[人教版]八年级下册数学《期末考试试卷》(附答案)
最新人教版2022-2022年八年级下期末考试数学试卷(含答案)

八年级(下)期末(qī mò)数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合(fúhé)题目要求的)1.下列(xiàliè)图形中,既是中心对称图形,又是轴对称图形的是()A.菱形(línɡ xínɡ)B.平行四边形C.等边三角形D.梯形2.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cm B.5cm C.8cm D.20cm3.如果n边形的内角和等于外角(wài jiǎo)和的3倍,那么n的值是()A.5 B.6 C.7 D.84.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~70 71~80 81~90 91~100人数(人) 1 19 22 18A.35% B.30% C.20% D.10%5.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形6.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC7.点P在x轴上,且到y轴的距离(jùlí)为5,则点P的坐标是()A.(5,0) B.(0,5) C.(5,0)或(﹣5,0) D.(0,5)或(0,﹣5)8.直线(zhíxiàn)y=kx+9k+10一定(yīdìng)经过点()A.(0,10)B.(1,19)C.(9,10)D.(﹣9,10)9.如图,线段(xiànduàn)AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4 B.4.5 C.4.8 D.510.在直角坐标系中,一只电子青蛙从原点出发,每次可以向上(xiàngshàng)或向下或向左或向右跳动一个单位,若跳三次,则到达的终点有几种可能()A.12 B.16 C.20 D.6411.如图,一次函数y=kx+b的图象与坐标轴的交点坐标分别为A(0,2),B(﹣3,0),下列说法:①y随x的增大而减小;②b=2;③关于x的方程kx+b=0的解为x=2;④关于x的不等式kx+b<0的解集x<﹣3.其中说法正确的有()A.1个B.2个C.3个D.4个12.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有()千米到达甲地.A.70 B.80 C.90 D.100二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.函数(hánshù)y=的自变量x的取值范围(fànwéi)是.14.默写角平分线的性质(xìngzhì)定理的逆定理:.15.点P(m﹣1,2m﹣4)在第三象限(xiàngxiàn),则m的取值范围是.16.已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.17.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE 折叠后,点B落在AD边的F点上,则DF的长为.18.点P(x,y)经过某种变换后得到点P′(﹣y+1,x+2),我们把点P′(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2021的坐标为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤19.(6分)我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充(bǔchōng)完整;(3)已知该校有1000人,请根据样本估计全校最喜欢足球(zúqiú)的人数是多少?20.(6分)已知函数(hánshù)y=kx+2k+1(k不为(bù wéi)零),(1)若函数(hánshù)图象经过点A(1,4),求k的值;(2)若这个一次函数图象不经过第一象限,求k的取值范围.21.(8分)如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.22.(8分)如图,在矩形ABCD中,AD>AB,过对角线的中点O作BD的垂线EF,交AD于点E,交BC于点F.(1)求证:四边形BEDF是菱形;(2)若AB=3,AD=4,求AE的长.23.(8分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为12?若存在,请直接出点P的坐标;若不存在,请说明(shuōmíng)理由.24.(10分)某商店销售A型和B型两种型号(xínghào)的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少(duōshǎo)台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售(xiāoshòu)总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.25.(8分)在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD的中点(zhōnɡ diǎn),连接EF,试证明EF⊥BD.26.(12分)如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标(zuòbiāo)及直线L的解析式;(2)在(1)的条件(tiáojiàn)下,如图②所示,设Q为AB延长线上一点(yī diǎn),作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN 的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角(zhíjiǎo)顶点在第一、二象限内作等腰直角△OBF和等腰直角(zhíjiǎo)△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.八年级(下)期末(qī mò)数学试卷参考答案一、选择题(本大题共12小题(xiǎo tí),每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.A;2.C;3.D;4.B;5.D;6.D;7.C;8.D;9.C;10.B;11.B;12.A;二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.x≥;14.角的内部到角的两边距离(jùlí)相等的点在角平分线上;15.m<1;16.8;17.6;18.(1,4);三、解答题(本大题共8小题,共66分.解答应(dā yìng)写出文字说明、证明过程或演算步骤19、20、21、22、23、24、25、26、内容总结(1)14.角的内部到角的两边距离相等的点在角平分线上(2)18.(1,4)。
新部编人教版八年级数学下册期末考试卷及参考答案

新部编人教版八年级数学下册期末考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、B6、B7、C8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、52、22()1y x =-+3、2x (x ﹣1)(x ﹣2).4、8.5、1(21,2)n n -- 6、32°三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、22x -,12-.3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)略;(2)3.5、24°.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
2022—2023年人教版八年级数学(下册)期末试卷(附参考答案)

2022—2023年人教版八年级数学(下册)期末试卷(附参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-32.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .1257.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.57.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______. 3.使x 2-有意义的x 的取值范围是________.4.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).三、解答题(本大题共6小题,共72分) 1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值4.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE=DF(1)求证:AE=CF ;(2)若AB=6,∠COD=60°,求矩形ABCD 的面积.6.“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表: 村庄 清理养鱼网箱人数/人 清理捕鱼网箱人数/人 总支出/元(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、C6、C7、C8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、03、x 2≥4、40°5、40°6、②.三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、-3.3、(1)详见解析(2)k 4=或k 5=4、略.5、6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
人教版数学八年级下学期《期末考试卷》附答案

