北师大版七年级数学下册 第三章 全等三角形 单元测试题
新北师大版七年级数学下册第三章三角形单元测试卷及答案

第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.10 9.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A.小于直角; B.等于直角; C.大于直角; D.大于或等于直角二、填空题1.如图:(1)AD⊥BC,垂足为D,则AD是________的高,∠________=∠________=90°;(2)AE平分∠BAC,交BC于点E,则AE叫________,∠________=∠________=∠________,AH叫________;(3)若AF=FC,则△ABC的中线是________;(4)若BG=GH=HF,则AG是________的中线,AH是________的中线.2.如图,∠ABC=∠ADC=∠FEC=90°.(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)在△FEC中,EC边上的高是________;(4)若AB=CD=3,AE=5,则△AEC的面积为________.3.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.4.五段线段长分别为1cm、2cm、3cm、4cm、5cm,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm,如果它的三边长都是整数,那么它的腰长为________cm.7.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B=______;∠C =______.8.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=________;(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.三、解答题1.在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.2.△ABC的周长为16cm,AB=AC,BC边上的中线AD把△ABC分成周长相等的两个三角形.若BD=3cm,求AB的长.3.如图,AB∥CD,BC⊥AB,若AB=4cm,,求△ABD中AB边上的高.4.学校有一块菜地,如下图.现计划从点D表示的位置(BD∶DC=2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D是BC的中点的话,由此点D笔直地挖至点A就可以了.现在D不是BC的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC中,∠BAC=90°,如下图所示.作BC边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD中AB边上的高,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作、、……、.当作出时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm 和6cm两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.13.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),∴∠GMN=∠BMN(),同理∠GNM=∠DNM.∵ AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC 的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.单元测试卷(一)参考答案:一、1.A; 2.D; 3.A; 4.C;5.B; 6.C; 7.B; 8.D;9.C(提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C; 11.D; 12.D;13.C;二、1.(1)BC边上,ADB,ADC;(2)∠BAC的角平分线,BAE,CAE,BAC,∠BAF的角平分线;(3)BF;(4)△ABH,△AGF;2.(1)AB;(2)CD;(3)EF;(4); 3.22cm或26cm; 4.3; 5.11;6.2;7.90°,36°,54°;8.(1)120°;(2)120°;(3)120°;(4)140°;(5);三、21.略;2.解法1:AB+BD+DA=DA+AC+CD,∴ BD=CD,∵ BD=3cm,∴ CD=3cm,BC=6cm,∵ AB=AC,∴ AB=5cm.解法2:△ABD与△ACD的周长相等,而AB=AC,∴ BD=CD,∴ BC=2BD=6cm,∴ AB=(16-6)÷2=5cm.3.,∴ AB·BC=12,AB=4,∴ BC=6,∵ AB∥CD,∴△ABD中AB边上的高=BC=6cm.4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出时,图中共有2×k+1,即2k+1个直角三角形.6.第一种方案:在BC上取E、D、F,使BE=ED=DF=FC,连结AE、AD、AF,则△ABE、△AED、△ADF、△AFC面积相等;第二种方案:取AB、BC、CA的中点D、E、F,连结DE、EF、FD,则△ADF、△BDE、△CEF、△DEF面积相等.7.设三边长a=2k,b=3k,c=4k,∵三角形周长为36,∴ 2k+3k+4k=36,k=4,∴ a=8cm,b=12cm,c=16cm.8.设三角形中最大边为a,最小边为c,由已知,a-c=14,b+c=25,a+b+c=48,∴ a=23cm,b=16cm,c=9cm.9.10-5<a-2<10+5,∴ 7<a<17.10.设AB=AC=2x,则AD=CD=x,(1)当AB+AD=15,BC+CD=6时,2x+x=15,∴ x=5,2x=10,∴ BC=6-5=1cm;(2)当AB+AD=6,BC+CD=15时,2x+x=6,∴ x=2,2x=4,∴ BC=13cm;经检验,第二种情况不符合三角形的条件,故舍去.11.AD-AB=AC+CD-AB=CD,∵ BD-BC<CD,∴ BD-BC<AD-AB.12.(1)AC+AD>CD,BC+BD>CD,两式相加:AB+BC+CA>2CD.(2)AD+CD>AC,BD+CD>BC,两式相加:AB+2CD>AC+BC.13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.14.94°; 35.120°; 36.10°;17.∠EBC<∠DCE,而∠DCE=∠ACE,∴∠EBC<∠ACE.18.略.第三章三角形单元测试卷(三)班级姓名学号得分一、选择题(每小题3分,共30分)1.有下列长度的三条线段,能组成三角形的是()A 2,3,4B 1,4,2C 1,2,3D 6,2,32.在下列各组图形中,是全等的图形是()3. 下列条件中,能判断两个直角三角形全等的是()A、一个锐角对应相等B、两个锐角对应相等C、一条边对应相等D、两条边对应相等4.