工程测量中三角高程测量误差分析及解决方法
三角高程测量的精度分析及其在工程建设中的应用分析

・
建 筑 与土木 工程 ・
三角 高程测量的精 度分析及 其在 工程建设 中的应用分析
杜 文举 , 张 恒 , 甘 国军
( 1 .  ̄ t J J I 建筑职业技术学 院, 四川 德 阳 6 1 8 0 0 0 ; 2 . 中铁 十 四 局 集 团 公 司 , 山东 济南 3 0 0 3 0 8 )
第3 2卷第 6期
Vo 1 . 3 2 No . 6
西 华 大 学 学 报 ( 自 然 科 学 版 )
J o u r n a l o f Xi h u a Un i v e r s i t y ・ Na t u r a l S c i e n c e
2 0 1 3年 1 1 月
中图分类号 : T U 7 9 4 文 献 标 志码 : A 文章编 号 : 1 6 7 3—1 5 9 X ( 2 0 1 3 ) 0 6— 0 0 9 9— 0 5
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 3— 1 5 9 X . 2 0 1 3 . 0 6 . 0 2 1
摘
要: 通 过对三角高程测量高差公式 的推导 , 对 其高差中误差进行了系统的分析 , 可知高差 中误差 主要取决
于测距误差和测角误差 , 根据成绵乐客 专桥墩高程控制测量和 牛兰 江一 滇池补水工程 高程控制 网复测及加 密实例 分析 , 可知 三角高程测量方法在一定条 件下可以替代常规水准测量 , 精度满足 四等水准测量要求 。 关键词 : 三角高程测量 ; 精度分析 ; 误 差
J i a n g t o D i a n—C h i r e p l e n i s h m e n t p r o j e c t . t h e y a J l p r o v e d t h a t t r i g o n o m e t r i c h e i g h t m e a s u r e me n t c a n r e p l a c e l e v e l i n g me a s u r e m e n t i n
浅谈三角高程测量误差影响因素分析

浅谈三角高程测量误差影响因素分析关键词:三角高程误差分析三角高程测量是在地球自然表面进行的。
野外观测时通过量测斜距、垂直角(天顶距)、仪器高、占标高(棱镜高)后利用公式: H=S×Sina+I-V+(1-K)×(S×Cosa)2/2R 其中:H、S、a、I、V分别为高差、斜距、垂直角、仪器高、占标高,K为大气垂直折光系数R为地球平均曲率半径。
对于短程测距而言,垂线偏角和水准面不平行对高差的影响可以不予考虑,坡道弯曲改正也可以忽略不计。
对(1)式进行全微分,并转化为中误差得:m h2=(Sina×m s)2+(S×Cosa/ρ)2×m s2+m i2+ m v2+((S×Cosa)2/(2R))2×m r2下面分别讨论各项误差对三角高程测量误差的影响:1.测距误差对高程误差的影响电磁波测距误差一般可分为仪器系统误差和观测时的对中误差、气象测定误差等,仪器系统误差常指测相误差、加常数的测定误差、光速误差和周期误差等等。
通常情况下,仪器在设计和调试时都可严格控制其数值,但由于运输等原因,造成其值异常。
如果发现其数值较大,可对观测成果进行修正。
对中误差只要作业人员认真操作,一般可以做到:光学对中误差≤±1mm,对一般的测距精度而言对中误差影响不大。
气象因素测定不准,会对大气折射率产生影响,进而影响测距精度。
温度对测距影响最大,其次是大气压,湿度的测定误差对其影响可以忽略不计。
气象参数的测定精度很容易满足测距误差不大于±1mm的要求。
气象参数既可以在测站、镜站分别测定后输入仪器进行自动改正,也可以测记后进行人工改正。
因此,距离的测定误差主要来自仪器的系统误差。