2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟,一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+12.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°4.在下列各式中,化简正确的是()A.√53=3√15B.√12=±12√2C.√a4b=a2√b D.√x3−x2=−x√x−15.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表:周作业时量/小时 4 6 8 10 12 人数 2 23 21 3 1 则这次调查中的众数、中位数是()A.6,8 B.6,7 C.8,7 D.8,86.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.1009.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥211.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.1212.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为cm.15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试90 95面试85 8016.观察计算结果:①3=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103=17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.知识竞赛演讲比赛版面创作项目班次甲85 91 8887乙90 8422.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长23.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.24.在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是千米/时,B,C两地的路程为千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.25.如图,矩形OABC的顶点与坐标原点O重合,将△OAB沿对角线OB所在的直线翻折,点A落在点D处,OD 与BC相交于点E,已知OA=8,AB=4(1)求证:△OBE是等腰三角形;(2)求E点的坐标;(3)坐标平面内是否存在一点F,使得以B,D,E,P为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.26.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+1【分析】根据二次根式中的被开方数是非负数进行分析即可.【解析】A、当x=1时,√x2−5无意义,故此选项错误;B、当x=1时,√−x−5无意义,故此选项错误;C、当x<0时,√x无意义,故此选项错误;D、无论x取什么值,√x2+1都有意义,故此选项正确;故选:D.2.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象不经过哪个象限.【解析】∵一次函数y=7x﹣6,k=7,b=﹣6,∴该函数经过第一、三、四象限,不经过第二象限,故选:B.3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°【分析】直接利用菱形的性质得出DC∥AB,∠DAC=∠1,进而结合平行四边形的性质得出答案.【解析】∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=12∠DAB=25°.4.在下列各式中,化简正确的是( ) A .√53=3√15 B .√12=±12√2C .√a 4b =a 2√bD .√x 3−x 2=−x √x −1【分析】根据二次根式的性质求出每个式子的值,再根据求出的结果进行判断即可. 【解析】A 、结果是13√15,故本选项错误;B 、结果是12√2,故本选项错误;C 、√a 4b =a 2√b ,故本选项正确;D 、当x ≥1时,√x 3−x 2=√x 2(x −1)=|x |√x −1=x √x −1,故本选项错误; 故选:C .5.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表: 周作业时量/小时4 6 8 10 12 人数2232131则这次调查中的众数、中位数是( ) A .6,8B .6,7C .8,7D .8,8【分析】根据众数、中位数的定义求解即可.【解析】由统计表可知,学生平均每周课后作业时量为6小时的有23人,人数最多,故众数是6; 因表格中数据是按从小到大的顺序排列的,一共50个人,中位数为第25位和第26位的平均数,它们分别是6,8,故中位数是6+82=7.故选:B .6.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是( ) A .甲B .乙C .丙D .丁【分析】平均数相同,比较方差,谁的方差最小,谁发挥的就最稳定. 【解析】∵四个人的平均成绩都是10.3秒,而0.019<0.020<0.021<0.022, ∴乙发挥最稳定,7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【分析】根据平行四边形、菱形、矩形、正方形的判定分别进行分析即可.【解析】A、一组对边平行且相等的四边形是平行四边形,说法正确;B、四条边都相等的四边形是菱形,说法正确;C、对角线互相垂直的平行四边形是正方形,说法错误;D、四个角都相等的四边形是矩形,说法正确;故选:C.8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.100【分析】由正方形的面积公式可知S1=AB2,S2=AC2,S3=BC2,在Rt△ABC中,由勾股定理得AC2+AB2=BC2,即S1+S2=S3,由此可求S3.【解析】∵在Rt△ABC中,AC2+AB2=BC2,又由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∴S3=S1+S2=36+64=100.故选:D.9.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC【分析】根据同角的余角相等判断A;根据题意判断B;根据等腰三角形的性质判断C;根据三角形的外角性质判断D.【解析】∵∠C=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵AD=CD,∴∠A=∠ACD,∴∠B=∠BCD,A选项结论正确,不符合题意;BC与BD不一定相等,B选项结论错误,符合题意;∵∠B=∠BCD,∴BD=CD,∵AD=CD,∴AD=BD,C选项结论正确,不符合题意;∵∠A=∠ACD,∴∠BDC=∠A+∠ACD=2∠ACD,∴∠ACD=12∠BDC,D选项结论正确,不符合题意;故选:B.10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥2【分析】关于x的不等式kx+b≤−12x+52的解集,直线y=kx+b的图象在y=−12x+52的图象的下边的部分,对应的自变量x的取值范围.【解析】把A(m,2)代入y=−12x+52,得2=−12m+52.解得m=1.则A(1,2).根据图象可得关于x的不等式kx+b≤−12x+52的解集是x≤1.故选:C.11.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.12【分析】首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.【解析】如图所示:设x小时后,就进入台风影响区,根据题意得出:CE=40x千米,BB′=20x千米,∵BC=500km,AB=300km,∴AC=400(km),∴AE=400﹣40x,AB′=300﹣20x,∴AE2+AB′2=EB′2,即(400﹣40x)2+(300﹣20x)2=2002,解得:x1=15,x2=7,∴轮船经7小时就进入台风影响区.故选:B.12.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S △DOP求得答案.【解析】连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC=√AB2+BC2=10,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式y =﹣x+2(答案不唯一).【分析】设该一次函数的解析式为y=kx+b(k<0),再把(﹣1,3)代入即可得出k+b的值,写出符合条件的函数解析式即可.【解析】该一次函数的解析式为y=kx+b(k<0),∵一次函数的图象经过点(﹣1,3),∴﹣k+b=3,∴当k=﹣1时,b=2,∴符合条件的函数关系式可以是:y=﹣x+2(答案不唯一).14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为(2+2√2)cm.【分析】由等腰直角三角形的性质求出斜边长和直角边长,即可得出答案.【解析】∵等腰直角三角形斜边上的高为1cm,也是斜边上的中线,∴等腰直角三角形的斜边长=2cm,∴等腰直角三角形的直角边长=√22×2=√2(cm),∴这个等腰直角三角形的周长为2+2√2(cm),故答案为:(2+2√2).15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么李老师 (填“李老师”或“王老师”)将被录用.测试项目测试成绩 李老师王老师 笔试90 95 面试 85 80【分析】利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【解析】李老师总成绩为:90×25+85×35=87,王老师的成绩为:95×25+80×35=86, ∵87>86,∴李老师成绩较好,故答案为:李老师.16.观察计算结果:①√13=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103= 55【分析】根据前四个式子得到规律,根据规律计算得到答案.【解析】√13=1;√13+23=3=1+2;√13+23+33=6=1+2+3;√13+23+33+43=10=1+2+3+4;则√13+23+33+⋯+103=1+2+3+4+5+6+7+8+9+10=55,故答案为:55.17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 1或73 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【分析】由已知以点P ,Q ,E ,D 为顶点的四边形是平行四边形有两种情况,(1)当Q 运动到E 和B 之间,(2)当Q 运动到E 和C 之间,根据平行四边形的判定,由AD ∥BC ,所以当PD =QE 时为平行四边形.根据此设运动时间为t ,列出关于t 的方程求解.【解析】由已知梯形,当Q 运动到E 和B 之间,设运动时间为t ,则得:2t −82=3﹣t ,解得:t =73,当Q 运动到E 和C 之间,设运动时间为t ,则得:82−2t =3﹣t , 解得:t =1,故当运动时间t 为1或73秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 故答案为:1或73. 18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 (√2)n .【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n 个等腰直角三角形的斜边长.【解析】第一个斜边AB =√2,第二个斜边A 1B 1=(√2)2,所以第n 个等腰直角三角形的斜边长为:(√2)n ,故答案为:(√2)n .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.【分析】(1)根据算术平方根、零指数幂、负整数指数幂和绝对值可以解答本题;(2)根据二次根式的乘法和完全平方公式可以解答本题.【解析】(1)√12−(π+√2)0+(12)﹣1+|1−√3| =2√3−1+2+√3−1=3√3;(2)8√12−√6×2√3+(√2+1)2 =4√2−6√2+2+2√2+1=3.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?【分析】连接AC ,在Rt △ACD 中利用勾股定理计算出AC 长,再利用勾股定理逆定理证明∠ACB =90°,再利用S △ACD ﹣S △ABC 可得空地面积,然后再计算花费即可.【解析】连接AC ,在Rt △ABC 中,AB =3米,BC =4米,∵AC 2=AB 2+BC 2=32+42=25,∴AC =5,∵AC 2+AD 2=52+122=169,CD 2=132=169,∴AC 2+AD 2=CD 2,∴∠DAC =90°,该区域面积=S △ACD ﹣S △ABC =30﹣6=24(平方米),铺满这块空地共需花费=24×500=12000(元).答:用该盆景铺满这块空地共需花费12000元.21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛 演讲比赛 版面创作甲85 91 88 乙 90 84 87【分析】(1)根据加权平均数的计算公式列出算式,再进行计算即可得出答案.