气相色谱质谱联用谱图解析
气相色谱/质谱联机分析的信息

气相色谱/质谱联机分析的信息(1)总离子流色谱图总离子流色谱图(totaJ ionic chromatogram,TIc是指未经质量分离的各种质荷比离子的总强度与时间的对应关系图。
TIc的获得方式是在质谱仪的离子源和质量分析器之间设置总离子流检测器,当组分从Gc柱流出进入离子源时,总离子流强度增加,检测得到组分峰,在没有组分流出时只有本底。
因此获得的TIc与气相色谱图相似,可获得保留时间信息,其峰面积或峰高可用作定量。
这种方式记录的谱图,每个峰表示了在该峰时刻,存在于离子源中某个组分以不同质荷比存在的离子流的总强度,但不管其质量上的大小差异。
如果在此时进行质量扫描,把不同质荷比的离子流分开,便构成了质谱图。
如果在色谱流出的时问内按一定时问间隔进行质量扫描,便可以得到总离子流的三维图像。
将沿质荷比方向,即同一色谱流出时间的离子流强度(丰度)信号叠加,便得到了平面的总离子流色谱图。
(2)质量色谱图在质谱进行自动、重复扫描时,在色谱柱流出时段内可获得许多张质谱图,若将每一质谱图中指定质荷比离子的强度,按扫描序号即扫描时间作图,称为质量色谱图(mass chromatogmm,Mc),又称离子碎片色谱图。
它可从总离子流的三维图像中,以某一质荷比为断面截得。
九种正构烷烃的总离子流谱图和离子的质量色谱图。
而相应的质最色谱图中出现几个小峰,这些小峰是由于高碳数烷烃的断裂所致。
因此,质量色谱法可以从TIc图中快速寻找化合物或同系物。
当色谱分离效果不佳时,有时利用质量色谱图的信息对未分离混合物峰进行分析。
根据异构体对应质谱峰的强度差异,通过若干特征质量数作质量色谱图,从而对异构体进行分析。
(3)质谱图有机化合物的质谱图是指用其带正电荷的母离子和碎片离子的质荷比(m儿)与其相对强度作图。
图中的最强峰称为基峰,并定其强度为100%,其他峰以此为基准确定其相对强度。
一般讨论的是单电荷离子,因此峰的相应质荷比即为峰所对应离子的质量。
裂解气相色谱-质谱联用

由于在一定条件下,得到的所有正离子碎片的m/e和数量与样品的分子结构 有关,因此质谱可用于分子结构分析。
2.1 质谱分析的基本原理
总离子流色谱图(TIC)
质谱图
e-¯
俵 M
m2 m3
m1
2.2 PyGC/MS分析结果的界面
总离子流 色谱图
分子碎片 的质谱图
2.3 总离子流色谱图(TIC)
8
500000
750℃时PPS裂解的PyGC谱图
PPS的热分解机理
3.5 聚合物热稳定性研究
PIM
PIF
EI源的特点 磁铁
电离效率高,灵敏度高; 应用最广,标准质谱图基本都是采用EI源得到的; 稳定,操作方便,电子流强度可精密控制; 结构简单,控温方便;
电子 加速电压
eee e e
电离室
EI源:可变的离子化能量 (10~240eV)
质量分析器
样品 加热器及 温度控制 电子 收集极
电子能量 分子离子增加
第五章 裂解气相色谱-质谱联用分析 (PyGC/MS)
PyGC/MS分析流程图
裂解气相色谱(PyGC) 质谱(MS)
裂解器
气相色谱
质谱分析
高分子材料受 热分解成许多 能被载气带走 的小分子碎片
小分子碎片混 合物在气相色 谱柱中进行分 离后进入质谱
利用质谱分析 每个小分子碎 片的化学结构ຫໍສະໝຸດ PyGC/MS分析流程示意图
(d) 保留时间为 155min的裂解 组分的MS图
(苯乙烯) 推断出未知共聚物为甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物(MBS)
3.2 共聚物和共混物的鉴别
①
②
③
④
苯乙烯(St)-丙烯腈(AN) 共聚物的PyGC谱图
四大光谱法的解析原理及规律

