磁共振成像原理
磁共振成像原理

自旋动画
3. 带电的自旋质子群
一群自旋着的质子,显示每个核内周边的 电荷形成一个环形电流。这些环形电流的 方向是杂乱无章的,这是自然状态下的自 旋核质子群。
每一个环形电流周围将产生电磁效应,就 是磁场。一个环形电流就好似一个小磁棒。
理论上任何原子核所含质子或中子的为奇 数时,具有磁性。
自旋动画
第二节 MR现象的物理学基础
一、产生核磁共振现象的基本条件
静磁场中物质的原子核受到一定频率的 电磁波作用,它们的能级之间发生共振 跃迁,就是磁共振现象。
物质吸收电磁波能量而跃迁后,又会释 放电磁能量恢复到初始状态,如果用特 殊装置接受这部分能量信号,就采集到 MR信号。
第二节 MR现象的物理学基础
在B0的作用下使原来简并的能级分裂成2I+1个 能级,称为塞曼分裂,这些能级称为塞曼能级。 塞曼能级是等间距的,相邻两个能级之能量差 为:
EhB 0/2
(二)静磁场中的能级分裂
1在HB自0中旋1量H子分数裂I为=1两/2个,能同级样。IZ =1/2,所以 具有较高能量(处于高能级)的质子沿与
3. 带电的自旋质子群
通电的环形线圈周围都有磁场存在,相 当于一块磁铁。所以转动的质子也相当 于一个小磁体,具有自身的南、北极及 磁力,质子自身具有磁性,在其周围产 生磁场,并具有自身磁矩。磁矩是矢量, 具有方向和大小,磁矩的方向可有环形 电流的法拉第右手定则确定,与自旋轴 一致。
环形电流的磁矩μ:μ=IS
μ不与在B同B0的取0方相向向互,的作形投用成影能它是称与一为B些0位相不能互连作。续用在的能B数0的中值不μ。的同位。μ能的μ 为:
E B 0 h B 0 I Z /2
γ为原子核的磁旋比(gyromagnetic-ratio)
磁共振的原理和应用

磁共振的原理和应用磁共振的原理磁共振是一种基于原子核磁性的物理现象,广泛应用于医学领域。
它的原理是通过在强磁场中施加一定的电磁波,使原子核发生共振现象,从而得到关于原子核的信息。
具体来说,磁共振的原理可以概括为以下几个方面:1.磁共振现象:在进入强磁场后,原子核会对磁场产生响应,进而发生共振。
这是因为原子核具有自旋角动量,而磁场可以引起原子核自旋角动量的方向和能量的变化,从而产生共振信号。
2.拉莫尔频率:拉莫尔频率是原子核在特定磁场中的共振频率。
拉莫尔频率与原子核的磁性、电荷、核自旋等因素有关。
通过测量原子核的拉莫尔频率,可以确定物质的成分和结构。
3.磁共振信号的检测:磁共振信号可以通过接收原子核共振信号产生的电磁波来进行检测。
这种电磁波可以通过天线或探测器接收,并转换成能够被显示器或计算机处理的信号。
磁共振的应用磁共振在医学领域有着广泛的应用,特别是在诊断和研究方面。
以下是磁共振在医学领域的几个重要应用:1.磁共振成像(MRI): MRI是利用磁共振原理进行医学影像诊断的一种非侵入性检查方法。
通过在患者身上产生特定的磁场和电磁波,可以获得高分辨率的人体结构和器官图像。
MRI在检测器官病变、肿瘤、中风和神经退行性疾病等方面有着广泛的应用。
2.功能性磁共振成像(fMRI):fMRI是一种用于测量脑部活动的方法。
它通过观察患者大脑区域血液供应的变化来分析脑部功能活动。
fMRI在研究神经系统疾病、心理学和认知科学等领域有着重要的应用。
3.磁共振波谱学(MRS): MRS用于测量生物体内的化学物质组成和代谢过程。
通过分析特定核磁共振信号的强度和频率,可以确定生物样本中各种化学物质的含量和类型。
MRS在生物医学研究中被广泛应用,例如在癌症和神经系统疾病的研究中。
4.磁共振弹性成像(MRE): MRE是一种用于测量组织力学性质的成像技术。
它通过将机械振动引入到组织内,然后利用磁共振技术来检测和分析振动的传播和反射情况。
磁共振的原理

磁共振的原理磁共振是一种重要的物理现象,它被广泛应用于医学、化学和物理等领域。
本文将围绕磁共振的原理进行阐述。