(2)将甲、乙两人的总成绩按比例求出最后成绩,再进行比较,即可得出结果.【解析】(1)甲班的平均成绩是:13(85+91+88)=88(分), 乙班的平均成绩是:13(90+84+87)=87(分), ∵87<88,∴甲班将获胜.(2)甲班的平均成绩是85×5+91×3+88×25+3+2=87.4(分), 乙班的平均成绩是90×5+84×3+87×25+3+2=87.6(分),∵87.6>87.4,∴乙班将获胜.22.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理解答即可.【解答】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;解:(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠EBD=30°.由(1)知,平行四边形BFDE是菱形,则EF⊥BD,BO=OD=6.∴EO=12BE.由勾股定理得到:BE 2=62+EO 2,即4EO 2=62+EO 2.解得:EO =2√3.所以EF =4√3.23.如图,在平面直角坐标系中,过点B (4,0)的直线AB 与直线OA 相交于点A (3,1),动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式;(2)直线AB 交y 轴于点C ,求△OAC 的面积;(3)当△OAC 的面积是△OMC 面积的3倍时,求出这时点M 的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OAC 的面积是△OMC 面积的3倍时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.【解析】(1)设直线AB 的解析式是y =kx +b ,根据题意得:{4k +b =03k +b =1, 解得:{k =−1b =4, 则直线的解析式是:y =﹣x +4;(2)在y =﹣x +4中,令x =0,解得:y =4,S △OAC =12×4×3=6;(3)当M 在线段OA 时,设OA 的解析式是y =mx ,把A (3,1)代入得:3m =1,解得:m =13,则直线的解析式是:y =13x ,∵△OAC 的面积是△OMC 面积的3倍时, ∴当M 的横坐标是13×3=1,在y =13x 中,当x =1时,y =13, 则M 的坐标是(1,13);当M 在射线AC 上时, 在y =﹣x +4中,x =1时, 则y =3,则M 的坐标是(1,3); 当M 的横坐标是﹣1时,在y =﹣x +4中,当x =﹣1时,y =5, 则M 的坐标是(﹣1,5);综上所述:M 的坐标是:M 1(1,13)或M 2(1,3)或M 3(﹣1,5).24.在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题: (1)甲车行驶速度是 60 千米/时,B ,C 两地的路程为 360 千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.【分析】(1)根据F 点坐标可求出甲车速度,根据M 纵坐标可得B ,C 两地之间距离;(2)根据甲车比乙车晚1.5小时到达C 地得出点E 坐标,再求出点N 坐标,利用待定系数法求解即可; (3)根据运动过程,分3种情况讨论,由路程=速度×时间,可求解. 【解析】(1)由题意可得: F (10,600),∴甲车的行驶速度是:600÷10=60千米/时, M 的纵坐标为360,∴B ,C 两地之间的距离为360千米, 故答案为:60;360;(2)∵甲车比乙车晚1.5小时到达C 地, ∴点E (8.5,0),乙的速度为360×2÷(10﹣0.5﹣1.5)=90千米/小时, 则360÷90=4,∴M (4,360),N (4.5,360),设NE 表达式为y =kx +b ,将N 和E 代入, {0=8.5k +b 360=4.5k +b ,解得:{k =−90b =765, ∴y (千米)与x (小时)之间的函数关系式为:y =﹣90x +765; (3)设出发x 小时,行驶中的两车之间的路程是15千米, ①在乙车到B 地之前时,600﹣S 甲﹣S 乙=15,即600﹣60x ﹣90x =15, 解得:x =3910,②当乙车从B 地开始往回走,追上甲车之前,15÷(90﹣60)+4.5=5小时; ③当乙车追上甲车并超过15km 时, (30+15)÷(90﹣60)+4.5=6小时;④乙到达B 地停留时,15÷60+4=174(小时)(不符合题意行驶中舍弃,) ⑤乙到达C 地时,(600﹣15)÷60=394小时(不符合题意行驶中舍弃) 综上:行驶中的两车之间的路程是15千米时,出发时间为3910小时或5小时或6小时.25.如图,矩形OABC 的顶点与坐标原点O 重合,将△OAB 沿对角线OB 所在的直线翻折,点A 落在点D 处,OD 与BC 相交于点E ,已知OA =8,AB =4 (1)求证:△OBE 是等腰三角形; (2)求E 点的坐标;(3)坐标平面内是否存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.【分析】(1)由矩形的性质得出OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC ,得出B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8,得出∠OBC =∠DOB ,证出OE =BE 即可; (2)设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得出方程,解方程即可; (3)作DF ⊥y 轴于F ,则DF ∥BC ,由平行线得出△ODF ∽△OEC ,得出DF CE=OF OC=ODOE,求出DF =245,OF =325,得出D (245,325);分三种情况,由平行四边形的性质即可得出结果. 【解答】(1)证明:∵四边形OABC 是矩形, ∴OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC , ∴B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8, ∴∠OBC =∠DOB ,∴OE =BE ,∴△OBE 是等腰三角形;(2)解:设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得:42+(8﹣x )2=x 2, 解得:x =5,∴OE =5,CE =8﹣x =3, ∵OC =4,∴E 点的坐标为(3,4);(3)解:坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形;理由如下: 作DF ⊥y 轴于F ,如图所示: 则DF ∥BC , ∴△ODF ∽△OEC , ∴DF CE=OF OC=OD OE,即DF 3=OF 4=85,解得:DF =245,OF =325, ∴D (245,325);当BE 为平行四边形的对角线时,点P 的坐标为(315,85); 当BD 为平行四边形的对角线时,点P 的坐标为(495,325);当DE 为平行四边形的对角线时,点P 的坐标为(−15,325);综上所述,坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形,P 点坐标为(315,85)或(495,325)或(−15,325).26.如图,已知四边形ABCD 是正方形,对角线AC 、BD 相交于O .(1)如图1,设E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.【分析】(1)首先证明△EOA ≌△FOB ,推出AE =BF ,从而得出结论;(2)在BC 上取一点H ,使得BH =AE .由△OAE ≌△OBH ,推出AE =BH ,∠AOE =∠BOH ,OE =OH ,由△FOE ≌△FOH ,推出EF =FH ,由∠FBH =90°,推出FH 2=BF 2+BH 2,由此即可解答. 【解析】(1)EF 2=AF 2+BF 2. 理由:如图1,∵四边形ABCD 是正方形, ∴OA =OB ,∠OAE =∠OBF =45°,AC ⊥BD , ∴∠EOF =∠AOB =90°, ∴∠EOA =∠FOB , 在△EOA 和△FOB 中, {∠EOA =∠FOBOA =OB ∠OAE =∠OBF, ∴△EOA ≌△FOB (ASA ), ∴AE =BF ,在Rt △EAF 中,EF 2=AE 2+AF 2=AF 2+BF 2; (2)在BC 上取一点H ,使得BH =AE .∵四边形ABCD 是正方形,∴OA =OB ,∠OAE =∠OBH ,∠AOB =90°, 在△OAE 和△OBH 中,{OA =OB∠OAE =∠OBH AE =BH∴△OAE ≌△OBH (SAS ),∴AE =BH ,∠AOE =∠BOH ,OE =OH , ∵∠EOF =45°, ∴∠AOE +∠BOF =45°, ∴∠BOF +∠BOH =45°, ∴∠FOE =∠FOH =45°, 在△FOE 和△FOH 中•, {OF =OF∠FOE =∠FOH OE =OH, ∴△FOE ≌△FOH (SAS ), ∴EF =FH , ∵∠FBH =90°, ∴FH 2=BF 2+BH 2, ∴EF 2=BF 2+AE 2,。
2022—2023年人教版八年级数学下册期末考试卷附答案

2022—2023年人教版八年级数学下册期末考试卷附答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A.10 B.12 C.16 D.187.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm8.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:273-=________.2.分解因式:3x 9x -=__________.3.因式分解:a 2-9=_____________.4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=________厘米.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程:(1)11322x x x -=--- (2)311x x x-=-2.先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中2x =.3.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.4.如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点E 处,FC 交AD 于F .(1)求证:△AFE ≌△CDF ;(2)若AB =4,BC =8,求图中阴影部分的面积.5.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、A5、C6、C7、B8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2、()() x x3x3+-3、(a+3)(a﹣3)4、35、1 (21,2) n n--6、4三、解答题(本大题共6小题,共72分)1、(1)无解;(2)32x =. 2、13x x -+;15.3、(1)11x -;(2)14、(1)略;(2)10.5、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
人教版数学八年级下册《期末检测题》附答案

