数字图像处理实验 实验二 基于直方图均衡化的图像增强

合集下载

图像增强实验报告

图像增强实验报告

图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。

本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。

一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。

二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。

2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。

3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。

4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。

5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。

三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。

首先,我们对该图像进行了直方图均衡化处理。

结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。

然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。

接下来,我们采用了拉普拉斯算子增强方法。

通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。

然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。

最后,我们尝试了灰度变换方法。

通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。

与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。

综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。

基于中值滤波和直方图均衡化的图像增强方法研究

基于中值滤波和直方图均衡化的图像增强方法研究
像 处理过程 会产生很重 要 种灰度级的像素 的个 数, 反映了每一灰度级与出现这种灰 的影响 。 所 以图像增 强处理就 是突 出 “ 有用 ” 的信息【 2 】 , 去 度概 率之间的关 系图形 。 即直方图的表达 式为 : 尸 = / N 除或抑制无用的信息 , 便于观察、 识别或进一步 的处理。 图 ( 尼 = 0 , 1 , 2 , …, L -1 ) , 其中Ⅳ为一幅 图像的总像素数; 为第 像 增强能够改善视觉 效果, 将原有 的图像转换 成一种更适 k 级灰度的像素数; 为第 个灰度 级; L 为灰度级数; P ( 为 合人眼 观察和计算 机分析处理 的形式 , 以满足 图像 后期处 该灰度级出现的相对频数。 通过 灰度直方图, 可以看出图像 理 的要 求 。 的灰度动态 分布, 灰度值 集中的亮暗区域对 比, 各个灰度级 图像增 强包含有 空间域法和频率 域法 , 其 中空 间域 法 的出现频率等 , 能够为图像 的预处理提供有效的信息, 从而 包含有直方 图修正法, 目的是图像成像均匀, 或扩大 图像动 达到图像增强的效果。 态范 围、 扩展对 比度, 以使得图像 细节更加清晰, 从而便于 2 . 2 直 方 图均衡化 识别 。 本文实验一 中针对有噪声的图像主要采用直接滤波 直方 图均衡化就是通 过把原始图像不均匀 的直方图变 去噪方法 ; 实 验二中采用 先给 图像用直方 图修正中的直方 换为均匀地分布方 式, 这样就扩 大了灰度值的动态范围, 使 图均衡化将 图像进 行均衡化, 再利用空域中的中值滤 波的 图像 的对 比度有所提升, 从而达到 图像增强 的效果。 由于实 方法来实现 图像增强 ; 对两种方法 的处 理图像 进行比较, 验一中的最终输出图像效果不是很理想, 因此在实验二中先 得 出实验二 的方 法既增 强了图像 的对 比度 , 又增强了图像 将 带有噪声的原始图1 进行直方图均衡化得到如 图4 所示 结 的细 节 。 果, 再将图4 进行 中值滤波。 具体算法实现步骤如下。 1 实验 一: 图像滤波去噪及结果分析 S t e p 1 : 将带有噪声的原始图像 图1 进行直方 图均衡化: 图像 中的噪声特 性及概率分布, 采取 适 当的方 法 去除 ( 1 ) 统计原始输入 图像各灰度级 的像素数 目 , i = 0 , 图像中的噪声是一个很 重要 的图像 预处 理过程 【 4 ] 。 文 中所 1 …, 一1 , 其中三 为灰度总级数。 用 的滤 波器为 中值滤 波器 , 中值滤波是 一种 常用 的去 除噪 ( 2 ) 计算 图1 的直方 图, 即各个灰度 级 的概 率密度 : 声 的非 线性平滑滤波器 , 也叫最大值 滤波器和最小值滤波 P f ) = , 原始图像的总像素数 目。 器, 基本 原理是把数 字图像或数 字序列 中某一点的值 用该 点的一 个领域 的各点值 的中值 交换 ] 。 而有着椒 盐噪声 的 ( 3 )计算累 积分布 函数 。 图像的噪声点幅值近 似相 等, 随机分布在不 同位 置上 , 而 且 图像中有未被污染 的地方, 并且中值滤 波器适合用 于消 除孤 立 的噪声点, 所 以利用 中值滤波器 消除带有椒盐 噪声 ( 4 ) 计算最后 的输出灰度级。 的图像效果会更好。 g = I NT [ ( g 一 g i ) ( ) + g i + 0 . 5 ] / ( L — 1 ) 带有 噪声的原图如 图1 所示, 将L e n a 图像原图1 进行 中值 滤波 , 利用5 ×5 中值滤波器 模板处理噪声得到结果如图2 所 0 , 1 . “ , 一1 式 中I NT[ ] 是 取 整算 符 。 令g i = 0 , 示。 很明显看 出图2 中的噪声点被去除掉使得 图像 画面 变得 g = L -1 , 则计算式简化为: 干净, 但 是画面的整体 的亮度还是比较暗, 经过滤波后L e n a g = I N T [ ( L 一 1 ) ( ) + o . 5 ] / i  ̄ 一 1 。 的面部变得有些朦胧, 轮廓也变得有些模糊, 再加上画面本 身有些暗, 画面效果一般。 ( 5 ) ( 原图像 图1 的灰度级数 ) 和g 的映射关系, 修

