圆周运动典型基础练习题大全
圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1 :2,转动半径之比为1 :2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A. 1 :4B. 2 :3C. 4 :9D. 9 :162.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在。
点,有"‘夕'两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。
两小厂―-弋环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()(,1A. (2m+2M)gB. Mg一2mv2/R \/C. 2m(g+v2/R)+MgD. 2m(v2/R-g)+Mg 13.下列各种运动中,属于匀变速运动的有()A.匀速直线运动B.匀速圆周运动C.平抛运动D.竖直上抛运动4.关于匀速圆周运动的向心力,下列说法正确的是()A.向心力是指向圆心方向的合力,是根据力的作用效果命名的B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力C.对稳定的圆周运动,向心力是一个恒力D.向心力的效果是改变质点的线速度大小5. 一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v = 0.2m/s ,那么,它的向心加速度为m/s2 ,它的周期为s。
6.在一段半径为R = 15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的u = 0.70倍,则汽车拐弯时的最大速度是______ m/s7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直一可—方向的夹角为0,试求小球做圆周运动的周期。
:"\8如图所示,质量m = 1 kg的小球用细线拴住,线长l=0.5 m,细线所受拉力达到F =18 N时就会被拉断。
当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断。
若此时小球距水平地面的高度h = 5 m,重力加速度g =10 m/s2,求小球落小地处到地面上P 点的距离?求落地速度? S点在悬点的正下方)20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B 以不同速率进入管内,A 通过最高点C 时,对管壁上部的压力为3mg, B 通过最高点C 时,对管壁下部的压力为0. 75mg.求A 、B 两球落地点间的距离.21、如图所示,将一质量为m 的摆球用长为L 的细绳吊起,上端固定,使摆球在水平面内 做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆。
高一物理·圆周运动基础练习(含答案)

一、知识回顾:1. 圆周运动:运动轨迹为的质点的运动。
2. 匀速圆周运动:运动轨迹为且质点在相等时间内通过的相等的运动。
它是运动。
3. 线速度v: 在圆周运动中, 质点通过的跟通过这段所用的比值。
表达式: , 单位: 。
4.角速度ω: 在圆周运动中, 质点转过的跟转过这个所用的比值。
表达式: , 单位: 。
5. 周期T: 做匀速圆周运动的物体运动所用的时间。
T= = 。
6. 转速n:做匀速圆周运动的物体在时间内转过的。
n = , 单位;或n= , 单位。
7. 向心加速度: 做匀速圆周运动的物体所具有的指向圆心的加速度。
向心加速度与速度方向,总是指向, 只改变速度的, 不改变速度的。
a = = = 。
8. 向心力: 做圆周运动的物体受到的与速度方向, 总是指向, 用来改变物体运动的力。
F = = = 。
向心力是指向圆心的合力, 是按照__ ____命名的, 并不是物体另外受到的力, 向心力可以是重力、________、__________等各种力的合力, 也可以是其中某一种力或某一种力的。
9. 解题时常用的两个结论:①固定在一起共轴转动的物体上各点的相同;②不打滑的摩擦传动和皮带传动的两轮边缘上各点的大小相等。
二、针对训练:1. (单选)对于做匀速圆周运动的物体, 下列说法错误的是()A.线速度不变.... B.线速度的大小不....C.转速不......D.周期不变2. (单选)一质点做圆周运动, 速度处处不为零, 则其中正确的是()①任何时刻质点所受的合力一定不为零②任何时刻质点的加速度一定不为零③质点速度的大小一定不断变化④质点速度的方向一定不断变化A. ①②...B. ①②④....C. ①③...D. ②③④3. (单选)做匀速圆周运动的质点是处于()A.平衡状..... B.不平衡状态....C.速度不变的状.. D.加速度不变的状态4. (单选)匀速圆周运动是()A. 匀速运动B. 匀加速运动C. 匀减速运动D. 变加速运动.5. (单选)下列关于向心加速度的说法中, 正确的是( ) A. 向心加速度的方向始终与速度的方向垂直. B. 向心加速度的方向可能与速度方向不垂直 C. 