2.垂直角的测定误差垂直角的测定误差主要有照准误差、读数误差、气泡居中误差,当采用全站仪时,由于其水平与垂直度盘采用增量式编码,通过测量莫尔条文的数目,以确定光栅移动的位移量,并经过模数的转换测得微小的角值,仪器竖轴的倾斜误差通过双轴传感器进行自动补偿,因此,其精度稍低于水平角,许多文献研究认为垂直角的观测误差一般比水平角的观测误差大。
论高程控制测量中存在的问题及应对方案

论高程控制测量中存在的问题及应对方案摘要:笔者结合多年工作经验,分别举出两个实例对工程水准测量中存在的方法不科学以及操作不规范等问题进行解析,并提出了相应改进措施。
同时探讨了提高三角高程测角精度的方法,以供测量人员作业时参考借鉴。
关键词:高程控制测量、存在的问题、应对方案1问题概述在很多大中型工程项目的工程测量中,常常需要测设二、三、四等水准,有时需用三角高程测量来代替三、四等水准。
但是不管采用哪种方法,满足工程施工需要是首先需要考虑到的。
在很多情况下,工程施工都有一些特殊要求,需要测量精度在规范要求的范围内有所提高,一般原则就是将主要限差指标提高到满足规范规定的1/2限差要求,实际上就是要求质量上优质,精度上有充分的保证。
但在实际工作中,经常存在水准测量的精度不理想,困难地区接近限差甚至超限,三角高程代替不了三、四等水准等等问题。
由此而造成误工,引起甲方的疑问,给工程施工造成不便。
现就此问题进行讨论,分析原因,并提出改进的办法。
2问题分析2.1水准测量2.1.1方案问题因水准测量较简单,在施工前不需要进行方案选择评定、实测方法研究、精度分析等工作。
但实际上,进行方案研究不仅是工作的需要,而且是提高工程质量、积累技术经验的主要途径和必经之道。
方案研究的主要内容包括以下几点:任务分析、技术要求、精度估算、仪器和作业方法选择、质量保证措施等。
这些对于一般的工程可能不需要进行书面的作业,但对于重要的项目,就应该按规范要求进行必要的作业设计。
实际上,从以往的工作中反映出的问题来看,有很多问题就出在最初的方案设计中,存在技术上和质量上的漏洞。
2.1.2方法问题由于方案研究不够,造成方法选择上不科学或是考虑方面欠缺,影响到实测质量。
比如:水准视距控制、跨越障碍物方法、仪器等级选择、图形条件、闭合条件等选择不当,都会带来一系列问题,不仅仅是精度问题,很多时候是增加出现错误的机会。
所以,方案优化是很重要的技术措施。
高程测量中的误差分析

维普资讯
高程测量中的误差分析
口 沈斌 李 亚平
所谓高程测量 ,就是根据一点高 程与另一点的已知 高差 , 然后按照高差的定义公式 , 出测量 点的高程。 求 在 测绘工作中 , 高程测量是最基本、 最常见的测量方法 , 并 且在工程施工中发挥着重要的作用 ,特别是在公路、铁
器产 生 变 动 也 会造 成 误 差 ,并 且这 种 因素 造 成 的误 差往 往很 严 重 , 检 验 时 又不 易察 觉 。 如 在 经 纬仪 的 使 用过 在 例 程中, 因振 动 造 成 水 准器 偏 离 水 平位 置 , 使仪 器 无 法 在水 平状 态 下 进 行测 量 , 因而 造 成误 差是 必 然 的 。 似 的 因素 类
在对 一 个 较 大平 原 地 区 进 行高 程 测 量 时 ,选 用 的 是 气压
工程测量中误差产生的原因及规避

工程测量中误差产生的原因及规避在建筑工程施工中,工程测量的放样精度对工程质量和进度都有十分重要的影响。
如果工程测量中出现了放样误差,将可能导致开挖、立模、打桩和钢筋捆扎等作业错误施工,带来较大的损失。
1.放样测量中误差产生的原因1.1 人员观测的影响观测人员的测量经验和熟练程度对测量结果也会产生比较大的影响,尤其对于精密工程,仪器操作水平的高低是产生误差的重要来源,甚至可能导致测量误差的产生。
1.2 环境因素的影响测量作业环境对测量放样的影响无处不在,如建筑阻挡视线、大气的折射、卫星星率和磁场对GPS 观测的影响等。
由于精密工程对测量放样的精度较高,因此,某些环境因素所带来的测量误差可能达到或超过工程本身要求的测量精度。