数字图像处理实验报告直方图均衡化

数字图像处理实验报告直方图均衡化

数字图像处理实验报告实验名称:直方图均衡化姓名:班级:学号:专业:电子信息工程(2+2)指导教师:陈华华实验日期:2012年5月24日直方图均衡化图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。

直方图均衡化是最常见的间接对比度增强方法。

直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。

直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。

缺点:1)变换后图像的灰度级减少,某些细节消失;2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过这种方法,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。

在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。

这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。

(2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态范围的一致性。

基于直方图均衡化的成像测井彩色图像增强

基于直方图均衡化的成像测井彩色图像增强

图均衡化处理。实践表明, 本文提 出的算法在增强图像对比度的同时, 其视觉效果也比传统算法的
处理结果要 好 。
关键 词 : 直方 图均衡 化 ; 成像测 井 ; 色; 彩 图像 增强
O 引

处理 , 最后将处理后的图像恢复成彩色。
1 彩色 图像 的灰 度化 . 1
成 像 测井 属 于第 四代 测井 技 术 , 为 了适应 复 是
k, , … L一1 ;
1 传 统 方 法
传统 的彩色 图像增强方法是先将彩 色图像转 化 为26 5 色灰度图像 , 然后再灰 图像 的基础上进行
作者简介 : 胡刚( 8一 , 长江大学在读硕士研 究生 , 1 6 )男, 9 主要从 事测井方法研 究工作。
2 1 年第 4 01 期
ln ; og ’ i j 雷 环变量 1 dh = : I Wit( D B ; Wit : B dh1 I) D p , 取 / 获
DB I 图像宽度 Ie h H i t= : I He h(・I ) g : B i tl B; D g 1D 0
DB图像 高度 I
R BU G Q AD * R B u d l G qa; p
将彩色图像转 化为灰度 图像的过程称为 图像 的灰度化处理 。彩色图象 的颜色由RGB ,,三个分量
杂油气藏如裂缝 、 薄互层、 向异性等油气藏勘探 各 的开发需要而发展起来的n 电阻率扫描成像测 。微 井是将地层岩性 、 物性的变化引起的电阻率变化, 转 换成图像上不 同色度及形态 的显示。微 电阻率成 像测井 图像 明暗色调的变化反映地层 电阻率高低 的变化, 图像越亮, 地层电阻率越高; 图像越暗, 地层 电 阻率越 低 。微 电阻率 成像测 井 为 岩性识 别 、 层 地 特征分析 、 储层评价 、 裂缝评价 、 构造分析、 沉积分 析提供了重要手段I 2 1 。由于其形象直观的特性 , 图 像质量的优劣就成为成像测并 图像进行岩性识别 与分析等后续解释评价效果好坏 的关键 , 由于微 电 阻率扫描成像测井仪在测井 的过程 中常常要受到 泥饼厚度 、 井眼大小及泥浆 性质 的影响 , 因此在实 际过程中 , 常常要采取图像增强的方法来改善图像

数字图像处理 实验 直方图均衡化实现图像增强

数字图像处理 实验 直方图均衡化实现图像增强

XXXXXXXX大学(数字图形处理)实验报告实验名称直方图均衡化实现图像增强实验时间年月日专业姓名学号预习操作座位号教师签名总评一、实验目的:掌握直方图均衡化的原理。