A. B. C. D.
【答案】D
【解析】
【分析】结合函数图象,写出一次函数y1=x+b图象在一次函数y2=kx+4的图象上方所对应的自变量的范围即可.
【详解】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,−2),
解得 ,
【答案】B
【解析】
【分析】根据勾股定理 逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】解:A、 ,故不是直角三角形,错误;
B、 ,故是直角三角形,正确;
C、 故不是直角三角形,错误;
D、 故不是直角三角形,错误.
故选:B.
【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
故选:B.
【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.
7.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()
A. 中位数B. 众数C. 平均数D. 不能确定
21.如图,在四边形 中, , ,点 在 上,且 ,将 沿 折叠,点 恰好与点 重合.
(1)求线段 的长;
(2)求线段 的长.
22.甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶,甲同学到达山顶休息1小时后再沿原路下山,他们离山脚的距离 (千米)随时间 (小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:
最新人教版八年级下册数学《期末考试题》附答案

【答案】A
【解析】
【分析】
根据特殊的平行四边形的判定即可逐一判断.
【详解】解:两组邻边分别相等的四边形不一定是菱形,如AB=AD,CB=CD,但AB≠CB的四边形,故选项A中的命题是假命题,故选项A符合题意;
对角线互相垂直平分的四边形是菱形是真命题,故选项B不符合题意;
四个角相等的四边形是矩形是真命题,故选项C不符合题意;
对角线相等的平行四边形是矩形是真命题,故选项D不符合题意;
故选:A.
【点睛】本题考查命题与定理,解答本题的关键是明确题意,熟练掌握特殊的平行四边形的判定定理,会判断命题的真假.
8.对于函数y=3-x,下列结论正确的是()
A.y的值随x的增大而增大B. 它的图象必经过点(-1,3)
85
80
(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
21.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.
(1)求证:四边形CEDF为平行四边形;
(2)若AB=6cm,BC=10cm,∠B=60°,
14.观察下列各式:32=4+5,52=12+13,72=24+25,92=40+41…根据发现的规律得到132=____+____.
15.某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度第二学期期末测试人教版八年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题1.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A. m 1≠. B. m 1=.C. m 1≥D. m 0≠. 2.下列各曲线中,不表示...y 是x 的函数是( ). A. B.C. D. 3.下列各组数中能作为直角三角形的三边长是( )A. 7,24,25B. 3,2,5C. 2,5,6D. 13,14,15 4.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A. m≥1B. m≤1C. m >1D. m <15.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC+AB =10,BC =3,求AC 的长.在这个问题中,AC 的长为( )A. 4尺B. 92尺C. 9120尺D. 5尺 6.一次函数42y x =--的图象经过( )A. 第一、二、三象限B. 第一、二、四象限 C 第一、三、四象限D. 第二、三、四象限7.下列命题正确的是( )A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形8.一个三角形的两边长分别为2和6,第三边长是方程28150x x-+=的根,则这个三角形的周长为()A. 11B. 12C. 13D. 11或139.如图,菱形ABCD的对角线AC,BD相交于点O,点E为CD的中点,连接OE,若4AB=,60BAD∠=︒,则OCE△的面积是()A. 4B. 23C. 2D. 310.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.其中说法正确的是()A. 甲的速度是60米/分钟B. 乙的速度是80米/分钟C. 点A的坐标为(38,1400)D. 线段AB所表示的函数表达式为40(4060)y t t=剟二、填空题11.在函数21xyx-=-中,自变量x的取值范围是________.12.在Rt△ABC中,已知∠C=90°,∠A=30°,BC=1,则边AC的长为_____.13.若函数y kx b=+的图象如图所示,则关于x的不等式0kx b+<的解集为_____________.14.命题“全等三角形的对应边都相等”的逆命题是___命题.(填“真”或“假”)15.在平面直角坐标系中,已知一次函数61y x =-+的图象经过()111,P x y ,()222,P x y 两点,若12x x <,则1y ________2y .(填“>”“<”或“=”)16.要组织一次篮球赛,赛制单循环形式(每两队之间都赛一场)计划安排15场比赛,应邀请 个球队参加比赛.17.如图,AC 是四边形ABCD 的对角线,AC 平分BAD ∠,90ACD ABC ==∠∠°,点E ,F 分别为AC ,CD 的中点,连接BE ,EF ,78BEF ∠=︒,则D ∠的大小为________度.18.如图,平面直角坐标系中,ACOD Y 的顶点O ,A ,C 的坐标分别是(0,0),(4,0),(1,2),则直线AD 的解析式为____________.19.已知CD 是△ABC 的边AB 上的高,若CD=3,AD=1,AB=2AC ,则BC 的长为_____.20.如图,正方形ABCD 中,点E 在CD 的延长线上,点F 在AB 上,连接EF 交AD 于点G ,EF CE =,若3BF =,2DG =,则CE 的长为________.三、解答题21.解方程:4(2)25x x +=22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段EF ,点A ,B ,E ,F 均在小正方形的顶点上.(1)在方格纸中画出以AB 为一边的矩形ABCD ,点C ,D 都在小正方形的顶点上,且矩形ABCD 的周长为65;(2)在方格纸中画出以EF 为边的菱形EFGH ,点G ,H 都在小正方形的顶点上,且菱形EFGH 的面积为4;连接CH ,请直接写出CH 的长.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA x P 轴,AC 是射线.(1)当30x …,求y 与x 之间的函数关系式; (2)若小李6月份上网费用为66元,则他在该月份的上网时间是多少小时?24.如图,矩形纸片ABCD ,点E 在BC 上,将CDE △沿DE 折叠,得到FDE V ,DF ,EF 分别交AB 于点G ,H ,且EH GH =.(1)求证:BG CE =;(2)若4AB =,3AD =,求AG 的长.25.某地2016年为做好“精准扶贫”,投入资金1200万元用于异地安置,并规划投入异地安置资金的年平均增长率在三年内保持不变,已知2018年在2016年的基础上增加了投入异地安置资金1500万元. (1)2017年该地投入异地安置资金为多少元?