已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()A.4对 B..3对 C 2对 D.1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻②①③5题图2 图3 店去配一块完全一样的玻璃,那么最省事的办法是( ) A.带①去 B. 带②去 C. 带③去 D. 带①和②去6.右图中三角形的个数是( )A .6 B .7 C .8 D .97.如果两个三角形全等,那么下列结论不正确的是( )A .这两个三角形的对应边相等B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等 8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( ) =A /B /,BC= B /C /,∠A=∠A / B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C / =A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长9.下列图中,与左图中的图案完全一致的是( )10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其 中判断正确的有( )个 个 个 个 二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。
北师大版七年级下册数学第三章三角形单元测试(附答案)

北师大版七年级下册数学第三章三角形单元测试(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图,在△ABC中,△ADE的周长为8,DH为AB的中垂线,EF垂直平分AC,则BC的长为()A、4B、6C、8D、162.下列几组数不能作为直角三角形三边长的是().A.8、15、17 B.7、24、25C.30、40、50 D.32、60、803.下列条件中,不能判定△ABC≌△A′B′C′的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′, BC=B′C′,AB=A′B′C.∠A=∠A′=80O,∠B=60O,∠C=40O,AB=A′B′D.∠C=∠C′=90O, BC=B′C′,AB=A′B′4.到三角形各顶点距离相等的点是三角形三条()A、中线的交点B、角平分线的交点C、高线的交点D、三边垂直平分线的交点5.到△ABC的三个顶点距离相等的点是 ( )A.三条中线的交点B.三条角平分线的交点C.三条高线的交点D.三条边的垂直平分线的交点6.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20o B.120o C.20o或120o D.36o7.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.43cm C.6cm D.8cm8.下列说法正确的是( )A 、全等三角形是指周长和面积都一样的三角形;B 、全等三角形的周长和面积都一样 ;C 、全等三角形是指形状相同的两个三角形;D 、全等三角形的边都相等9.高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )610.如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB 边于D ,若AB=10,AC=5,则图中等于60°的角的个数为( )A 、2B 、3C 、4D 、5二、填空题11.如图:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC,∠CED=35°,则∠EAB =12.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC 为等腰三角形.....,则点C 的个数是 .13.三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 。
新北师大版七年级数学下册第三章全等三角形测试题

全等三角形的基本
01
概念
全等三角形的定义
全等三角形是能 够完全重合的两 个三角形
全等三角形的对 应边相等,对应 角相等
全等三角形的性 质和判定方法在 几何学中具有重 要地位
全等三角形在数 学、几何、物理 学等领域有广泛 应用
全等三角形的性质
全等三角形对应 角相等
全等三角形对应 边相等Fra bibliotek全等三角形的对 应高、中线、角 平分线相等
生活中的全等三角形应用
桥梁结构:利用全等三角形原理,保持桥梁的稳定性和对称性。 建筑设计:在建筑设计中,利用全等三角形来构建对称和稳定的结构。 机械零件:在各种机械零件中,全等三角形的原理被广泛应用,以确保零件的功能和稳定性。 测量工具:利用全等三角形的性质,制作各种测量工具,如直角尺、测角仪等。
答案解析:根据题目描述和解题思路,说明如何利用全等三角形的性质来解题。
计算题
题目:已知三角形ABC中,AB=AC,D是BC的中点,AE平分∠BAC,DE⊥AB于E,则 BD与DC、BE与EA之间有何关系?并证明。
题目:在三角形ABC中,∠BAC=90°,AB=AC,D是BC上一点,AE⊥BD于E, CF⊥BD于F,BF=AC,则BD与FD有何关系?并证明。
全等三角形的周 长和面积相等
【最新】北师大版七年级数学下册第三章《全等三角形》测试卷含答案(15页)3套

全等三角形一.填空题(每题3分,共30分)1.如图,△ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:_______.2.如图,△ABD ≌△ACE,且∠BAD 和∠CAE,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,则对应边_________.3. 已知:如图,△ABC ≌△FED,且BC=DE.则∠A=__________,A D=_______.4. 如图,△ABD ≌△ACE,则AB 的对应边是_________,∠BAD 的对应角是______.5. 已知:如图,△ABE ≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.6.已知:如图 , AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC=AE .若AB=5 , 则AD=___________.7.已知:△ABC ≌△A ’B ’C ’, △A ’B ’C ’的周长为12cm ,则△ABC 的周长为 . 8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△______ , 根据是__________.A9.如图,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________.10.如图,在平面上将△ABC绕B点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,则∠CBC ’为________度.ABCD12AA'BCC'二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE14. 