一、磁共振的概念磁共振是指当原子或分子处于磁场中时,受到磁场的作用而产生共振现象。
磁共振的产生与原子或分子的核自旋有关。
二、核磁共振的原理核磁共振是利用核磁共振现象进行成像的一种技术。
下面将介绍核磁共振的原理。
1. 核自旋原子核由质子和中子组成,其中质子具有正电荷。
当原子或分子处于磁场中时,它们的核会沿磁场方向取向,这个取向被称为“朝上”或“朝下”。
2. 磁场核磁共振需要使用强磁场,通常是一个恒定的静态磁场。
磁场的强度被表示为磁通量密度。
3. 激发在核磁共振实验中,一个射频脉冲作用于样品,使得某些核的自旋倒转了。
这个过程被称为激发。
一旦核自旋倒转,它就开始以特定频率发射电磁波,这个频率被称为共振频率。
4. 探测探测是核磁共振成像的一个关键环节。
当被测试的样品放置在强磁场中,我们会发送一个射频脉冲,这个脉冲会激发样品中的原子核,使其产生共振现象。
这个现象可以被从样品中发射的信号所检测到。
三、磁共振成像的原理磁共振成像是一种非侵入性的医学检查技术,它利用核磁共振原理对人体内部进行成像。
下面将介绍磁共振成像的原理。
1. 原理磁共振成像的原理是利用不同组织在强磁场中的旋转速度不同,从而产生不同的信号。
这些信号被接收器捕捉并转化成数字信号,然后计算机通过数学算法将这些信号转化成图像。
2. 步骤进行磁共振成像需要经过以下几个步骤:(1)患者躺在磁共振机床上。
机器会将患者放置在一个强磁场中。
(2)机器会发送射频脉冲激发患者体内的原子核。
(3)原子核在磁场中发生共振,产生信号。
(4)接收机捕捉这些信号,并将其转化成数字信号。
(5)计算机利用数学算法将数字信号转化成图像。
四、磁共振的应用磁共振已经被广泛应用于医学、化学和物理等领域中。
以下是一些典型应用:1. 医学影像学磁共振成像已成为医学影像学中的重要技术,它可以产生高分辨率的三维影像。
磁共振成像的基本原理

磁共振成像的基本原理
磁共振成像(MRI)是一种非侵入性的医学成像技术,它可以更加精确地鉴别出和检测出体内的组织和器官,有助于医疗诊断。
它的基本原理是将加入磁场的物体放入扫描器内部,然后利用射频波将细胞内的检测元素(一般是氢原子)的磁轴电子从极端自旋转变波放出来,经过一定时间(放出还原环境),其自由度逐渐减低,此时它就会发射出差别很大的磁共振信号,从而让工作人员利用大型计算机计算出形状,结构及尺度来建立这个物体的状态,这样,他们就可以准确地分析出他们正在观察的物体的形状、功能,从而获得更多的信息。
磁共振成像的原理和临床应用

磁共振成像的原理和临床应用磁共振成像(Magnetic resonance imaging,MRI)是一种高级的医学影像学技术,具有无辐射、高分辨率、多平面重建、互补和定量分析等优势。
本文将探讨MRI的原理和其在临床中的应用。
一、MRI的原理MRI通过将组织暴露于极强的磁场中,然后用无线电波和梯度线圈来产生信号,进而使用计算机将这些信号转化为图像。
这个过程涉及到一系列的过渡态,从基于水分子的信号生成到结构特异性的图像形成。
MRI的原理是基于核磁共振(Nuclear magnetic resonance,NMR)技术的,该技术最早用于化学物质的分析。
原子核不停地旋转,当一个人将其置于磁场中,原子核便会根据自己的自旋状况对骨架产生不同的反应。
这些反应由计算机捕捉并编码成影像,就像一副影像反映了头骨里口袋里的电位一样。
二、MRI的临床应用1.诊断肿瘤MRI在诊断肿瘤方面有很大的作用。
相对于其他影像技术,MRI可以更清晰地显示肿瘤的形状、大小和位置。
通过MRI扫描,医生可以观察肿瘤是否蔓延到周围血管和组织,为治疗提供重要依据。
2.观察神经系统MRI对于研究神经系统非常有用。
医生可以观察脑、脊柱和神经根的结构和功能。
例如,在诊断下肢麻木的患者时,医生可以使用MRI来查看患者是否存在间盘突出、脊柱压缩或椎间盘疾病。
