度也不同,最终造成行波畸变现象的出现,这样就会影响行波法定位故障的精准度。
3 结语
10kV架空线路结构相对复杂,且存在较多的分支线路与节点,这就使得其故障判断难免出现困难,必须加大对单相接地故障定位方法
的研究力度,开创更多的单相接地故障定位的科学方法,提高架空线路的运行质量和水平。
参考文献:
[1] 梁志瑞.一种小电流接地系统单相接地故障测距新方法[J].电力系统自动化,2009,(5).
[2] 丁荣,王书孟,佟岩冰.10kV及以下配电线路典型故障分析与预防[M].北京:中国电力出版社,2012.。