四大光谱法的解析原理及规律在检测领域,有四大名谱,也是检测领域的“四大天王”分别为色谱、光谱、质谱、波谱,在检测特色和适用范围上各有不同,但总有一款适合你!质谱:分析分子、原子、或原子团的质量的,可以推测物质的组成,一般用于定性分析较多,也可定量。
色谱:是一种兼顾分离与定量分析的手段,可分辨样品中的不同物质。
光谱:定性分析,确定样品中主要基团,确定物质类别。
从红外到X射线,都是光谱,其应用范围差别很大,是对分子或原子的光谱性质进行分析解析的。
波谱:通常指四大波谱,核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外(UV)。
光谱分析法光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成和相对含量。
光谱分析时,可利用发射光谱,也可以利用吸收光谱。
这种方法的优点是非常灵敏而且迅速。
某种元素在物质中的含量达10皮克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来。
光谱的分类按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱。
按产生的本质不同,可分为原子光谱和分子光谱。
按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱。
按光谱表现形态不同,可分为线光谱、带光谱和连续光谱。
分光光谱技术可用于:通过测定某种物质吸收或发射光谱来确定该物质的组成;通过测量适当波长的信号强度确定某种单独存在或其他物质混合存在的一种物质的含量;通过测量某一种底物消失或产物出现的量同时间的关系,示踪反应过程。
鉴定分子式、结构式的方法紫外光谱:反应分子中共轭体系状况;红外光谱:光能团鉴定、分子中环、双键数目。
光谱法的优缺点(1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。
(2)操作简便有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。
裂解气相色谱质谱联用ppt课件.ppt

2.6 质量分析器
把不同m/e的离子分开,是MS的心脏部分
单聚焦质量分析器
加速后离子的动能 : (1/2)m 2= e V
= [(2V)/(m/e)]1/2 在磁场存在下,带电离子按曲线轨迹飞行;
离心力 =向心力;m 2 / R= H0 e V 曲率半径: R= (m ) / e H0 质谱方程式:m/e = (H02 R2) / 2V 离子在磁场中的轨道半径R取决于: m/e 、 H0 、 V 改变加速电压V, 可以使不同m/e 的离子进入检测器。
1.3
各种裂解器的优点和缺点
裂解器 种类
优点
管式炉 温度容易测量;裂解温度可 裂解器 任意选定;适用于各种状态
的样品。
热丝裂 裂解温度可任意选定;升温 解器 速度快;死体积小,二次反
应少。
居里点 升温速度快;死体积小,二 裂解器 次反应少。
激光裂 升温速度非常快;催化作用 解器 非常小。
缺点
升温速度较慢,二次 反应比较突出;死体 积较大。 温度测量较难;多适 用于可溶性样品。
第三部分 PyGC/MS用于分
析高分子材料
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
3.1 聚合物的定性分析
• 某未知共聚物 的PyGC图
• 保留时间为 16min的裂解
组分的MS图
•
(丁二烯)
• (c) 保留时间 为51min的裂 解组分的MS图
2. 对碎片离子峰的m/e和强度进行分析,推测样品分子结构
• 注意相邻碎片离子峰的m/e的差值,如差值为15,可能丢失CH3基团。
• 碎裂过程遵循一般的化学原理,可由碎片离子推断分子离子的结构。 • 注意碎裂过程中可能发生的重排反应。 • 强度最高的基峰为稳定性最好的离子碎片。
色谱联用技术PPT课件

生物医学研究
用于研究生物体内的代 谢过程、疾病诊断和药
物研发。
02
色谱联用技术的原理
色谱分离原理
分离原理
色谱分离技术基于不同物质在固定相和流动相之间的分配 平衡,利用不同物质在两相之间的吸附、溶解等性质差异 实现分离。
分离过程
在色谱柱中,流动相携带待分离物质通过固定相,由于不 同物质与固定相的相互作用不同,导致在固定相中的滞留 时间不同,从而实现分离。
液相色谱-质谱联用(LC-MS):适用于复杂有机物和 生物样品的分离和检测。
液相色谱-核磁共振联用(LC-NMR):适用于复杂有 机物和生物大分子的结构分析。
色谱联用技术的应用领域
环境监测
用于检测空气、水体和 土壤中的有害物质。
食品检测
用于检测食品中的农药 残留、添加剂和有害物
质。
药物分析
用于研究药物代谢、药 物成分分析和药物质量
对样品要求高
色谱联用技术对样品的纯度和浓度要求较高, 否则会影响分离效果和检测结果。
改进方向
降低仪器成本
通过改进技术和工艺,降低色谱联用技术的 仪器成本,使其更具有实际应用价值。
缩短样品处理时间
通过改进分离技术和方法,缩短样品处理时 间,提高分离效率。
简化操作过程
优化色谱联用技术的操作流程,降低操作难 度,提高工作效率。
智能化与自动化
借助人工智能和机器人技术,实现 色谱联用技术的自动化进样、数据 处理和结果解读,提高分析效率。
THANKS FOR WATCHING
感谢您的观看
常用色谱柱
硅胶、氧化铝、活性炭等。
质谱原理
01
02
03
离子化过程
质谱技术通过高能电子束 或激光束将样品分子离子 化,使样品分子失去电子 成为带正电荷的离子。
气质联用