(2)在2017年异地安置的具体实施中,该地要求投入用于优先搬迁租房奖励的资金不低于2017年该地投入异地安置资金的25%.规定前1000户(含第1000)户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.26.已知:矩形ABCD ,点E 在AD 的延长线上,连接CE ,BE ,且BC CE =,DCE ∠的平分线CF 交BE 于点F .(1)如图1,求BFC ∠的大小;(2)如图2,过点F 作FN CF ⊥交BA 的延长线于点N ,求证:BN AD =;(3)如图3,在(2)的条件下,FN 交AD 于点M ,点Q 为MN 的中点,连接BQ 交AD 于点H ,点P 在AH 上,且DE PD =,连接BP ,且104BP DE =.延长MF 交CE 于点G ,连接CM ,若CGM △的周长与BHP V 的周长的差为2,求MN 的长.27.已知:在平面直角坐标系中,点O 为坐标原点,直线8(0)y kx k =+<分别交x 轴,y 轴于点C ,B ,点A 在第一象限,连接AB ,AC ,四边形ABOC 是正方形.(1)如图1,求直线BC 的解析式;(2)如图2,点,D E 分别在,AB OC 上,点E 关于y 轴的对称点为点F ,点G 在EF 上,且2EG FG =,连接DE ,DG ,设点G 的横坐标为t ,DEG △的面积为S ,求S 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)如图3,在(2)的条件下,连接BE ,BF ,CD ,点M 在BF 上,且FM EG =,点N 在BE 上,连接MN 交DG 于点H ,12BNM BEF ∠=∠,且MH NH =,若5CD BD =,求S 的值.答案与解析一、选择题1.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A. m 1≠.B. m 1=.C. m 1≥D. m 0≠.【答案】A【解析】【分析】 根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.2.下列各曲线中,不表示...y 是x 的函数是( ). A. B. C. D.【答案】D【解析】【分析】函数有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,结合选项即可作出判断.【详解】解:A 、B 、C 选项中对于x 的每一个确定的值,y 都有唯一的值与其对应,符合函数的定义, 只有D 选项对于x 的每一个确定的值,可能会有两个y 与之对应,不符合函数的定义,故选:D .【点睛】本题考查了函数的定义,注意掌握在函数变化的过程中,对于x 的每一个确定的值,y 都有唯一的值与其对应.3.下列各组数中能作为直角三角形的三边长是( )A. 7,24,25 325 C. 2,5,6 D. 13,14,15【答案】A【解析】【分析】根据勾股定理的逆定理依次判断各选项即可.【详解】A 、2227+24=25,则能作为直角三角形的三边长,故A 选项正确;B 、()()2223+25≠,则不能作为直角三角形的三边长,故B 选项错误; C 、2222+56≠,则不能作为直角三角形的三边长,故C 选项错误;D 、22213+1415≠,则不能作为直角三角形的三边长,故D 选项错误;故选A.【点睛】本题是对勾股定理的逆定理知识的考查,熟练掌握勾股定理是解决本题的关键.4.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A. m≥1B. m≤1C. m >1D. m <1【答案】D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->V ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 5.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC+AB =10,BC =3,求AC 的长.在这个问题中,AC 的长为( )A. 4尺B. 92尺C. 9120尺D. 5尺【答案】C【解析】【分析】 首先设AC=x ,然后根据勾股定理列出方程,求解即可.【详解】设AC=x ,∵AC+AB=10,∴AB=10﹣x .∵在Rt △ABC 中,∠ACB=90°,∴AC 2+BC 2=AB 2,即x 2+32=(10﹣x )2.解得:x =4.55,即AC=4.55.故选:C .【点睛】本题考查的是勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图. 6.一次函数42y x =--的图象经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限【答案】D【解析】【分析】根据一次函数的一次项系数小于0,则函数一定过二、四象限,常数项-2<0,则一定与y 轴负半轴相交,据此即可判断.【详解】一次函数42y x =--的一次项系数为-4,∵-4<0,∴函数一定过二、四象限,∵常数项-2<0,∴函数与y 轴负半轴相交,∴一次函数42y x =--的图象经过第二、三、四象限,故选D.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数图像和解析式之间的关系是解决本题的关键. 7.下列命题正确的是( )A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形【答案】D【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A 、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A 选项错误;B 、对角线互相垂直的四边形也可能是一般四边形,故B 选项错误;C 、对角线相等的四边形有可能是等腰梯形,故C 选项错误.D 、一组邻边相等的矩形是正方形,故D 选项正确.故选D .【点睛】本题考查特殊平行四边形的判定,需熟练掌握各特殊四边形的特点.8.一个三角形的两边长分别为2和6,第三边长是方程28150x x -+=的根,则这个三角形的周长为()A. 11B. 12C. 13D. 11或13【答案】C【解析】【分析】先解方程求出第三边,再根据三角形三边关系确定第三边,然后求出周长即可.【详解】解:28150x x -+=()()350x x --=123,5x x ==,∵2+3<6,则x=3舍去,∵2+5>6,则x=5成立,则周长为2+5+6=13,故选C.【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法和三角形的三边关系是解决本题的关键.9.如图,菱形ABCD的对角线AC,BD相交于点O,点E为CD的中点,连接OE,若4AB=,60BAD∠=︒,则OCE△的面积是()A. 4B. 23C. 2D. 3【答案】D【解析】【分析】由已知条件可求出菱形的面积,则△ADC的面积也可求出,易证OE为△ADC的中位线,所以OE∥AD,再由相似三角形的性质即可求出△OCE的面积.【详解】解:过点D作DH⊥AB于点H,∵四边形ABCD是菱形,AO=CO,∴AB=BC=CD=AD,∵∠BAD=60°,∴DH=4323 =∴S菱形ABCD=42383⨯=∴S△CDA=12S菱形ABCD=183432⨯=∵点E为边CD的中点,∴OE为△ADC的中位线,∴OE∥AD,∴△CEO∽△CDA,∴△OCE的面积=14S△CDA=14334⨯=故选:D.【点睛】本题考查了菱形的性质、三角形中位线的判断和性质、相似三角形的判断和性质,能够证明OE为△ADC的中位线进而证明△CEO∽△CDA是解题的关键.10.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.