3.评估心脏健康MRI可以评估心脏的结构和功能。
它可以测量心脏室壁的厚度、心脏大小和氧化细胞的分布。
这些信息有助于医生诊断心脏病并评估心脏健康状况,包括心衰、心肌梗死和瓣膜异常等疾病。
4.研究关节疾病MRI对于关节疾病的研究也非常有帮助。
它可以观察骨、关节软骨和其他软组织。
如果患者有肿胀、疼痛和关节运动受限的症状,MRI可以检查足部、手部、膝部和肩部等关节的状况,确定问题所在。
5.评估器官功能MRI还可以评估内脏器官的功能,如肝脏、肾脏和胰腺等。
使用MRI扫描可以检查器官的大小、形状和是否存在异常。
磁共振(MRI)成像原理

横向弛豫
七、横向弛豫
横向弛豫
七、横向弛豫 由于受磁场不均匀的影响,实际上90°射频脉冲关闭后,宏观横向磁化矢量将呈指数式
的快速衰减,我们把宏观横向磁化矢量的这种衰减称为自由感应衰减也称T2※弛豫。 利用180°聚焦脉冲可以剔除主磁场不均匀造成的宏观横向磁化矢量衰减,组织由于质
子群周围磁场微环境随机波动造成的宏观横向磁化矢量的衰减才是真正的横向弛豫,即T2弛 豫。T2弛豫的能量传递发生于质子群内部,即质子与质子之间,因此T2弛豫也称自旋一自 旋弛豫(spin-spin弛豫)。
横向弛豫
七、横向弛豫 90°脉冲关闭后,组织中的宏观横向磁化矢量将逐渐减小,最后将衰减到零。90°脉冲
使组织中原来相位不一致的质子群处于同相位进动,质子小磁场的横向磁化分矢量相互叠加, 从而产生旋转的宏观横向磁化矢量。
90°脉冲关闭后,宏观横向磁化矢量衰减的原因与之相反,同相位进动的质子群逐渐失 去了相位的一致,其横向磁化分矢量的叠加作用逐渐减弱,因此宏观横向磁化矢量逐渐减小 直至完全衰减。
子核中的质子数是相同的,所不同的是中子数,这种同一元素的不同原子 核被称为同位素,如元素氢的同位素就有H(氢核)、H(氘核)和H(氚 核),一般标为1H(氢核)、H(氘核)和3H(氚核)即可。
物质基础
一、物质基础:自旋和核磁共振 原子核具有一定大小和质量,可以视作一个球体,所有磁性原子核都有一个特性,就
弛豫
六、核磁弛豫
A.在激发前平衡状态下,组织中只有宏观纵向磁化矢量(向上空白 粗箭); B.90°脉冲激发后即刻,组织中宏观纵向磁化矢量消失,产生一 个旋转(带箭头圆圈)的宏观横向磁化矢量(水平空白粗箭); C.等待一段时间后,组织中的宏观横向磁化矢量有所缩小,宏观纵 向磁化矢量有所恢复; D.再等待一段时间后,组织中的宏观横向磁化矢量进一步缩小,宏 观纵向磁化矢量恢复更多; E.再过一段时间,组织中的宏观横向磁化矢量已经完全衰减,而宏 观纵向磁化矢量进一步恢复; F.到最后,组织中的宏观纵向磁化矢量已经完全恢复到平衡状态。
磁共振成像原理

磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。
核磁共振(nuclear magnetic resonance,NMR)是一种核物理现象。
早在1946年Block与Purcell就报道了这种现象并应用于波谱学。
Lauterbur1973年发表了MR成像技术,使核磁共振不仅用于物理学和化学。
也应用于临床医学领域。
近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。
检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。
为了准确反映其成像基础,避免与核素成像混淆,现改称为磁共振成像。
参与MRI 成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。
一、磁共振现象与MRI含单数质子的原子核,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体。
小磁体自旋轴的排列无一定规律。