掌握直方图均衡化实现图像增强的实现方法。

二、实验原理:直方图是统计像数统计图,如设一张灰度图或一个通道,值0~255。

直方图如果按。

255个区分的话。

统计出来的就是,值为。

0的有几个像数,值为1的有机个像数,这样的一张表。

那么均衡化的意思就是。

这样表要均衡。

不直不于。

0有上万个像数,1只有1 个。

正常,直方图本身可以用小于255个区。

比如10个,那么这样相对图中的点就有一个映射,这时值0-9统计落在第一个区,值为10-19落第二个区。

这样的结果就会出来,10个区,10个统计数区。

这时。

你均衡就是让10区的统计数据都不会差很多。

表现出来的就是一张图上的颜色分布相对均衡。

总的来说直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。

三、实验内容:利用直方图均衡化实现图像增强。

在资源编辑器中,在主菜单下添加一名为“直方图均衡化”的菜单步骤如前面实验。

实验代码如下:if(m_DibHead->biBitCount!=8){MessageBox("当前版本仅支持256色位图的操作!","系统提示!",MB_ICONINFORMA TION|MB_OK);return;}zftjh(m_Image,m_DibHead->biWidth,m_DibHead->biHeight);Invalidate();其中函数zftjh的实现代码如下:zftjh(unsigned char *lpDib,long lWidth,long lHeight){unsigned char *lpsrc;long lresult(0);long i,j;unsigned char bMap[256];long lCount[256];for(i=0;i<256;i++)lCount[i]=0;for(i=0;i<lHeight;i++)for(j=0;j<lWidth;j++){lpsrc=lpDib+i*lWidth+j;lCount[*lpsrc]++;}for(i=0;i<256;i++){lresult=0;for(j=0;j<=i;j++)lresult+=lCount[j];bMap[i]=(lresult*255)/lHeight/lWidth;}for(i=0;i<lHeight;i++)for(j=0;j<lWidth;j++){lpsrc=lpDib+i*lWidth+j;*lpsrc=bMap[*lpsrc];}}原图为下图的左边部分,均值化以后的图为右边的部分:。

实验二 图像增强处理实习报告

实验二 图像增强处理实习报告

实验二图像增强处理实习报告1.实验目的和内容1.1.实验目的掌握图像合成和显示增强的基本方法,理解存储的图像数据与显示的图像数据之间的1.2.实验要求熟练根据图像中的地物特征进行图像合成显示、拉伸、图像均衡化等显示增强操作。

理解直方图的含义,能熟练的利用直方图进行多波段的图像显示拉伸增强处理。

1.3.软件和数据ENVI 软件。

TM 图像数据。

上次实验合成后的图像数据文件AA。

1.4.实验内容图像的彩色合成显示图像的基本拉伸方法图像均衡化方法图像规定化2.实验过程通过合成和拉伸增强显示图像中的信息。

2.1.图像合成图像合成方法:伪彩色合成、彩色合成两种方式。

其中彩色合成包括:真彩色合成、假彩色合成、模拟真彩色合成。

操作:使用(4,3,2)进行RGB 合成显示图像。

图像窗口为#1。

移动图像窗口的红色选框到玄武湖,将光标十字放在红框内,双击,显示光标位置窗口。

该窗口中出现了Scrn 和Data,二者后面的RGB 的值是不同的。

2.1.1伪彩色合成在新的窗口显示第4 波段图像,窗口为#2。

操作:菜单:窗口菜单Tools-Color Mapping-Density slice…,选择Band 4,确定。

在“Density Slice”窗口中,点击“应用”按钮,窗口#2 的图像变成了彩色。

设置默认的分级数为3 个:在“Density Slice”窗口,点击Options-Set number of default range,输入3,确定。

点击Options-Apply default range,点击Apply 按钮。

查看窗口#2 内的变化。

重复上面步骤,设置分级数为10,查看图像的变化。

基本的特征是:长江是绿色的,玄武湖是红色的。

在新的窗口显示波段4,窗口编号为#3。

菜单:窗口菜单Tools-Color Mapping-ENVI Color table…依次点击Color Tables 下的颜色方案列表,查看#3 图像的变化。