图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 下列说法中不正确的是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有(除去∠DFE=∠BFC)()A.5对B.4对C.3对D.2对CEDBOA17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是( )A.70°B. 85°C. 65°D. 以上都不对18. 已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图, ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为()A.50°B.30°C.45°D.25°20. 如图, ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC= ()A.70°B.80°C.100°D.90°三.解答题(每题8分,共40分)21. 已知:如图, 四边形ABCD中, AB∥CD , AD∥BC.求证:△ABD≌△CDB.22. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FGE D CB A答案1.BC和BC,CD和CA,BD和AB2.AB和AC,AD和AE,BD和CE3. ∠F,CF4.AC, ∠CAE5. ∠ADC,AD6.57.128.ASA DEC SAS9. ∠B=∠C10.40℃11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B 21.由ASA可证22. 因为AC=CD EC=BC ∠ACB=∠ECD 所以△ABC≌△CED AB=ED 23.证△ABC≌△FED得∠ACB=∠F 所以AC∥DF 24.证△BED≌△CFD得∠E=∠CFD 所以CF∥BE 25.由AAS证△ABC≌△CED AC=EF.全等三角形 B 卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________.4. 如图4,△ABC ≌△AED ,若AE AB =,︒=∠271,则=∠2 .5.如图5,已知AB ∥CD ,AD ∥BC ,E.F 是BD 上两点,且BF =DE ,则图中共有 对全等三角形.图1图2图5图66.如图6,四边形ABCD 的对角线相交于O 点,且有AB ∥DC ,AD ∥BC ,则图中有___对全等三角形.7.“全等三角形对应角相等”的条件是 .8.如图8,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.9.若△ABC ≌△A ′B ′C ′,AD 和A ′D ′分别是对应边BC 和B ′C ′的高,则△ABD ≌△A ′B ′D ′,理由是_______________.10.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,则∠AOB =_________. 二.选择题:(每题3分,共24分)11.如图9,△ABC ≌△BAD ,A 和B.C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为 ( )A.4cmB.5cmC.6cmD.以上都不对 12.下列说法正确的是 ( ) A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.下列条件中,能判定△ABC ≌△DEF 的是( ) A.AB =DE ,BC =ED ,∠A =∠D B.∠A =∠D ,∠C =∠F ,AC =EF C.∠B =∠E ,∠A =∠D ,AC =EF D.∠B =∠E ,∠A =∠D ,AB =DE15.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( )AEB O F C图8ABCD图9A.AD >1B.AD <5C.1<AD <5D.2<AD <10 16.下列命题正确的是 ( ) A.两条直角边对应相等的两个直角三角形全等; B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( ) A.3对 B.4对 C.5对 D.6对18.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点C. OA 与CD 的中垂线的交点D. CD 与∠AOB 的平分线的交点 三.解答题(共46分)19. (8分)如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.20. (7分)如图, ∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线,为什么?图10图 11B DOCA21. (7分)如图,已知AB =DC ,AC =DB ,BE =CE,求证:AE =DE.22. (8分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.23. (8分)已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 互相平分.24. (8分)如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A.C 作BD 的垂线,垂足分别为E.F,求证:EF =CF -AE.AB E CDABEO FDCACDB答案1.△ADC2. ∠B=∠C或AF=DC3.704.27°5.36.37.两个三角形全等8.72°9.HL 10.135°11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC≌△CON 21.先证△ABC≌△DBC得∠ABC=∠DCB,再证△ABE≌△CED 22.垂直23. 先证△ABE≌△DFC得∠B=∠D,再证△ABO ≌△COD 24.证△ABF≌△BCF全等三角形C卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,若△ABC≌△ADE,∠EAC=35°,则∠BAD=_________度.2.如图2,沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,DM=5cm,∠DAM=300,则AN= cm,NM= cm,∠NAM= .3.如图3,△ABC≌△AED,∠C=85°,∠B=30°,则∠EAD= .4.已知:如图4,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为________________.(2)若以“ASA”为依据,还须添加的一个条件为________________.(3)若以“AAS”为依据,还须添加的一个条件为________________.5.如图5,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则△______≌△_______.ABC DE图1AB CDMN图2︒=∠60ADB ,EO=10,则∠DBC= ,FO= .10. 