向心加速度的方向保持不变D. 向心加速度的方向与速度的方向平行6. (单选)如图所示, 在皮带传动装置中, 主动轮A 和从动轮B 半径不等, 皮带与轮之间无相对滑动, 则下列说法中正确的是( )A. 两轮的角速度相等B. 两轮边缘的线速度大小相等.C. 两轮边缘的向心加速度大小相等D. 两轮转动的周期相同7. (单选)一个闹钟的秒针角速度为( ) A. πrad/s B. 2πrad/s C. rad/s D. rad/s.8. (单选)甲、乙、丙三个物体, 甲放在广州, 乙放在上海, 丙放在北京. 当它们随地球一起转动时, 则( ) A. 甲的角速度最大、乙的线速度最小 B. 丙的角速度最小、甲的线速度最大 C. 三个物体的角速度、周期和线速度都相等 D .三个物体的角速度、周期一样, 丙的线速度最小.9. 如图所示, 直径为d 的纸制圆筒以角速度ω绕垂直纸面的轴O 匀速转动(图示为截面). 从枪口发射的子弹沿直径穿过圆筒. 若子弹在圆筒旋转不到半周时, 在圆周上留下a 、b 两个弹孔, 已知aO 与bO 夹角为θ, 求子弹的速度。
(完整版)圆周运动基础练习题(含答案)

圆周运动练习题1.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 (选C )A .物体除其他的力外还要受到—个向心力的作用 C .向心力是一个恒力B .物体所受的合外力提供向心力 D .向心力的大小—直在变化2.关于匀速圆周运动的角速度与线速度,下列说法中正确的是(选BC )A .半径一定,角速度与线速度成反比B .半径一定,角速度与线速度成正比C .线速度一定,角速度与半径成反比D .角速度一定,线速度与半径成正比3.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的是 (选B)A .时针和分针的角速度相同B .分针角速度是时针角速度的12倍C .时针和分针的周期相同D .分针的周期是时针周期的12倍4.A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A ∶s B =2∶3,转过的角度之比ϕA ∶ϕB =3∶2,则下列说法正确的是(选BC )A .它们的半径之比R A ∶RB =2∶3 B .它们的半径之比R A ∶R B =4∶9C .它们的周期之比T A ∶T B =2∶3D .它们的周期之比T A ∶T B =3∶25. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是(选C )A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。
6.汽车甲和汽车乙质量相等,以相等速度率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为F f 甲和F f 乙,以下说法正确的是(选A )A . F f 甲小于F f 乙B . F f 甲等于F f 乙C . F f 甲大于F f 乙D . F f 甲和F f 乙大小均与汽车速率无关7.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是(选D )A .a 处B .b 处C .c 处D .d 处8.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20 m/s 2,g 取10 m/s 2,那么在此位置座椅对游客的作用力相当于游客重力的 (选C )A .1倍B .2 倍C .3倍D .4倍9.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的43,如果要使汽车在桥顶对桥面没有压力,车速至少为(选B )A .15 m/sB .20 m/sC .25 m/sD .30 m/s 10.如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F (选D ) A.一定是拉力 B.一定是推力 C.一定等于零D.可能是拉力,可能是推力,也可能等于零 (第5题)(第15题)11.飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海平面的高度不变,则以下说法中正确的是(选C)A.飞机做的是匀速直线运动B.飞机上的乘客对座椅的压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零12.一滑雪者连同他的滑雪板质量为70kg ,他滑到凹形的坡底时的速度是20m/s ,坡底的圆弧半径是50m ,则在坡底时雪地对滑雪板的支持力是多少?1260N13.质量为m 的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v ,到达最低点时的速变为24v gR ,则两位置处绳子所受的张力之差是多少?6mg14.汽车沿半径为R = 100m 的圆跑道行驶,设跑道的路面是水平的,路面作用于车的最大静摩擦力是车重的101,要使汽车不致冲出圆跑道,车速最大不能超过多少?10s m /。
(完整版)圆周运动典型例题及答案详解

vA∶vB∶vC=2∶1∶1.