1.3 施测方法的影响不同的施测方法对测量放样结果会产生很大影响。
如全站仪的自由设站后方交会方法测放中线点、改化后的三角高程测量方法等,它们精简了测量环节(如不需对中、不需量取仪器高和棱镜高等),提高了测量精度。
1.4 仪器因素的影响仪器本身的精度及测量状态对精密工程放样非常重要,如全站仪的测距误差、i 角产生的垂直角测量误差等。
精度高、状况良好的测量设备不仅能够较好地保证放样精度,而且还可大大提高作业效率。
2 .放样测量中误差规避的主要措施工程测量过程中往往会出现一些误差,这些误差有些是被允许的,而有些则会给整个工程的建设质量带来严重的消极影响,必须进行重新测量予以消除,这样就大大降低了工程测量的速度,进而拖慢整个项目的进程。
因此,最大程度避免误差的出现就成了提高测量速度的一个重要环节。
2.1 合理安置测量仪器在安放测量仪器时应选择那些地势平坦、通视效果好的地段,注意避开车流和人流,如果因条件限制确实无法避开,至少要保证地面的坚实。
不要将仪器架设在井盖或过于光滑的地面上,在大风天气要注意将仪器放低,在冬季作业时应预先将附近的积雪清除。
总之,只有将测量仪器平稳、牢固的安置后方可进行工程测量,从而保证测量精度。
三角高程测量原理误差分析及应用

三角高程测量原理误差分析及应用1三角高程测量的基本原理三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。
它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。
目前,由于水准测量方法的发展,它已经退居次要位置,但在山区和丘陵地带依然被广泛采用。
在三角高程测量中,我们需要使用全站仪或者经纬仪测量出两点之间的距离(水平距离或者斜距)和高度角,以及测量时的仪器高和棱镜高,然后根据三角高程测量的公式推算出待测点的高程。
由图中各个观测量的表示方法,AB两点间高差的公式为:h=S0tanα+i1-i2①但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。
因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。
1.1单向观测法单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。
这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。
1.2对向观测法对向观测法是目前使用比较多的一种方法。
对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。
从而就可以得到两个观测量:直觇:hAB=S往tanα往+i往-v往+c往+r往②反觇:hBA=S返tanα返+i返-v返+c返+r返③S——A、B间的水平距离;α——观测时的高度角;i——仪器高;v——棱镜高;c——地球曲率改正;r——大气折光改正。
然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。
由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。
所以在对向观测法中可以将它们消除掉。
h=0.5(hAB-hBA)=0.5[(S往tanα往+i往-v往+c往+r往)-(S返tanα返+i返-v返+c返+r返)]=0.5(S往tanα往-S返tanα返+i往-i返+v返-v往)④与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。
工程测量中三角高程测量的误差分析及解决方法

应 用 科 技
Hale Waihona Puke 工程测量中三角高程测量的误差分析及解决方法
戚 忠
( 中国水利水 电第四工程局有 限公 司测绘 中心, 青海 西宁 8 1 0 0 0 7 )