其中说法正确的是()A. 甲的速度是60米/分钟B. 乙的速度是80米/分钟C. 点A的坐标为(38,1400)D. 线段AB所表示的函数表达式为剟y t t40(4060)【答案】D【解析】【分析】根据图象信息,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;由甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再根据“路程、时间与速度”的关系解答即可;求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B 两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.【详解】解:A、根据图象信息,甲的速度为2400÷60=40米/分钟,故A选项错误;B、∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100-40=60米/分钟,B选项错误;C、乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A 点的坐标为(40,1600),故C 选项错误;D 、设线段AB 所表示的函数表达式为y=kt+b ,∵A (40,1600),B (60,2400),∴160040240060k b k b =+⎧⎨=+⎩, 解得:400k b =⎧⎨=⎩, ∴线段AB 所表示的函数表达式为40(4060)y t t =剟,故D 选项正确; 故选D.【点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,读懂题目信息,从图象中获取有关信息是解题的关键.二、填空题11.在函数21x y x -=-中,自变量x 的取值范围是________. 【答案】1x ≠【解析】【分析】 在函数21x y x -=-中分母不为0,则x-1≠0,解出x 的取值范围即可. 【详解】在函数21x y x -=-中分母不为0, 则x-1≠0,即x≠1,故答案为:1x ≠.【点睛】本题是对分式有意义的考查,熟练掌握分母不为0是解决本题的关键.12.在Rt △ABC 中,已知∠C =90°,∠A =30°,BC =1,则边AC 的长为_____.【解析】【分析】由在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,利用勾股定理,即可求得AC 的长;【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2×2=4 ∴AC=22213-=【点睛】本题主要考查了应用勾股定理解直角三角形,解题的关键在于用在直角三角形中30°所对的边是斜边的一半.13.若函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +<的解集为_____________.【答案】3x >【解析】【分析】函数y kx b =+的图象过(0,3),由函数表达式可得,0kx b +<,就是一次函数值y <0,结合图像即可得出答案. 【详解】解:由图知,3x >时,y <0,即0kx b +<, 则关于x 的不等式0kx b +<的解集为3x >, 故答案为:3x >.【点睛】本题是对一次函数图像的考查,熟练掌握一次函数图像知识和不等式知识是解决本题的关键. 14.命题“全等三角形的对应边都相等”的逆命题是___命题.(填“真”或“假”) 【答案】真【解析】【分析】首先分清题设是:两个三角形全等,结论是:对应边相等,把题设与结论互换即可得到逆命题,然后判断正误即可. 【详解】“全等三角形的对应边相等”的题设是:两个三角形全等,结论是:对应边相等,因而逆命题是:对应边相等的三角形全等.是一个真命题.故答案是:真【点睛】考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.15.在平面直角坐标系中,已知一次函数61y x =-+的图象经过()111,P x y ,()222,P x y 两点,若12x x <,则1y ________2y .(填“>”“<”或“=”)【答案】>【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】解:∵一次函数61y x =-+中k=-6<0,∴y 随x 的增大而减小,∵12x x <,∴12y y >,故答案为:>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.16.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场)计划安排15场比赛,应邀请 个球队参加比赛.【答案】6.【解析】试题分析:设应邀请x 个队参加比赛,由题意则有:x(x-1)=15,解得x=6或x=-5(不合题意,舍去),故应邀请6个队参加比赛.考点:一元二次方程的应用.17.如图,AC 是四边形ABCD 的对角线,AC 平分BAD ∠,90ACD ABC ==∠∠°,点E ,F 分别为AC ,CD 的中点,连接BE ,EF ,78BEF ∠=︒,则D ∠的大小为________度.【答案】64【解析】【分析】根据三角形中位线定理得到EF∥AD,得到∠CEF=∠CAD,根据直角三角形的性质得到EA=EB,得到∠EAB=∠EBA,根据角平分线的定义、直角三角形的性质计算即可.【详解】解:∵点E,F分别为AC,CD的中点,∴EF∥AD,∴∠CEF=∠CAD,∵∠ABC=90°,点E为AC的中点,∴EA=EB,∴∠EAB=∠EBA,∴∠CEB=2∠EAB,∵AC平分∠BAD,∴∠CAD=∠EAB,∴3∠DAC=78°,解得,∠DAC=26°,∵∠ACD=90°,∴∠D=90°-26°=64°,故答案为:64.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.Y的顶点O,A,C的坐标分别是(0,0),(4,0),(1,2),则直线AD的18.如图,平面直角坐标系中,ACOD解析式为____________.【答案】28y x =-【解析】【分析】先根据平行四边形的性质求出点D 坐标,再求出AD 解析式即可.【详解】∵四边形ACOD 是平行四边形,∴OC=AD ,OC ∥AD ,∵O(0,0),A(4,0),C(1,2),∴D 点坐标为(3,2)-,设AD 解析式为k y x b =+,把A(4,0),D(3,2)-代入k y x b =+中,0423k b k b=+⎧⎨-=+⎩, 解得:28k b =⎧⎨=-⎩, ∴28y x =-,故答案为:28y x =-.【点睛】本题是对平行四边形和一次函数知识的考查,熟练掌握平行四边形知识和一次函数解析式是解决本题的关键.19.已知CD 是△ABC 的边AB 上的高,若3AD=1,AB=2AC ,则BC 的长为_____. 【答案】327【解析】【分析】分两种情况:△ABC 是锐角三角形,△ABC 是钝角三角形,分别画出符合条件的图形,然后分别根据勾股定理计算AC 和BC 即可.【详解】分两种情况:①当ABC V 是锐角三角形,如图1,∵CD ⊥AB ,∴∠CDA=90°, ∵CD=3,AD=1,∴AC=2,∵AB=2AC ,∴AB=4, ∴BD=4-1=3,∴BC 2222CD BD 3(3)23+=+=;②当ABC V 是钝角三角形,如图2,同理得:AC=2,AB=4,∴2222CD BD (3)527+=+=综上所述,BC 的长为327故答案为327【点睛】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握,运用分类讨论思想进行解答是关键.20.如图,正方形ABCD 中,点E 在CD 的延长线上,点F 在AB 上,连接EF 交AD 于点G ,EF CE =,若3BF =,2DG =,则CE 的长为________.