根据向心加速度公式a=ω2R,所以A、B、C三轮边缘向心加速度之比
=8∶4∶2=4∶2∶1.
【例2】【分析】由于木块随圆盘一起作匀速圆周运动,时刻存在着一个沿半径指向圆心的向心加速度,因此,它必然会受到一个沿半径指向中心、产生向心加速度的力——向心力.
【例8】用长L1=4m和长为L2=3m的两根细线,拴一质量m=2kg的小球A,L1和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m如下图(g=10m·s-2)
(1)当竖直杆以的角速度ω匀速转动时,O2A线刚好伸直且不受拉力.求此时角速度ω1.
(2)当O1A线所受力为100N时,求此时的角速度ω2.
D.当转台转速继续增加时,A比B先滑动
【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L,另一端拴住一个质量为500g的小球.小球的初始位置在AB连线上A的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上.
“匀速圆周运动”的典型例题
【例1】如图所示的传动装置中,A、B两轮同轴转动.A、B、C三轮的半径大小的关系是RA=RC=2RB.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?
【例2】一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么
【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?
【例7】如下图所示,自行车和人的总质量为M,在一水平地面运动.若自行车以速度v转过半径为R的弯道.(1)求自行车的倾角应多大?(2)自行车所受的地面的摩擦力多大?
最新物理生活中的圆周运动题20套(带答案)

最新物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.4.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2B M r Mv = 解得:v B =2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有221122C F Mv MgR Mv =+ 得v F =2m/s在F 处由牛顿第二定律2g FN v M F M R+=得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.5.如图1所示是某游乐场的过山车,现将其简化为如图2所示的模型:倾角θ=37°、L =60cm 的直轨道AB 与半径R =10cm 的光滑圆弧轨道BCDEF 在B 处平滑连接,C 、F 为圆轨道最低点,D 点与圆心等高,E 为圆轨道最高点;圆轨道在F 点与水平轨道FG 平滑连接,整条轨道宽度不计,其正视图如图3所示.现将一质量m =50g 的滑块(可视为质点)从A 端由静止释放.已知滑块与AB 段的动摩擦因数μ1=0.25,与FG 段的动摩擦因数μ2=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2.(1) 求滑块到达E 点时对轨道的压力大小F N ;(2)若要滑块能在水平轨道FG 上停下,求FG 长度的最小值x ;(3)若改变释放滑块的位置,使滑块第一次运动到D 点时速度刚好为零,求滑块从释放到它第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程s . 【答案】(1)F N =0.1N (2)x =0.52m (3)93m 160s = 【解析】 【详解】(1)滑块从A 到E ,由动能定理得:()]211sin 1cos 2cos 2E mg L R R mgL mv θθμθ⎡+---=⎣ 代入数据得:30E v =滑块到达E 点:2N Ev mg F m R+= 代入已知得:F N =0.1N(2)滑块从A 下滑到停在水平轨道FG 上,有()12sin 1cos cos 0mg L R mgL mgx θθμθμ⎡⎤+---=⎣⎦代入已知得:x =0.52m(3)若从距B 点L 0处释放,则从释放到刚好运动到D 点过程有:010sin +(1cos )]cos 0mg L R R mgL θθμθ---=[代入数据解得:L 0=0.2m从释放到第一次返回最高点过程,若在轨道AB 上上滑距离为L 1,则:()()01101sin cos 0mg L L mg L L θμθ--+=解得:11001sin cos1sin cos 2L L L θμθθμθ-==+同理,第二次返回最高点过程,若在斜轨上上滑距离为L 2,有:2121101sin cos 11sin cos 22L L L L θμθθμθ-⎛⎫=== ⎪+⎝⎭故第5次返回最高点过程,若在斜轨上上滑距离为L 5,有: 55012L L ⎛⎫= ⎪⎝⎭所以第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程012345932222m 160L L L L L L s =+++++=6.