摘 要: 通过 对 三 角 高程 测量 公式 的 分析 , 发 现影 响 三 角 高程测 量 精度 的 因子 , 引进 当下较 为 先进 的设备 与方 法 , 从 而提 高三 角 高程 测 量 的精 度 , 使 其 可 以替 代 几何 水 准测 量 。该 方法 的 实现 可 以 弥补 几何 水 准 受地 形 条件 等 因素 限 制使 工 作 效 率慢 , 测 绘 成 本高 , 人 身、 设 备 安全 无 法保 障等 缺 点 。 关键词: 三 角高程 测 量 ; 几何水准; 误 差 分析 ; 大 气折 光 系数 间观 测对 高 程测 量 不利 , 可 以通 过 加 入大 气 折 光误 差计 算 减 弱 三角 高程 测 量误 差 。 3 - 4 采用 同时对 向观 测 。在 控制 网观测 中 , 由于 投 入 的人 员 、 仪 器、 觇标 数量 和 观测 时 间 的原 因 , 采 用 同时 对 向观 测会 耗 时耗 力 。 且 由于 折 光影 响 , 不 同时 间段 对 向观 测 , 往、 返 测 高差 较差 大 多 都 超 出 规范 限 差要 求 。 3 . 5 确定 合 适 的 大气 折 光 系数 。前 面讲 过 , 在 各 种 不 同 的 情况 下, 大气 折光 系 数都 可 能有 很 大 的差异 。 也 就是 说 , 大气 折光 系 数值 是一 个 变值 , 随时 随地都 在 变化 。 我 国经 过 几个 地 区 的统计 资 料 , 大 气折光 系数一般在 0 . 0 9 — 0 . 1 6之间, 而且 , 其变化也是很复杂 的, 因 低 了测 量 成本 。 而完 全 准确 的掌握 其 变化 规 律将 比较 困难 , 只 能根 据 实 验资 料 概 括 2_ 一角 高 程测 量误 差 分 析 出其 一 般规 律 。 常见 的 二 三 角 高程 测 量有 单 向 观测 法 、中间 法 和对 象 观测 法 , 对 4 大气 折光 系数 的测 量方 法 向观测 法 可 以消 除部 分 误差 ,故 在 j 角高 程 测 量 中采 用较 为广 泛 。 由于大气折光系变化的复杂性 , 使我们不可能精确地确定每一 对 向 观测 法 三角 高程 测 量 的高 差公 式 为 : 方 向 的折 光 系数 。 因此 , 在 实际 作业 中 , 应设 法 精确 的测 定 某一 区 域 内的平 均 折光 系 数 , 用 以计算 各 个 单项 观 测 高差 。大气 折光 系数 虽 + 盟 ( 一 U D( 1 ) 然变化无 常, 但可以经过一段时间的观测找 出它的变化规律 , 确定 式 中: D 为两 点 问 的距离 ; a为垂 直 角; ( k : - k O 为 往返 测 大 气垂 直 适合观测时间段的大气折光系数 。 折光 系数差 ; i 为仪器高 ; v 为 目标高 ; R为地球 曲率半径( 6 3 7 0 k m ) ; 大气 折光 系 数可 以通 过 2种 方法 得 到 : ( 1 )在 已知 高差 的两 点 间单 向观测 垂 直 角 、 斜距 , 求 解 大 气折 光 系 数 ; ( 2 ) 根 据 两 点 间 同 时 ( _ U l 一 U J 为 垂线 偏 差非 线性 变 化量 ; 对 向 观测 的垂 直 角和 斜距 , 求 解 大气 折 光 系数 。采用 两 种 办法 求 解 令 : 一k l =△ k ,生 一 A U , - ‰: m- 并 进行 对 比。确 定折 光 系数 时应 注 意 控制 网测 区一 般 相对 较 小 , 可 对式( 1 ) 微分 , 则 由误 差 传播 定 律 可得 高差 中误 差 : 以作 为一 个 测 区来计 算确 定 大气 折 光 系数 。 但 有 的地 区 由于 某些 特 殊 的情况 原 因 , 计 算 的大 气 折光 系数 互 差较 大时 , 就需要分测p ( 来 m i 进 。 分别 计算 大 气折 光 系数 。 5结 束语 : : 一 ) 。 