但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列。
在这种状态下,质子带正电荷,它们像地球一样在不停地绕轴旋转,并有自己的磁场. 正常情况下,质子处于杂乱无章的排列状态。
当把它们放入一个强外磁场中,就会发生改变。
它们仅在平行或反平行于外磁场两个方向上排列用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。
停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。
这一恢复过程称为弛豫过程(relaxationprocess),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxationtime)。
有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-lattice relaxationtime)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格所需要的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称T1。
核磁共振工作原理

核磁共振工作原理
核磁共振(NMR)是一种利用原子核的磁性来研究物质结构和性质的物理学和化学技术。
核磁共振成像(MRI)则是将核磁共振技术应用于医学影像学中,用来检查人体内部组织和器官的非侵入性成像技术。
核磁共振的原理基于原子核的磁性。
原子核带有电荷,因此在运动过程中会产生磁场,即磁矩。
当这些原子核置于外部磁场中时,它们会对外部磁场发生作用,使得原子核的磁矩方向发生改变,这种现象被称为磁共振。
核磁共振的工作原理可以简单地描述如下:
1. 样品置于外部强磁场中:将要研究的物质(比如水、蛋白质等)置于强磁场中,这个磁场通常是由大型超导磁体产生的。
2. 加入辅助磁场:在强磁场中加入一个辅助磁场,这个辅助磁场可以是一系列的脉冲磁场,它们的方向和大小可以控制,通过改变脉冲磁场的参数,可以控制样品内部原子核的磁矩方向和大小,使其发生磁共振。
3. 探测信号:当样品内部原子核发生磁共振时,会产生一个高频信号,这个信号可以被外部探测器(如射频线圈)接收并转换成电信号。
4. 数据处理:通过对接收到的信号进行处理,可以获得物质结构和性质的信息。
核磁共振技术广泛应用于物理学、化学、生物学、医学等领域,可以用于分析物质的分子结构、动力学过程、疾病诊断、治疗监测等。
1/ 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相位编码 空间编码前
频率编码
K空间
• 按相位和频率两种坐标组成了另一种虚拟的空间位置排列矩阵,这个位置 不是实际的空间位置,只是计算机根据相位和频率不同而给予的暂时识别 定位,这就是“K空间”。 • K空间每一点包含了所有体素的信号,但不能区分各个体素的信号。 • K空间所有点通过傅立叶变换,可以求出各个体素信号的大小。
弛豫
• 射频脉冲一停止,组织磁化恢复原来的状态, 即发生弛豫(Relaxation)。 • 磁共振成像时受检脏器的每一个质子都要经过 反复的RF激发和弛豫过程。 • 弛豫有纵向弛豫和横向弛豫。
纵向弛豫
纵向弛豫
纵向弛豫
• 射频脉冲停止,纵向弛豫恢复到原来大小平衡的状态,
纵向弛豫是能量变化的过程。
• T2 弛豫时间内氢质子将吸收的 RF 能量以电磁波形式的
信号释放出来(FID)。
横向弛豫
影响T2因素
• 主磁场T2弛豫时间比 T1 要短许多。人体组织中T2 值的 范围大约在 50-100 ms之间。(脑脊液较为特殊,具有 2000 ms 的 T2 值)。 在含水多的组织中也有较长的 T2 弛豫时间(如:炎症,水肿,恶性肿瘤等)。 • 与 T1 相比,T2对主磁场强度不敏感,但是对磁场均匀 度敏感。