如图所示,竖直平面内固定有一半径R =1m 的14光滑圆轨道AB 和一倾角为45°且高为H =5m 的斜面CD ,二者间通过一水平光滑平台BC 相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道A 点正上方h 处(h 大小可调)由静止释放,巳知重力加速度g =10m/s 2,且小球在点A 时对圆轨道的压力总比在最低点B 时对圆轨道的压力小3mg .(1)若h =0,求小球在B 点的速度大小;(2)若h =0.8m ,求小球落点到C 点的距离;(结果可用根式表示)(3)若在斜面中点竖直立一挡板,使得无论h 为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度l 为多少? 【答案】(1)25/m s (261m (3)1.25m 【解析】 【分析】 【详解】(1)从释放小球至A 点根据速度与位移关系有22A v gh =在A 点,根据牛顿第二定律21AN v F m R=在B 点,根据牛顿第二定律22BN v F mg m R-=根据题意有213N N F F mg -=故B v =若0h =,则小球在B 点的速度1v ==;(2)小球从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点则 水平方向0x t v =竖直方向212y H gt ==又因为斜面倾角为45°,则x y =解得05m/s v =对应的高度00.25m h =若0.80.25h m m =>,小球将落在水平地面上,而小球在B 点的速度26m/s v =小球做平抛运动竖直方向212H gt =得1t s =则水平方向126m x v t ==故小球落地点距C 点的距离s ==;(3)若要求无论h 为多大,小球不是打到挡板上,就是落在水平地面上,临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:35m/s v = 则从C 点至挡板最高点过程中水平方向3''x v t =竖直方向'2122H y l gt =-=' 又2Hx '=解得1.25m l =.点睛:本题研究平抛运动与圆周运动想结合的问题,注意分析题意,找出相应的运动过程,注意方程式与数学知识向结合即可求解.7.如图所示的水平地面上有a 、b 、O 三点.将一条轨道固定在竖直平面内,粗糙的ab 段水平,bcde 段光滑,cde 是以O 为圆心,R 为半径的一段圆弧,可视为质点的物块A 和B 紧靠在一起,中间夹有少量炸药,静止于b 处,A 的质量是B 的2倍.某时刻炸药爆炸,两物块突然分离,分别向左、右沿轨道运动.B 到最高点d 时速度沿水平方向,此时轨道对B 的支持力大小等于B 所受重力的3/4,A 与ab 段的动摩擦因数为μ,重力加速度g ,求:(1)物块B 在d 点的速度大小; (2)物块A 滑行的距离s ;(3)试确定物块B 脱离轨道时离地面的高度; (4)从脱离轨道后到落到水平地面所用的时间. 【答案】(12Rg2)516R μ(3)56R (415(8311)66R g 【解析】(1)设物块A 和B 的质量分别为m A 和m B234d B B Bv m g m g m R-= 解得2d Rgv =(2)设A 、B 分开时的速度分别为v 1、v 2, 系统动量守恒 120A B m v m v -= B 由位置b 运动到d 的过程中, 机械能守恒2221122B B B d m v m gR m v =+ 2252v gR =A 在滑行过程中,由动能定理21102A A m v m gs μ-=- 联立得516Rs μ=(3)设物块脱离轨道时速度为v ,F N =0向心力公式 2cos v mg m Rθ= 而()22111cos 22d mv mgR mv θ+-= 解得 5cos 6θ=, 56v gR = 脱离轨道时离地面的高度5cos 6h R R θ== (4)离轨道时后做向下斜抛运动竖直方向:21cos sin 2h R v t gt θθ==⋅+ 解得:15831166R t g=点睛:本题考查牛顿第二定律、动能定理以及动量守恒定律的应用,解题时关键是认真分析物理过程,挖掘问题的隐含条件,例如物体脱离轨道时F N =0;能选择合适的物理规律列出方程即可解答.8.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :2h t g=y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =9.