【答案】152【解析】【分析】过点F 作FH ∥BC 交CE 于点H ,设AF=a ,易证△AGF ∽△DGE ,从而可知21a ED a =+,根据勾股定理可求266a a EH +=,根据图中的等量关系列出方程可求出a 的值,从而可求出CE 的长度. 【详解】解:过点F 作FH ∥BC 交CE 于点H ,设AF=a ,∴CD=AB=a+3,∴AG=AD-GD=a+1,∵AF ∥CE ,∴△AGF ∽△DGE , ∴AF ED AG GD=, ∴21a ED a =+, 在Rt △EFH 中,由勾股定理可知:222EF EH FH =+,∴()()22233EH EH a +=++, ∴266a a EH +=, ∵21a EH ED DH a a =+=++, ∴26261a a a a a +=++, 解得::a=3或a=-4(舍去), ∴215312a CE ED CD a a =+=++=+,故答案为:152.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定以及勾股定理,本题属于中等题型.三、解答题21.解方程:4(2)25x x += 【答案】12229229x x -+--== 【解析】【分析】 先将方程化为一般式,根据求根公式,解出方程即可.【详解】解:方程化为248250x x +-=4a =,8b =,25c =-224844(25)4640b ac ∆=-=-⨯⨯-=>方程有两个不等的实数根2484648429229b b ac x -±--±-±-±====即1222922922x x -+--==. 【点睛】本题是对一元二次方程的考查,熟练掌握公式法解一元二次方程是解决本题的关键.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段EF ,点A ,B ,E ,F 均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的矩形ABCD,点C,D都在小正方形的顶点上,且矩形ABCD的周长为65;(2)在方格纸中画出以EF为边的菱形EFGH,点G,H都在小正方形的顶点上,且菱形EFGH的面积为4;连接CH,请直接写出CH的长.【答案】(1)详见解析;(2)详见解析,22CH=【解析】【分析】(1)作出长,宽分别为25,5的矩形即可;(2)作出对角线分别为2,4的菱形即可.【详解】解:(1)22AB=+=,125÷-=,652525则作出长,宽分别为25,5的矩形如图所示;(2)如图,菱形EFGH即为所求,222222CH=+=【点睛】本题考查作图,勾股定理,矩形判定和性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BAP轴,AC是射线.是线段,且BA x(1)当30x …,求y 与x 之间的函数关系式; (2)若小李6月份上网费用为66元,则他在该月份的上网时间是多少小时?【答案】(1)330y x =-;(2)6月份上网32个小时【解析】【分析】(1)设函数解析式为y=kx+b ,把A 、C 两点坐标代入列出方程组,解方程组即可;(2)求y=66时x 的值即可.【详解】解:(1)当30x ≥时,设函数关系式为y kx b =+,则30604090k b k b +=⎧⎨+=⎩, 解得330k b =⎧⎨=-⎩, 所以330y x =-;(2)当66y =时,66330x =-,解得32x =,所以6月份上网32个小时.【点睛】此题考查一次函数的应用,解题的关键是熟练掌握待定系数法确定函数解析式,属于中考常考题型.24.如图,矩形纸片ABCD ,点E 在BC 上,将CDE △沿DE 折叠,得到FDE V ,DF ,EF 分别交AB 于点G ,H ,且EH GH =.(1)求证:BG CE =;(2)若4AB =,3AD =,求AG 的长.【答案】(1)详见解析;(2)85AG =【解析】【分析】(1)由折叠得:∠C=∠DFE=90°,EC=EF ,DC=DF ,根据矩形的性质,可以证出FGH BEH △≌△,得到FH BH =,FG BE =,利用等量代换可得结论;(2)设AG=m ,表示出FG ,在Rt ADG V 中,由勾股定理可求出AG 的长.【详解】(1)证明:∵四边形ABCD 为矩形,∴90B C ∠=∠=︒,∵CDE △与FDE V 关于DE 对称,∴CDE FDE △≌△,∴90DFE C ∠=∠=︒,EF EC =, DF DC =,在FGH V 和BEH △中 F B FHG BHE GH EH ∠=∠⎧⎪∠=∠⎨⎪=⎩∴FGH BEH △≌△,∴FH BH =,FG BE =,∴FH EH BH GH +=+,即BG EF =,∴BG CE =;(2)∵四边形ABCD 为矩形,∴90A ∠=︒,3BC AD ==,4DF CD AB ===,令AG m =,则4CE BG m ==-,∴3(4)1FG BE m m ==--=-,4(1)5DG m m =--=-,在Rt ADG V 中,∵90A ∠=︒,∴222AD AG DG +=,∴2223(5)m m +=-,解得85m =, ∴85AG =. 【点睛】考查矩形的性质、轴对称的性质、三角形全等的性质和判定以及直角三角形的勾股定理等性质,合理地转化到一个三角形中是解决问题常用的方法.25.某地2016年为做好“精准扶贫”,投入资金1200万元用于异地安置,并规划投入异地安置资金的年平均增长率在三年内保持不变,已知2018年在2016年的基础上增加了投入异地安置资金1500万元. (1)2017年该地投入异地安置资金为多少元?(2)在2017年异地安置的具体实施中,该地要求投入用于优先搬迁租房奖励的资金不低于2017年该地投入异地安置资金的25%.规定前1000户(含第1000)户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.【答案】(1)2017年该地投入异地安置资金为18000000元;(2)2017年该地至少有1650户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x ,根据2016年投入资金给×(1+增长率)2=2018年投入资金,列出方程,即可求得x 的值,从而可以求得2017年该地投入异地安置资金的数额;(2)设今年该地有y 户享受到优先搬迁租房奖励,根据前1000户获得的奖励总数+1000户以后获得的奖励总和不低于2017年该地投入异地安置资金的25%,可以列出相应的不等式,从而可以解答本题.【详解】解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得21200(1)12001500x +=+,解得120.550%, 2.5x x ===-(舍),∴12000000(150%)18000000⨯+=(元),则2017年该地投入异地安置资金为18000000元;(2)设2017年该地有y 户享受到优先搬迁租房奖励,根据题意得81000400540(1000)1800000025%y ⨯⨯+⨯-≥⨯,解得1650y ≥,∴2017年该地至少有1650户享受到优先搬迁租房奖励,则2017年该地至少有1650户享受到优先搬迁租房奖励.【点睛】本题考查一元二次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,这是一道典型的增长率问题.26.已知:矩形ABCD ,点E 在AD 的延长线上,连接CE ,BE ,且BC CE =,DCE ∠的平分线CF 交BE 于点F .(1)如图1,求BFC ∠的大小;(2)如图2,过点F 作FN CF ⊥交BA 的延长线于点N ,求证:BN AD =;(3)如图3,在(2)的条件下,FN 交AD 于点M ,点Q 为MN 的中点,连接BQ 交AD 于点H ,点P 在AH 上,且DE PD =,连接BP ,且10BP =.延长MF 交CE 于点G ,连接CM ,若CGM △的周长与BHP V 的周长的差为2,求MN 的长.