磁共振
• 人体组织在强磁场内会产生净磁化,组织磁化的程度 取决于磁场强度,与磁场强度成正比。组织磁化的方 向与主磁场方向相同,是纵向磁化。 • 组织磁化是产生MR信号,形成图像的前提。
磁共振
共振条件
人体进入磁体,组织被磁化,氢质子磁矩有规律排
列时,在主磁场垂直方向施加射频脉冲,当 RF 脉
磁共振成像原理
李焕杰 生物医学工程系 hj_li@
目标
• 为什么讲磁共振成像(Why) • 什么是磁共振成像(What)
• 磁共振成像的数据处理方法
Why
• 大脑是最重要的中枢神经系统 • 2%的体积,20%的能量消耗
• 21世界“脑科学”被提上了重要日程,世界各
国已启动多项脑研究计划,
• 纵向弛豫是一个从零状态恢复到最大值的过程。
• 纵向磁化向量恢复原来数值所经历的时间过程称纵向弛
豫时间(T1)。 • 纵向弛豫过程表现为一种指数递增曲线。
• T1值被定义为从零恢复到原来纵向磁化向量 63%的时间。
4-5倍的T1值时间才能达到完全恢复。 • 人体各种组织因组成成份不同而具有不同的T1值。
• 1977年,Mansfield提出了快速成像方法。(Lauterbur和Mansfield因上述 贡献分享了 2003 年度Nobel 生理医学奖)
• 1992年,BELL实验室的Ogawa提出了BOLD fMRI技术,开启了功能磁共 振研究领域
What ?
定义:磁共振成像是利用射频(radio frequency,
缺点 • 运动敏感 • 对水的浓度要求高 • 有禁忌症
多参数成像
任意方位成像
高对比成像,详尽解剖信息
全身成像
多模态成像
Structure image Cerebrovascular DTI
BOLD fMRI
MRS
产业状态
• 三大跨国公司 GE, Siemens, Philipus • 国内公司 上海“联影” 苏州“朗润” … • 人才需求 高校 公司 医院 国家医疗器械检测单位 出国
有外加磁场B0
低能态,数目多
高能态,数目少
氢质子的磁矩是如何变化的
处于强磁场内的质子并非静止地向两个方向平行排列,进行陀螺式的摇摆 样运动,质子磁矩这种旋转运动称为进动(Precession),其旋转频率称共 振频率(larmor频率)。
磁化矢量M
B0
Direction of nuclear magnetic moment
影响T1的因素
• 不同组织分子结构 T1 弛豫时间不同,由它们本
身 进 动 频 率 不 同 所 决 定 。 大 部 分 组 织 T1 值 在
200-300msec之间,(如:脂肪质子的弛豫比水
分子要快,T1时间就短,脂肪T1为100-200ms。
纯水为3000ms,组织含水越多,T1时间越长。
• 磁场强度影响。磁场强度增大使共振频率增大,
目前的影像技术
• PET:使用对比剂,放射性同位素 • CT:对人体有辐射
• 脑电图EEG:高时间分辨率,低空间分辨率
• 脑磁图MEG:高时间分辨率,低空间分辨率,贵 • MRI:最流行成像方法
磁共振优缺点
优点 • 软组织对比度好 • 多参数成像 • 任意方位断层 • 时空分辨率较高 • 安全无辐射 • 不使用对比剂 • 全身成像 • 提供结构、代谢信息
Direction of applied magnetic field
Larmor频率
氢原子核在不同场强中的共振频率 静磁场强度(T) 共振频率(MHz)
0.15 0.2 0.3 0.5 0.6 1.0 1.5 2.0 3.0 6.4 8.5 12.8 21.3 25.5 42.6 63.9 85.3 127.8
• 层面选择梯度Gz • 相位编码梯度Gy • 频率编码梯度Gx
增加梯度磁场的目的