如图所示,半径R=1m 的光滑半圆轨道AC 与高h=8R 的粗糙斜面轨道BD 放在同一竖直平面内,BD 部分水平长度为x=6R .两轨道之间由一条光滑水平轨道相连,水平轨道与斜轨道间有一段圆弧过渡.在水平轨道上,轻质弹簧被a 、b 两小球挤压(不连接),处于静止状态.同时释放两个小球,a 球恰好能通过半圆轨道最高点A ,b 球恰好能到达斜面轨道最高点B .已知a 球质量为m 1=2kg ,b 球质量为m 2=1kg ,小球与斜面间动摩擦因素为μ=13,重力力加速度为g=10m/s 2.(sin37°=0.6,cos37°=0.8)求:(1)a 球经过C 点时对轨道的作用力 (2)释放小球前弹簧的弹性势能Ep .【答案】(1)120N ,方向竖直向下.(2)150J . 【解析】试题分析:(1)a 球恰好通过最高点A 时有:得10m/s A v Rg ==a 球从C 到A 过程由动能定理有:解得:在C 点,对a 球受力分析有:解得轨道对a球的作用力大小为:(2)b球从D点恰好到达最高点B过程中,位移由动能定理:求得所以小球释放前弹性势能为考点:动能定理;牛顿第二定律的应用10.(2011年南通一模)如图所示,BCDG是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,滑块到达与圆心O等高的C点时速度为多大?(2)在(1)的情况下,求滑块到达C点时受到轨道的作用力大小;(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.【答案】(1) (2) (3)【解析】①由动能定理有:② 当时,最小。
高中物理圆周运动基础练习题(含答案)

B.重力和绳拉力的合力
C.重力和绳拉力的合力沿绳方向的分力
D.绳的拉力和重力沿绳方向分力的合力
9.如图所示,长为L的悬线固定在O点,在O点正下方 处有一钉子C,把悬线另一端的小球m拉到跟悬点在同一水平面上无初速度释放,小球运动到悬点正下方时悬线碰到钉子,则小球的( )
A.线速度突然增大为原来的2倍
高中物理圆周运动基础练习题(含答案)
一、单选题
1.如图一辆质量为500kg的汽车静止在一座半径为50m的圆弧形拱桥顶部。(取g=10m/s2)如果汽车以6m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大( )
A.360NB.4640N
C.5360ND.5000N
2.自行车大小齿轮的示意图如图所示,大齿轮半径为2r,B点位于大齿轮边缘上,C点在大齿轮上且到轮心的距离为r,小齿轮半径为r,A是其边缘上的一点。在齿轮转动的过程中,下列说法正确的是()
(1)小球通过最高点速度为 时,小球对杆的作用力大小是多少,是压力还是拉力;
(2)小球通过最低点时杆对球的作用力为 ,小球的速度大小是多少。
12.如图所示,长l1=1m、倾角θ=37°的斜直轨道与长 的水平轨道平滑连接。可视为质点的物块从倾斜轨道上端A点由静止释放,从C点水平抛出,抛出点距离水平地面的高度h=0.45m,落地点离C端的水平距离为s=0.3m。已知物块与斜轨道间的动摩擦因数μ=0.5,重力加速度g取 , , 。求:
根据
可知A、B两点的角速度之比为
故AB错误;
C.B、C两点在同一轮子上,则角速度相等,根据
可知B、C两点的线速度之比为
故C正确;
D.A、C两点的角速度之比为
根据
由于A、C两点的半径相等,则A、C两点的向心加速度之比为
【物理】物理生活中的圆周运动题20套(带答案)含解析

【物理】物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅解得:123gRv =,253gR v =3.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ; (2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=(3)204mgl mv - 【解析】 【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 2v l得:T =mg +m 20v l(2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -=(3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理 W -mg221011222l mv mv =- 得:W =204mgl mv -6.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :2h t g=y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =7.