在工程测量 中利用三角高差测量替代高等级几何水准测量 , 提 由式 f 2 ) 可 知 影 响 三 角 高 程 测 量 精度 主要 有 : 1 . 竖直角 ( 或 天 顶 高三角高程测量等级 , 使测量控制的三维坐标精度一致 , 减少高等 距) 、 2 . 距离 、 3 . 仪器 高 、 4 . 目标 高 、 5 . 球 气 差 。第 l 、 2项 可 以通 过 试 验 级几何水准测量劳动强度 , 降低测量成本 , 提高测量速度和效益。 但 观测 数 据分 析 选择 精 度合 适 的仪 器 及其 配 套 的反 光 棱 镜 、温度 计 、 该方 法也 有 一些 需要 改 进 的部 分 , 我们 在 实践 过 程 中总结 了以下 几 气 压表 等 , 我 们 选择 的是 徕 卡 T C A 2 0 0 3 及 其 配 套 的单 棱 镜 、 国产 机 点 , 希望 能 给大 家 以借 鉴 , 使 得 该技 术 在应 用过 程 更加 方便 、 可靠。 械通 J x 【 f湿温 度计 、 盒式 气 压计 ; 第 3 、 4 项, 一 般 要 求建 立 稳定 的观 5 . 1跨河 ( 或障碍物) 任意设站三角高程测量时 , 测量前需对棱 测 墩 和强 制 对 中装 置 , 采 用 游标 卡 尺 在 基座 3个 方 向 量 取 , 使 3个 镜 、 对 中杆进 行 校测 。 方 向 量取 的校 差小 于 0 . 2 m m, 并 在测 前 、 测 后进 行 2次量 测 ; 第 5项 5 . 2 任 意 设 站 三 角程 测 量 , 尽 量 缩 短前 、 后 视 距 离 及 其距 离 之 球气 差 也 就是 大 气折 光差 , 也 是 本课 题 的研 究 重点 。 差; 影 响 三角 高程 测 量 精度 的因 素很 多 , 容 易产 生 粗 差 , 应 进 行 多 次 3 减弱 大 气折 光差 的方 法和 措施 测量 ; 组于组之间变换仪器高时 , 需在不同位置进行 ; 交换棱镜 时 , 大气 折 光 差 : 是 电 磁 波经 过 大 气 层 时 , 由于传 播 路 径 产 生 弯 曲 特别 注意 棱 镜 头不 能从 对 中杆 上取 下 , 此 时 不 必 量取 仪 器 高 、 棱镜 及 传播 速 度发 生 变化 而 引起 观测 方 向或 距 离 的误 差 。 大气 折 光对 距 高 ,往 返 高差 不 进行 对 比 ;组 于组 之 间 高 差互 比应 满 足 ≤± 4的要 离的影响 , 表 现在 电磁 波 测 距 中影 响 的量 值相 对 较 大 , 必 须 在 测 距 求 。 的同 时实 测 测线 上 的气 象元 素 , 再 用 大气 折 光模 型 对距 离 观 测值 进 5 . 3 山 区天 气 突 变 时 候 多 , 天气突变时应停止观测 , 待 天气 稳 行 改 正 。减 弱 大气 折 光差 的方 法和 措 施有 : a . 提 高 观 测视 线 高 度 ; b . 定 时重 新进 行 观测 。 尽 量 选择 短 边传 递高 程 ; c . 选 择有 利 观 测 时 间 ; d . 采用 同时 对 向观 5 . 4折光差测定时 , 应在测区不同高程面上均匀测定 , 如 发 现 测; e . 确 定 合适 的 大气 折光 系 数 。 上述 的 5 种 办法 虽 然都 可 以减 弱大 异 常 , 应在 同 边不 同 的气 象条 件下 多 次进 行测 定 对 比 。 气 折 光对 三角高 程测 量 精 度 的影 响 , 但 在 实 际 工作 中也有 很 多 制约 作者 简 介 : 戚 忠( 1 9 8 6 一 ) , 男, 汉族 , 青海省西宁市, 中 国水 利 水 闪素。下面具体分析 。 电第 四 工程 局 有 限公 司测绘 中心 , 助理 工 程 师 , 本科 , 工程 测 量 \ 地 3 . 1提高观测视线高度 。由于工地地形条件限制 、 抬高视线高 理信 息 系统 度需要造高标增大测量成本 、由于标墩高大影响其它工程施工 , 提 高观 测视 线 高度 的方法 不 可取 。 