数字图像处理实验二(直方图均衡化)

数字图像处理实验二(直方图均衡化)

数字图像处理实验二直方图均衡化(直方图均衡化实质上是减少图象的灰度级以换取对比度的加大)例如:假设原图的灰度分布级为126(最大为256,也就是从0到255的级上的灰度都有或多或少的出现),经过直方图均衡化后,灰度分布级别将会小于126。

编程的时候请按照直方图均衡化公式进行。

下面给出大致的编程思路和源代码:其中黑框部分需要自己编写源代码1)利用第一次实验课提供的dhc.h 和dhc.c文件以获取位图的高宽以及从文件头到实际的位图数据的偏移字节数,从而实现对位图实际数据的操作。

利用include命令#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h"思考问题:#include <*.h> 和#include "*.h"在程序运行中有什么差别?2)定义结构指针struct bmphdr *hdr;定义用于直方图变量unsigned char *bitmap, new_color[256];定义计算灰度分布,灰度累计分布的数组int count[256], acum[256];3)main()函数编写//定义整数i,j 用于函数循环时的,nr_pixels为图像中像素的个数int i, j, nr_pixels;//定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像FILE *fp, *fpnew;//定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。

argc=3;argv[1]="test.bmp";argv[2]="testzf.bmp";//参数输入出错显示if (argc != 3) {printf("please input the name of input and out bitmap files\n");exit(1);}// 获取位图文件相关信息hdr = get_header(argv[1]);if (!hdr) exit(1);//以二进制可读方式打开输入位图文件fp = fopen(argv[1], "rb");if (!fp) {printf("File open error!\n");exit(1);}// 文件指针指向数据区域fseek(fp, hdr->offset, SEEK_SET);//计算位图像素的个数nr_pixels = hdr->width * hdr->height;bitmap = malloc(nr_pixels);//读取位图数据到bitmap中fread(bitmap, nr_pixels, 1, fp);fclose(fp);memset(count, 0, sizeof(count));//计算每个灰度级上像素的个数结果存入count[]数组中memcpy(acum, count, sizeof(acum));//计算灰度的累计分布for (i = 1; i < 256; i++)acum[i] += acum[i-1];//灰度直方图的均衡化(核心程序部分,请仔细分析)为了方便大家编程实现,这里直接给出了源代码,本实验最核心的部分就在这里//}//对所有的像素灰度值按照均衡化得到的灰度对应规则进行转换,结果存入bitmap[]中//fpnew = fopen(argv[2], "wb+");//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, (hdr->offset - 54), 1, fpnew);////关闭fclose(fpnew);//释放内存(优化程序必需)free(hdr);free(bitmap);return 0;}。