第一章气相色谱-质谱联用技术气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。
在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。
目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。
另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。
还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。
GC/MS 已经成为分析复杂混合物最为有效的手段之一。
气质联用法是将气-液色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。
气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。
气相色谱和质谱由接口相连。
气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。
气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。
气质联用仪系统一般有下图所示的部分组成。
图1.1 气质联用仪组成框图气质联用仪根据其要完成的工作被设计成不同的类型和大小。
由于在现代质谱仪中最常用的质量分析器是四极杆型的,所以,在本章中将主要介绍这种将不同质量离子碎片分离的方法。
第一节气相色谱仪简介气相色谱仪,通过对欲检测混合物中组分有不同保留性能的气相色谱色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。
按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。
通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。
气相色谱-质谱(GC-MS)联用技术及其应用

气相色谱-质谱(GC-MS)联用技术及其应用摘要:气相色谱法—质谱(GC-MS)联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。
其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。
本文主要列举了GC-MS在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。
关键词:GC-MS,应用,药物检测,环境1 气相色谱-质谱(GC-MS)联用气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。
GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。
GC-MS也用于为保障机场安全测定行李和人体中的物质。
另外,GC-MS还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。
气相色谱—质谱(GC—MS)联用技术是由两个主要部分组成:即气相色谱(GC)部分和质谱(MS)部分。
气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。
GC是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。
分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。
GC可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。
MS是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS只能对纯物质进行定性,对混合组分定性无能为力。
把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。
单用气相色谱或质谱是不可能精确地识别一种特定的分子的。
通常,经质谱仪处理的需要是非常纯的样品,而使用传统的检测器的气相色谱(如火焰离子化检测器)当有多种分子通过色谱柱的时间一样时(即具有相同的保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子。
气相色谱-质谱联用(gc-ms)

气相色谱-质谱联用(GC-MS)一、实验目的1. 了解质谱检测器的基本组成及功能原理,学习质谱检测器的调谐方法;2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。
二、实验原理气相色谱法(gas chromato graphy, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。
气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。
随着质谱(mass spect rometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。
气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。
目前,小型台式GC-M S已成为很多实验室的常规配置。
1.质谱仪的基本结构和功能质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。
质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。
质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。
机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5P a。
虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。
气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。
接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
依次为:间位、对位、邻位。
质谱解析
由质谱的高质量端确定分子离子峰,求出分子量。
一般来讲,分子离子峰是荷质比最大的一个, 但是对于易断裂的的物质来说,分子离子峰很小或 者没有,需积累经验。
分析同位素峰簇的相对强度比和峰与峰间的差值,
判断化合物是否含有Cl和Br等元素。
质谱解析
由分子离子峰丢失的碎片及主要碎片离子推分子式。 由分子离子峰的相对强度了解分子结构的信息。分
基;若m/z 91或105为基峰或强峰,表明化合物含
有苄基或苯甲酰基。
常见失去离子碎片
M-15(CH3)
,C2H3) M-29(CHO,C2H5) M-31(CH2OH,OCH3) M-35(Cl) M-43(CH3CO,C3H7) M-45(OC2H5,COOH)
子离子峰的相对强度由分子的结构所决定,结构稳 定性大,相对强度就大。 例如:萘分子离子峰m/z 128为基峰,蒽醌分 子离子峰m/z 208也是基峰。分子离子峰弱或不出 现,化合物可能为多支链烃类、醇类、酸类等。
质谱解析
根据特征离子峰及丢失的中性碎片了解可能的结构
信息。 若质谱图中出现系列CnH2n+1峰,则化合物可能 含长链烷基;若出现或部分出现m/z 77,66,65, 51,40,39等弱的碎片离子蜂,表明化合物含有苯
M-18(H2O)
M-26(C2H2) M-28(CO,C2H4) M-30(NO) M-32(S,CH3OH) M-42(CH2CO,CH2N2) M-44(CO2,CS2) M-46(NO2,C2H5OH)
M-79(Br) M-16(O,NH2)
M-127(I)……
谢 谢!
气质联用谱图解析
讲解人:李金纳
主要内容
一般程序
基本规律
质谱解析
一般程序
预览--通观图谱,总体和局部掌握图谱的主要类型 ; 选区--根据需要选择部分或整体作为分析对象; 先易--先对大峰和主要峰进行解析,确定一些可以
确定的峰 ;
后难--细化,需长期积累经验。
基本规律
根据沸点判断(沸点低的先出峰);
根据分子量判断(分子量小的先出峰);
根据极性判断(极性柱-极性小的先出峰,非
极性柱-极性大的先出峰)。
基本规律
碳原子数相差1的一系列正构烷烃,其保留时间间
隔大致相同;
对于同分异构体,则支链烷烃比正构烷烃先出峰; 碳原子数相同则烷烃比烯烃先出峰; 对于相同取代基取代的苯的同分异构,其出峰顺序