3 . 2 尽量 选 择 短边 传递 高程 。由三 角高 程测 量 高差 计算 公 式 可 知, 折光 的影 响与距 离 的平 方 成 比例 , 选择 短边 传 递 高程 有利 。 但 控 制 网的边 长 是 由多 种 因素 控制 的 , 不能 随 意增 加 和减 少 。 3 . 3 选择 有 利观 测 时 问 。 中午前 后 ( 1 0 ~ 1 5时 ) 垂直 折 光小 , 观测 垂直角最有利。 日出 l 小时后至上午 1 0点、下午 1 5点至 日 落前 1 小 时水 平折 光 小 , 利于 水 平方 向角 度 观测 。 控制 网观测 是水 平 、 垂 直 方 向角 度 同时 观测 , 不 能 兼顾 。 根据 现 场施 工情 况 , 采 用上 午 9 — 1 1 . 5 时、 下午 1 4 ~ l 7 . 5时 进行 观 测 ( 1 2 点 是 施工 放 炮 时 间 ) 。虽 然此 段 时
三角高程测量方法及误差分析

百多年 以前 , 人们用三 角高程测量 的方法来测定高差 , 自水 准测量方法出现以后 , 它 已经退居次要地位 , 但因其作业简单, 在 山 区和丘陵地 区仍得到广泛应用 。 随着 高精度测 角测距全站仪 的发 展, 三角高程测量技术在一些精密工程测量 、 变 形 监 测 的 测量 工 作 中又得到了新的应用 , 其精度甚至达到 了二等水准的精度要求 , 在 些 特殊 领域 得 到 了新 的应 用 。
1 . 2 对 向观 测 法 对 向观测的实质 是两次单 向观测 的组合 , 可 以称之 为往返观 测, 原理与单向观测相 同。 在A点安置全站仪 , 在B 点安置棱镜 , 测得 A、 B 两点间的高差 HA B, 称为往测高差 ; 返测时在B 点安置全站仪 , 在A 点安置棱镜 , 测得B、 A两点间的高差HB A, 称为返测高差。 将往 返 测 得 的 高 差 平 均 以后 得 到 AB 点 的 高差 。 1 . 3 中间设站 法 如 图2 所示 , 分别将棱 镜安置在 已知高程点A和待测高程点B 上, 在A、 B 的大致 中间位置D 安置全站仪 , D 与A、 B 均通视。 根据 单向 观测法 , 测得A、 D 高差 以及B、 D 高差H AD、 HB D, 两个高差相互 求代 数 和 即可 求 得 A、 B 高差 。
一 一
原理是一样 的, 只有对象观测和 中间设站法观测两次, 但是这两种方 法可以削弱大气折光以及地球 曲率所带来的大部分误差。 三角高程测 量的误差来源主要有垂直角误差、 水平距离误差、 仪器高 目标高误差。
2 . 1垂 直 角 误 差
垂直角 的误差来源 主要有三个 , 一 是测量仪器本 身的测角误 差, 二 是 测 量 人 员 的 瞄 准 的误 差 , 三 是 大 气 折光 与地 球 曲率 的 误 差 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程测量中三角高程测量的误差分析及解决方法
戚忠
中国水利水电第四工程局有限公司测绘中心,青海西宁,邮编810007
一引言
一直以来,为保证精度,高等级高程测量都采用几何水准的方法。
而在某些特定环境下,几何水准往往会耗费大量的人力、物力,且受地形等条件因素影响较大!鉴于几何水准在某些特定情形下无法进行的问题,探讨如何提高三角高程测量的精度,以保证其测量成果的可行性和可靠性,使得三角高程测量成果足以替代几何水准。
随着高精度全站仪的问世,结合合理的方式、方法,运用三角高程替代几何水准测量是切实可行的。
三角高程代替几何水准可以解决跨河水准及高边坡、危险地段无法进行精密几何水准测量的难题,保障危险地段测量人员和仪器设备的安全,提高了工作效率,降低了测量成本。
二三角高程测量误差分析
常见的三角高程测量有单向观测法、中间法和对象观测法,对向观测法可以消除部分误差,故在三角高程测量中采用较为广泛。
对向观测法三角高程测量的高差公式为:
(1)