基于直方图均衡化的图像增强算法

基于直方图均衡化的图像增强算法

基于直方图均衡化的图像增强算法图像增强是数字图像处理领域中的一个重要任务,其目标是提高图像的视觉质量、增强图像的细节信息,使得图像更具观赏性和可辨识度。

直方图均衡化是一种常用的图像增强算法,通过重新分配图像的像素值,增强图像的对比度和动态范围。

本文将详细介绍基于直方图均衡化的图像增强算法的原理、步骤和应用。

一、直方图均衡化的原理直方图均衡化是一种通过拉伸图像的像素值分布来增强图像对比度的方法。

其基本原理是将原始图像中的像素经过变换后,使其灰度级分布更加均匀,从而增强图像的细节和对比度。

直方图均衡化的核心思想是将图像的像素累积函数进行非线性变换,使得原始图像中灰度级分布不均匀的区域得到均匀化,从而实现图像的增强效果。

二、直方图均衡化的步骤直方图均衡化算法主要包括以下几个步骤:1. 计算原始图像的灰度直方图:通过统计每个灰度级对应的像素个数,得到原始图像的灰度直方图。

2. 计算原始图像的累积分布函数(CDF):对灰度直方图做累积求和,得到原始图像的累积分布函数。

3. 计算像素值映射函数:将CDF进行归一化处理,得到像素值的映射函数,该映射函数描述了原始图像像素值与增强后图像像素值的对应关系。

通过该映射函数,可以将原始图像的每个像素值映射到增强后的像素值。

4. 对原始图像进行像素值映射:根据像素值映射函数,将原始图像的每个像素值进行映射,得到增强后的图像。

5. 输出增强后的图像:将经过像素值映射后的图像进行输出显示或保存,得到最终的增强图像。

三、基于直方图均衡化的图像增强应用直方图均衡化算法在图像增强领域有着广泛的应用。

下面介绍几个典型的应用场景。

1. 医学图像增强:医学图像通常需要提高图像的对比度和细节信息,以便医生更好地进行诊断。

直方图均衡化可以增强医学图像中的血管、肿瘤等细节信息,提升图像的识别能力。

2. 目标检测与识别:图像中的目标通常需要具备清晰的边缘和丰富的纹理信息,以便目标检测和识别算法能够准确地进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二基于直方图均衡化的图像增强
一.实验目的
1、了解直方图的概念
2、熟悉直方图均衡化的主要用途
3、掌握采用直方图均衡化进行图像增强的方法;
二.实验设备
1、PC机一台;
2、软件MATLAB;
三.实验原理
图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。

本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法可以在课后自行练习。

直方图是多种空间域处理技术的基础。

直方图操作能有效地用于图像增强。

除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。

直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为实时图像处理的一个流行工具。

直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。

直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。

灰度直方图是图像预处理中涉及最广泛的基本概念之一。

图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅
图像的所有象素集合的最基本的统计规律。

直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。

直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程
四.实验内容及步骤
对如图1所示的两幅128×128、256级灰度的数字图像fing_128.img 和cell_128.img 进行如下处理:
四.实验步骤
1)启动MATLAB 程序,编制相应的程序 2)对给定图像做直方图均衡化处理 3)讨论不同的图像内容均衡化后的效果 4)记录和整理实验报告
五.实验报告内容
(1)对原图像进行直方图均衡化处理,同屏显示处理前后图像及其直方图 (2)比较异同,并回答为什么数字图像均衡化后其直方图并非完全均匀分布。

指纹图fing_128.img
显微医学图像cell_128.img
图1 实验图像
1、对128×128、256级灰度的数字图像finger.gif的处理程序:
I=imread(‘finger.gif); % 读入原图像
J=histeq(I); %对原图像进行直方图均衡化处理
imshow(I); %显示原图像
title(‘原图像’); %给原图像加标题名
figure;imshow(J); %对原图像进行屏幕控制;显示直方图均衡化后的图像title(‘直方图均衡化后的图像’) ; %给直方图均衡化后的图像加标题名
figure; subplot(1,2,1) ;%对直方图均衡化后的图像进行屏幕控制;作一幅子图作为并排两幅图的第1幅图
imhist(I,64); %将原图像直方图显示为64级灰度
title(‘原图像直方图’) ; %给原图像直方图加标题名
subplot(1,2,2); %作第2幅子图
imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度
title(‘均衡变换后的直方图’) ; %给均衡化后图像直方图加标题名
实验结果:
直方图均衡化后的图像
原图像
100
200
200
400
600
800
1000
原图像直方

100200
100200
300
400500600
700
均衡变换后的直方图
2、对128×128、256级灰度的数字图像cell.gif 的处理程序: I=imread(‘cell.gif); % 读入原图像
J=histeq(I); %对原图像进行直方图均衡化处理 imshow(I); %显示原图像
title(‘原图像’); %给原图像加标题名
figure ;imshow(J); %对原图像进行屏幕控制;显示直方图均衡化后的图像 title(‘直方图均衡化后的图像’) ; %给直方图均衡化后的图像加标题名
figure; subplot(1,2,1) ;%对直方图均衡化后的图像进行屏幕控制;作一幅子图作为并排两幅图的第1幅图
imhist(I,64); %将原图像直方图显示为64级灰度 title(‘原图像直方图’) ; %给原图像直方图加标题名 subplot(1,2,2); %作第2幅子图
imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度 title(‘均衡变换后的直方图’) ; %给均衡化后图像直方图加标题名 实验结果:
原图像
直方图均衡化后的图像
0原图像直方图
100
200
0均衡变换后的直方图
100
200。

相关文档
最新文档