【答案】(1)45°;(2)详见解析;(3)25MN =【解析】【分析】(1)令EBC α∠=,由矩形的性质可得902DCE BCE BCD α∠=∠-∠=︒-,由三角形外角性质和角平分线的性质可得1452FCE DCE α∠=∠=︒-,从而求出∠BFC 的大小; (2)过点B 作BR FN ⊥于点R ,过点B 作BT FC ⊥交FC 的延长线于点T ,先证明BR BT =,再证NBR CBT △≌△,从而证明BN AD =;(3)延长CF 交AE 于点L ,先证明MEF CEF △≌△,得到EM EC BC ==,再证Rt AHB Rt DLC △≌△,得AH DL =,根据MCG △的周长与BPH V 的周长的差为2,求出1AP MD ==,设10BP a =,则4DE a =,10CM BP a ==,在Rt CDM V中和Rt EDC V 中,根据勾股定理求出a 的值,从而求出MN 的长度.【详解】(1)解:如图,令EBC α∠=,∴四边形ABCD 是矩形ABCD ,∴90BCD ∠=︒∵BC CE =,∴BEC EBC α∠=∠=,∴1801802BCE EBC BEC α∠=︒-∠-∠=︒-,∴902DCE BCE BCD α∠=∠-∠=︒-,又∵CF 平分DCE ∠, ∴1452FCE DCE α∠=∠=︒-, ∴45BFC FCE BEC ∠=∠+∠=︒;(2)证明:如图,过点B 作BR FN ⊥于点R ,过点B 作BT FC ⊥交FC 的延长线于点T ,∵四边形ABCD 是矩形,∴90ABC ∠=︒, AD BC = ,∵FN CF ⊥,∴90NFC ∠=︒,∵45BFC ∠=︒,∴45BFN BFC ∠=∠=︒ ,∴BR BT =,在四边形BTFR 中,36090909090RBT ∠=︒-︒-︒-︒=︒ ,∴90CBT CBR ∠+∠=︒,∵90NBR CBR ∠+∠=︒,∴CBT NBR ∠=∠,又∵90T BRN ∠=∠=︒,∴NBR CBT △≌△,∴BN BC AD ==;(3)解:如图,延长CF 交AE 于点L ,∵四边形ABCD 是矩形,∴AD BC ∥,AB CD =,90BAD CDA ∠=∠=︒,∴AEB EBC BEC α∠=∠=∠=,∴45EMF ECF α∠=︒-=∠,又∵EF EF =,∴MEF CEF △≌△,∴EM EC BC ==,∴四边形BCEM 是平行四边形,∴BM CE BC BN ===,∵Q 为MN 中点,∴BQ MN ⊥,∴90CFG BQM ∠=∠=︒ ,∴BH CL ∥,∴四边形BCLH 为平行四边形,∴CL BH =,∵MEG CEL ∠=∠,EM EC =,MEG CEL ∠=∠,∴MEG CEL △≌△ ,∴MG CL BH == ,LE GE =,∴ME LE EC EG -=-,∴ML CG =,又∵ME AD =,∴AM DE =,又∵PD DE =,∴AM PD =,∴AM PMPD PM -=-, ∴AP MD =,∴APB DMC △≌△,∴BP CM =,∵AB CD =,BH CL =,∴Rt AHB Rt DLC △≌△,∴AH DL =,又∵MCG △的周长与BPH V 的周长的差为2,∴()()2CM MG CG BP BH PH ++-++=,∴2CG PH -=,∴2ML PH -=,∴()22MD DL AH AP MD +--==,∴1AP MD ==, ∵104BP DE =, 设10BP a =,则4DE a =,10CM BP a ==,∴14CE ME a ==+,在Rt CDM V 中,22222(10)1CD CM DM a =-=-,在Rt EDC V 中,22222(14)(4)CD CE DE a a =-=+-,∴2222(10)1(14)(4)a a a -=+-解得11a =,215a =-(舍), ∴44DE a ==,5AD CE BC BN ====,∴223AB CD CE DE ==-=,∴2AN BN AB =-=,4AMAD MD =-=, ∴2225MN AM AN =+=.【点睛】本题是四边形综合题,考查了矩形的性质,菱形的判定和性质,等腰三角形的性质,全等三角形的判定和性质,勾股定理等知识,求出MD 的长是本题的关键.27.已知:在平面直角坐标系中,点O 为坐标原点,直线8(0)y kx k =+<分别交x 轴,y 轴于点C ,B ,点A 在第一象限,连接AB ,AC ,四边形ABOC 是正方形.(1)如图1,求直线BC 的解析式;(2)如图2,点,D E 分别在,AB OC 上,点E 关于y 轴的对称点为点F ,点G 在EF 上,且2EG FG =,连接DE ,DG ,设点G 的横坐标为t ,DEG △的面积为S ,求S 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)如图3,在(2)的条件下,连接BE ,BF ,CD ,点M 在BF 上,且FM EG =,点N 在BE 上,连接MN 交DG 于点H ,12BNM BEF ∠=∠,且MH NH =,若5CD BD =,求S 的值. 【答案】(1)8y x =-+;(2)1816023S EG DQ t t ⎛⎫=⨯=--< ⎪⎝⎭…;(3)32 【解析】【分析】(1)先求C 的坐标,再代入解析式可求出k ;(2)根据点E 关于y 轴的对称点为点F 和EG=2FG 可以得出OG 与OE 的关系,从而得出GE 与t 的关系,再根据三角形面积公式即可算出S ;(3)令BD n =,则5CD n =,8AD n =-,在Rt ACD V 中,根据勾股定理求出n ,延长MN 交x 轴于点P ,连接GM ,GN ,过点M 作MR BE ∥交x 轴于点R ,令BNM α∠=,则,2ENP BEF αα∠=∠=,从而证出4EG EL m ==,在Rt BOE △中,根据勾股定理求出m ,从而求出S.【详解】解:(1)当0x =时,8y =,∴(8,0)B ,∴8OB =,∵四边形ABOC 是正方形,∴8BO CO ==,∴(8,0)C ,代入解析式得088k =+,解得1k =-,∴8y x =-+;(2)如图,过点D 作DQ x ⊥轴于点Q ,∴90DQO QOB OBD ∠=∠=∠=︒,∴四边形BOQD 是矩形,∴8DQ BO ==,∵点E 与点F 关于y 轴对称,∴OF OE =,令3OE m =,∴6EF m =,∵2EG FG =, ∴243EG EF m ==, ∴OG EG OE m t =-==-,∴1184816160223S EG DQ m m t t ⎛⎫=⨯=⨯⨯==--< ⎪⎝⎭…;(3)如图,令BD n =,则5CD n =,8AD n =-, 在Rt ACD V 中,222AD AC CD +=,∴222(8)8(5)n n -+=,解得12n =,283n =-(舍), ∴2BD =,延长MN 交x 轴于点P ,连接GM ,GN ,过点M 作MR BE ∥交x 轴于点R , 令BNM α∠=,则,2ENP BEF αα∠=∠=, ∴2EPN ENP ααα∠=-==∠,∴EN EP =,∵BF BE =,∴2BFE BEF α∠=∠=,∵MR BE ∥,∴2MRF BEF MFR α∠=∠==∠,∴MR FM EG ==,RMP RPM α∠=∠=, ∴MR PR EG ==,∴EG ER PR ER -=-,∴GR PE EN ==,∴GMR NGE △≌△,∴GM NG =,∵MH NH =,∴GH MN ⊥,令DG 与BE 的交点为点L ,∴90HLN α∠=︒-,∴()18090290EGL ELG ααα∠=︒-︒--=︒-=∠, ∴4EG EL m ==,又∵AB OC P ,∴90BDL DGE BLD α∠=∠=︒-=∠,∴2BL BD ==,∴42BE BL EL m =+=+,在Rt BOE △中,222OB OE BE +=,∴2228(3)(42)m m +=+, 解得12302,7m m ==-(舍), ∴2t m =-=-,∴1632S t =-=.。