式中:D为两点问的距离;a为垂直角;为往返测大气垂直折光系数差;i为仪器高;v为目标高; R为地球曲率半径(6370 km);为垂线偏差非线性变化量;
令。
对式(1)微分,则由误差传播定律可得高差中误差:
(2) 由式(2)可知影响三角高程测量精度主要有:1.竖直角(或天顶距)、2.距离、3.仪器高、4.目标高、5.球气差。
第1、2项可以通过试验观测数据分析选择精度合适的仪器及其配套的反光棱镜、温度计、气压表等,我们选择的是徕卡TCA2003及其配套的单棱镜、国产机械通风干湿温度计、盒式气压计;第3、4项,一般要求建立稳定的观测墩和强制对中装置,采用游标卡尺在基座3个方向量取,使3个方向量取的校差小于0.2 mm,并在测前、测后进行2次量测;第5项球气差也就是大气折光差,也是本课题的研究重点。
三减弱大气折光差的方法和措施
大气折光差:是电磁波经过大气层时,由于传播路径产生弯曲及传播速度发生变化而引起观测方向或距离的误差。
大气折光对距离的影响,表现在电磁波测距中影响的量值相对较大,必须在测距的同时实测测线上的气象元素,再用大气折光模型对距离观测值进行改正。
减弱大气折光差的方法和措施有:a.提高观测视线高度;b.尽量选择短边传递高程;c.选择有利观测时间;d.采用同时对向观测;e.确定合适的大气折光系数。
上述的5种办法虽然都可以减弱大气折光对三角高程测量精度的影响,但在实际工作中也有很多制约因素。
下面具体分析。
3.1提高观测视线高度。
由于工地地形条件限制、抬高视线高度需要造高标增大测量成本、由于标墩高大影响其它工程施工,提高观测视线高度的方法不可取。
3.2尽量选择短边传递高程。
由三角高程测量高差计算公式可知,折光的影响与距离的平方成比例,选择短边传递高程有利。
但控制网的边长是由多种因素控制的,不能随意增加和减少。
3.3选择有利观测时间。
中午前后(10~15时)垂直折光小,观测垂直角最有利。
日出
1小时后至上午10点、下午15点至日落前1小时水平折光小,利于水平方向角度观测。
控制网观测是水平、垂直方向角度同时观测,不能兼顾。
根据现场施工情况,采用上午9~11.5时、下午14~17.5时进行观测(12点是施工放炮时间)。
虽然此段时间观测对高程测量不利,可以通过加入大气折光误差计算减弱三角高程测量误差。
3.4采用同时对向观测。
在控制网观测中,由于投入的人员、仪器、觇标数量和观测时间的原因,采用同时对向观测会耗时耗力。
且由于折光影响,不同时间段对向观测,往、返测高差较差大多都超出规范限差要求。
3.5确定合适的大气折光系数。
前面讲过,在各种不同的情况下,大气折光系数都可能有很大的差异。
也就是说,大气折光系数值是一个变值,随时随地都在变化。
我国经过几个地区的统计资料,大气折光系数一般在0.09~0.16之间,而且,其变化也是很复杂的,因而完全准确的掌握其变化规律将比较困难,只能根据实验资料概括出其一般规律。
四大气折光系数的测量方法
由于大气折光系变化的复杂性,使我们不可能精确地确定每一方向的折光系数。
因此,在实际作业中,应设法精确的测定某一区域的内的平均折光系数,用以计算各个单项观测高差。
大气折光系数虽然变化无常,但可以经过一段时间的观测找出它的变化规律,确定适合观测时间段的大气折光系数。
大气折光系数可以通过2种方法得到:1.在已知高差的两点间单向观测垂直角、斜距,求解大气折光系数;2.根据两点间同时对向观测的垂直角和斜距,求解大气折光系数。
采用两种办法求解并进行对比。
确定折光系数时应注意控制网测区一般相对较小,可以作为一个测区来计算确定大气折光系数。
但有的地区由于某些特殊的情况原因,计算的大气折光系数互差较大时,就需要分测区来分别计算大气折光系数。
五结语
在工程测量中利用三角高差测量替代高等级几何水准测量,提高三角高程测量等级,使测量控制的三维坐标精度一致,减少高等级几何水准测量劳动强度,降低测量成本,提高测量速度和效益。
但该方法也有一些需要改进的部分,我们在实践过程中总结了以下几点,希。