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R =①()22122011222mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③要保证小球不脱离轨道,可分两种情况进行讨论:I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R = ④()221330112222mg L L mgR mv mv μ-+-=- ⑤ 由④⑤得30.4R m = ⑥II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理()213012202mg L L mgR mv μ-+-=- ⑦解得 3 1.0R m = ⑧为了保证圆轨道不重叠,R 3最大值应满足()()2222332R R L R R +=+- ⑨解得:R 3=27.9m ⑩综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件300.4R m <≤或 31.027.9m R m ≤≤ ⑾【点睛】本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.8.光滑水平面上放着质量m A =1kg 的物块A 与质量m B =2kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,用手挡住B 不动,此时弹簧弹性势能E P =49J 。
高中物理必修二第六章圆周运动经典大题例题(带答案)

高中物理必修二第六章圆周运动经典大题例题单选题1、离心现象在生活中很常见,比如市内公共汽车在到达路口转弯前,车内广播中就要播放录音:“乘客们请注意,车辆将转弯,请拉好扶手”。
这样做可以()A.使乘客避免车辆转弯时可能向前倾倒发生危险B.使乘客避免车辆转弯时可能向后倾倒发生危险C.使乘客避免车辆转弯时可能向转弯的内侧倾倒发生危险D.使乘客避免车辆转弯时可能向转弯的外侧倾倒发生危险答案:D车辆转弯时,如果乘客不能拉好扶手,乘客将做离心运动,向外侧倾倒发生危险。
故选D。
2、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt 解得水平位移x=2√3R故选A。
3、已知某处弯道铁轨是一段圆弧,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢底面与水平面夹角)为θ,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为()A.√gRsinθB.√gRcosθC.√gRtanθD.√gR答案:C受力分析如图所示当内外轨道不受侧向挤压时,列车受到的重力和轨道支持力的合力充当向心力,有F n=mg tan θ,F n=m v2R解得v=√gR tanθ故选C。
4、做匀速圆周运动的物体,它的加速度大小必定与()A.线速度的平方成正比B.角速度的平方成正比C.运动半径成正比D.线速度和角速度的乘积成正比答案:DA.根据a=v2 r可知只有运动半径一定时,加速度大小才与线速度的平方成正比,A错误;B.根据a=ω2r可知只有运动半径一定时,加速度大小才与角速度的平方成正比,B错误;C.根据,a=ω2ra=v2r当线速度一定时,加速度大小与运动半径成反比;当角速度一定时,加速度大小与运动半径成正比,C错误;D.根据a=ω2r,v=ωr联立可得a=vω可知加速度大小与线速度和角速度的乘积成正比,D正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A.1∶4 B.2∶3 C.4∶9D.9∶162.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。
两小环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()A.(2m+2M)g B.Mg-2mv2/RC.2m(g+v2/R)+Mg D.2m(v2/R-g)+Mg3.下列各种运动中,属于匀变速运动的有()A.匀速直线运动B.匀速圆周运动C.平抛运动 D.竖直上抛运动4.关于匀速圆周运动的向心力,下列说法正确的是( )A.向心力是指向圆心方向的合力,是根据力的作用效果命名的B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力C.对稳定的圆周运动,向心力是一个恒力D.向心力的效果是改变质点的线速度大小5.一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v=0.2m/s ,那么,它的向心加速度为______m/s2,它的周期为______s。
6.在一段半径为R=15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ =0.70倍,则汽车拐弯时的最大速度是m/s7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直方向的夹角为θ ,试求小球做圆周运动的周期。