• 从接受线圈接收人体质子群发出的磁共振信号 是成千上万的杂乱无章的信息,这些信号群只 有强度和频率,无空间和方位的信息。应用梯 度磁场的目的,是提供磁共振成像的空间定位 信息,解决图像重建和层面选择及空间定位的 难题。 • 磁共振的拉莫尔(Larmor)定律,人体组织在 不同的磁场强度下,其共振频率就会不同,这 就形成了根据梯度磁场的变化达到空间定位的 理论和实际应用基础。
冲等于质子的进动频率时,质子能吸收 RF 脉冲,
发生质子能态跃迁,产生核磁共振,使组织磁化向
量位置移动,围绕主磁场方向的进动角度发生改变。
翻转角FA
• 射频脉冲时间的长短、强度的大小决定了进动角度
的大小。
• FA=γB1t • 射频脉冲强度越大,翻转角度改变越快。 • 射频脉冲施加时间越长,翻转角度越大。
90 0
Echo
S
Gp Gr TE/2 TE/2
TR
MRI数据采集方法
• 激励——— 射频脉冲激励做 Gz 层面选择。 • 相位编码— 在Y轴增加梯度磁场 Gy,使Y坐标上 质子处于不同相位。 • 频率编码— Gy 关闭后,立即加上Gx 频率编码梯 度,自旋质子进动,含有频率和相位 编码的混合MR 信号经二维傅立叶转 换,分出每个体素在矩阵中的位置和 信号强度,最后重建成图像。
• 射频脉冲停止,核磁弛豫开始,氢质子释放吸收的
能量重新回到原来Biblioteka 旋的方向;• 释放的电磁能转化为磁共振信号; • 经梯度磁场做层面选择和相位编码及频率编码; • 经傅立叶转换和计算机处理形成图像。
原子核自旋
自旋条件
• 质子数+中子数≠偶数 • 最常用原子为1H
无外加磁场B0
方向随机
无磁化矢量
T1弛豫时间随之延长。
横向弛豫
横向弛豫
• 射频脉冲停止,横向磁化向量开始逐渐消失的过程。横
向弛豫不是能量变化的过程,是进动相位失去的过程。 • 横向磁化向量逐渐消失的过程称横向弛豫时间(T2)。 • 其衰减过程也表现为一个指数曲线,与 T1 不同的是递 减曲线。 • T2值被定义为横向磁化向量从最大到其原来 37% 的时 间。4-5倍T2值时间完全消失。
K空间和图像域关系
FFT
K-空间对图像的影响
K-- 空间特点:远离中心线的上下方为高空间频率,其决 定图像的空间分辨率;在中心线的低空间频率则决定图像 的对比度。
K空间边缘部 空间中心部
决定图像的分辨率和细节! 决定图像的对比和总体质量!
选层Gz
层厚
• ω=γ(B0+Gz▪Z)
• △ω=γGz▪△Z
• 频率越宽,层面越厚 • 梯度越大,层面越薄
平面信号空间编码
• 梯度场应用解决了从一个层面采集信号和选择
层面厚度问题。但不能分辨该层面内信号来自
什么位置。为确定层面内信号的坐标,进行另
外的空间编码技术即选用两种不同梯度磁场进
行编码: • 频率编码梯度 • 相位编码梯度
磁共振历史
• 1946年 ,美国加州斯坦福大学的 Bloch 和麻省哈佛大学的Purcell分别发 现了物质的核磁共振现象。应用于化学分析,共享1952年诺贝尔物理奖。
Felix Bloch
Edward Purcell
Paul C. Lauterbur
Peter. Mansfield
• 1973年,纽约州立大学 Lauterbur 首先提出了利用磁共振成像技术。
• 磁场不均匀时,1/T2*= 1/T2+ γ △B
T1、T2对磁共振信号的影响
磁共振信号与T1、T2关系
M x i M y j M z M0 M M ( B1 ) k t T2 T1
采集数据脉冲序列
180 0
90 0
RF Gs FID
RF)电磁波对置于磁场中的含有自旋不为零的原
子核的物质进行激发,发生核磁共振,用感应线
圈采集磁共振信号,按一定数学方法进行处理而
建立的一种数字图像。
磁共振成像过程
• 人体未进入静磁场,体内氢质子群磁矩自然无规律排 列; • 进入静磁场,所有自旋的氢质子重新排列定向,磁矩 指向 N 或 S 极; • 通过射频线圈与静磁场垂直方向施加射频脉冲,受检 部位氢质子吸收能量并向一个方向偏转和自旋;