8如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所受拉力达到F=18N时就会被拉断。
当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断。
若此时小球距水平地面的高度h=5m,重力加速度g=10m/s2,求小球落地处到地面上P点的距离?求落地速度?(P点在悬点的正下方)9如图所示,半径R= 0.4m的光滑半圆轨道与粗糙的水平面相切于A点,质量为m= 1kg的小物体(可视为质点)在水平拉力F的作用下,从C点运动到A点,物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通过最高点B后作平抛运动,正好落在C点,已知AC = 2m,F =15N,g取10m/s2,试求:物体在B点时的速度以及此时半圆轨道对物体的弹力?20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B以不同速率进入管内,A通过最高点C时,对管壁上部的压力为3mg ,B 通过最高点C时,对管壁下部的压力为0.75mg.求A、B 两球落地点间的距离.21、如图所示,将一质量为m 的摆球用长为L 的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆。
关于摆球的受力情况,下列说法中正确的是( )A .摆球受重力、拉力和向心力的作用 B.摆球受拉力和向心力的作用C.摆球受重力和拉力的作用 D .摆球受重力和向心力的作用22、一轻绳与水桶相连,水桶中装有水,水桶与绳一起在竖直平面内做圆周运动,如图所示,水的质量m=0.5kg,水的重心到转轴的距离l =50cm 。
⑴ 若在最高点水不流出来,求桶此时的最小速率;⑵ 若在最高点水桶的速率v=3m /s,求水对桶底的压力是多大。
23如图所示,一圆盘可绕一通过圆心O 且垂直盘面的竖直轴转动。
在圆盘上放置一与圆盘的动摩擦因数为μ,距圆心O 为R 的木块,随圆盘一起作匀速转动,求转盘的最大角速度?24:两个质量不同的小球,被长度不等的细线悬挂在同一点,并在同一水平面内作匀速圆周运动,如图所示。
则两个小球的( )A 、运动周期相等B 、运动线速度相等C 、运动角速度相等ﻩD 、向心加速度相等25:一个内壁光滑的圆锥形筒的轴线垂直水平面,圆锥筒固定。
有质量相等的两个小球A 、B ,分别沿着筒的内壁在水平面内作匀速圆周运动。
如图所示。
A 的运动半径较大,则( )A 、A 球的角速度必小于B 球的角速度B 、A 球的线速度必小于B球的线速度C 、A球的运动周期必大于B 球的运动周期D 、A 球对筒壁的压力必大于B 球对筒壁的压力26:半径为R的光滑半圆球固定在水平面上,顶部有一小物体m 如图所示,今给小物体一个水平初速度gR v 0,则物体将:( )A 、沿球面滑至M 点;B 、先沿球面滑至某点N 再离开球面做斜下抛运动;C、按半径大于R 的新圆弧轨道运动; D 、立即离开半圆球作平抛运动.27.在长绳的一端系一个质量为m 的小球,绳的长度为L ,用绳拉着小球在竖直面内做圆周运动。
若小球恰能通过最高点,则在最高点的速度为 ;若绳能够承受的最大拉力为7mg ,则小球到达最低点速度的不得超过 。
28.在质量为M 的电动机飞轮上,固定着一个质量为m的重物,重物到轴的距离为R ,如图所示,为了使电动机不从地面上跳起,电动机飞轮转动的最大角速度不能超过( )L m θC O B A A BA .g mR m M ⋅+ B.g mR m M ⋅+ C.g mR m M ⋅- D.mRMg 29.如图所示,轻绳的上端系于天花板上的O点,下端系有一只小球。
将小球拉离平衡位置一个角度后无初速释放。
当绳摆到竖直位置时,与钉在O 点正下方P 点的钉子相碰。
在绳与钉子相碰瞬间前后,以下物理量的大小没有发生变化的是( )A.小球的线速度大小 B.小球的角速度大小C.小球的向心加速度大小 D .小球所受拉力的大小30.汽车在水平地面上转弯,地面对车的摩擦力已达到最大值。
当汽车的速率加大到原来的二倍时,若使车在地面转弯时仍不打滑,汽车的转弯半径应( )A .增大到原来的二倍B .减小到原来的一半C .增大到原来的四倍 D.减小到原来的四分之一31.两个大轮半径相等的皮带轮的结构如图所示,AB 两点的半径之比为2 : 1,CD 两点的半径之比也为2 : 1,则A BCD 四点的角速度之比为___,这四点的线速度之比为_____,向心加速度之比为__。
32.如图所示,把质量为0.6 kg 的物体A 放在水平转盘上,A 的重心到转盘中心O 点的距离为0.2 m,若A 与转盘间的最大静摩擦力为3 N ,g =10 m /s 2,求:(1)转盘绕中心O以ω = 2 rad / s 的角速度旋转,A相对转盘静止时,转盘对A摩擦力的大小与方向。
(2)为使物体A 相对转盘静止,转盘绕中心O 旋转的角速度ω的取值范围。
33.质量M = 1 000 kg 的汽车通过圆形拱形桥时的速率恒定,拱形桥的半径R =10 m 。
试求:(1)汽车在最高点对拱形桥的压力为车重的一半时,汽车的速率;(2)汽车在最高点对拱形桥的压力为零时,汽车的速率。
(重力加速度g =10 m/s2)34.如图所示,位于竖直平面上的41圆弧轨道光滑,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m的小球从A点由静止释放,到达B 点时的速度为gR 2,最后落在地面上C 点处,不计空气阻力,求:(1)小球刚运动到B 点时的加速度为多大,对轨道的压力多大;(2)小球落地点C 与B 点水平距离为多少。
35.一作匀速圆周运动的物体,半径为R,向心加速度为a,则下列关系中错误..的是( ) A.线速度v =aR B .角速度ω=R a /O A A B C DC.周期T =2πa R / D.转速n =2πR a /36.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体与圆筒一起运动,物体相对桶壁静止.则 ( )A.物体受到4个力的作用.B.物体所受向心力是物体所受的重力提供的.C.物体所受向心力是物体所受的弹力提供的.D.物体所受向心力是物体所受的静摩擦力提供的37.水平匀速转动的圆盘上的物体相对于圆盘静止,则圆盘对物体的摩擦力方向是 ( )A.沿圆盘平面指向转轴 B .沿圆盘平面背离转轴C .沿物体做圆周运动的轨迹的切线方向 D.无法确定38.质量为m的小球在竖直平面内的圆形轨道内侧运动,经过最高点而刚好不脱离轨道时速度为v ,则当小球以2v 的速度经过最高点时,对轨道内侧竖直向上压力的大小为()A .0 B.m g C.3mg D.5mg39.一质量为m 的物体,沿半径为R 的圆形向下凹的轨道滑行,如图 所示,经过最低点的速度为v ,物体与轨道之间的滑动摩擦因 数为μ,则它在最低点时所受到的摩擦力大小为______ .40.甲、乙两球做匀速圆周运动,向心加速度a 随半径r 变化的关系图像如图6所示,由图像可知: A. 甲球运动时,角速度大小为2 rad/sB . 乙球运动时,线速度大小为6m/s C. 甲球运动时,线速度大小不变D. 乙球运动时,角速度大小不变 41.如图所示,小球m 在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的有A .小球通过最高点的最小速度为v Rg =B.小球通过最高点的最小速度为0C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力D.小球在水平线曲以上管道中运动时,内侧管壁对小球一定有作用力42.如图所示,已知半圆形碗半径为R,质量为M ,静止在地面上,质量为m 的滑块滑到圆弧最底端速率为υ,碗仍静止,此时地面受到碗的压力为 ( ) A.mg + m R 2v B.Mg + m g + m R2v C.Mg+ m g D.Mg + mg − mR2v 43.某汽车以相同的速率v 分别通过凸形桥与凹形桥,若两桥的桥面最高点及最底点附近均可视为圆形,且半径均为R ,设汽车运动到凸形桥的最高点所受的支持力为N 1,运动到凹形桥的最底点所受的支持力为N 2,试求N 1和N 2的比值为____________。
44.如图2所示,汽车在一段丘陵地匀速率行驶,由于轮胎太旧R va r 图6 8 2 甲 乙(第41题)而发生爆胎,则图中各点中最易发生爆胎的位置是在A.a 处 ﻩB .b 处ﻩC .c 处 ﻩD .d 处45.如图3所示,有一绳长为L ,上端固定在滚轮A 的轴上,下端挂一质量为m的物体。
现滚轮和物体—起以速度v 匀速向右运动,当滚轮碰到固定挡板B突然停止瞬间,物体m的速度为 ,绳子拉力的大小为 。
46. A 、B 两质点分别做匀速圆周运动,若在相同时间内,它们通过的弧长之比Sa ∶Sb=2∶3,而转过的角度之比φa∶φb=3∶2,则它们的周期之比Ta ∶Tb =_______,线速度之比va ∶vb=_______8、如图所示,两个相对斜面的倾角分别为37°和53°,在斜面顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上。
若不计空气阻力,则A 、B 两个小球的运动时间之比为( )A.1:1 B.4:3 C.16:9 D.9:169、如图在倾角为θ的斜面顶端A 处以速度V 0水平抛出一小球,落在斜面上的某一点B处,设空气阻力不计,求(1)小球从A 运动到B 处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大?10、如图所示,两个小球固定在一根长为l的杆的两端,绕杆上的O 点做圆周运动。