如图10,△DEF ≌△ABC ,且AC >BC >AB 则在△DEF 中,______< ______< _____.图 10二.选择题(每题3分,共30分)11. 在ABC ∆和C B A '''∆中,下列各组条件中,不能保证:C B A ABC '''∆≅∆的是( ) ① B A AB ''= ② C B BC ''= ③ C A AC ''= ④ A A '∠=∠⑤ B B '∠=∠⑥ C C '∠=∠A. 具备①②③B. 具备①②④C. 具备③④⑤D. 具备②③⑥12. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边13. 如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( ) A. 一定全等 B. 一定不全等 C. 不一定全等 D. 面积相等14. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是 ( )A. 相等B. 不相等C. 互余或相等 15. 如图,已知AB =DC ,AD =BC ,E.F 在DB 30°,则∠BCF= A. 150° B.40° C.80°D. 90°ABC DEFA . 三边对应平行的两个三角形是全等三角形B . 有一边相等,其余两边对应平行的两个三角形是全等三角形C . 有一边重合,其余两边对应平行的两个三角形是全等三角形 D. 有三个角对应相等的两个三角形是全等三角形18.下列说法错误的是 ( ) A. 全等三角形对应边上的中线相等 B. 面积相等的两个三角形是全等三角形 C. 全等三角形对应边上的高相等 D. 全等三角形对应角平分线相等19.已知:如图,O 为AB 中点,BD ⊥CD ,AC ⊥CD ,OE ⊥CD ,则下列结论不一定成立的是 ( )A. CE =EDB. OC =ODC. ∠ACO =∠ODBD. OE =21CD20.如图,已知在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A..90°-∠A B. 90°-21∠A C. 180°-∠A D. 45°-21∠A 三.解答题(共40分)21.(8分)如图,△ABC ≌△ADE ,∠E 和∠C 是对应角,AB 与AD 是对应边,写出另外两组对应边和对应角;22.(8分)如图,A 、E 、F 、C 在一条直线上,△AED ≌△CFB ,你能得出哪些结论?23.(7分)如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由..3421DCBA24.(8分)如图,AB ∥CD ,AD ∥BC ,那么AD=BC ,AB=BC ,你能说明其中的道理吗?25.(9分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.CE DB AOBFEDCBA答案1.35°2.7,5,30°3.504.BC=EF, ∠ACB=∠F, ∠A=∠D5.ACD,AED6.28°7.58.SAS9.60°,1010.ED,EF,DF11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B21.AE和AC,ED和BC, ∠B和∠D, ∠BAC和∠DAE22.AD=BC,AE=CF,DE=BF,AD∥BC, △ACD≌△ACB,AB∥CD等23.相等, △AOB≌△DOC24.连AC,证△ADC≌△ABC25.(1)证DE=EC (2) 设BE与CD交于F,通过全等证DF=CF.。
北师大版七年级数学下册第三章《三角形》单元复习题

第3章三角形单元复习题一、选择题1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )A.三角形内部B。
三角形的一边上C.三角形外部D.三角形的某个顶点上2.下列长度的各组线段中,能组成三角形的是()A。
4、5、6 B.6、8、15C.5、7、12D.3、9、133.在锐角三角形中,最大角α的取值范围是 ( )A。
0°<α<90° B.60°<α<90°C。
60°<α<180° D.60°≤α<90°4.下列判断正确的是()A。
有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一条边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( )A.x<6B.6<x<12C。
0<x<12 D。
x>126.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A。
则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形7。
三角形内有一点,它到三边的距离相等,则这点是该三角形的 ( )A。
三条中线交点 B.三条角平分线交点C。
三条高线交点D。
三条高线所在直线交点8。
已知等腰三角形的一个角为75°,则其顶角为()A。
30°B。
75°C.105°D。
30°或75°9。
如图5—124,直线l、l'、l''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A。
一处 B.二处C。
三处D。
四处10。
三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是()A.锐角三角形B.直角三角形C。
新北师大版七年级数学下册第三章三角形单元测试卷(5套)及答案

新北师大版七年级数学下册第三章三角形单元测试卷(5套)及答案北师大版七年级数学下册第三章三角形单元测试卷(三)班级姓名学号得分一、选择题(每小题3分,共30分)1.有下列长度的三条线段,能组成三角形的是()A 2,3,4B 1,4,2C 1,2,3D 6,2,32.在下列各组图形中,是全等的图形是()3. 下列条件中,能判断两个直角三角形全等的是()A、一个锐角对应相等B、两个锐角对应相等C、一条边对应相等D、两条边对应相等图3 4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点,∠1=∠2.图中全等的三角形共有() A .4对 B ..3对 C 2对 D .1对 5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是() A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是()A.6 B .7C .8 D.9 7.如果两个三角形全等,那么下列结论不正确的是()A .这两个三角形的对应边相等B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等 8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是()A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长)10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有()A.1个B.2个C.3个D.4个二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是。
最新北师大版七年级下册三角形全等的证明单元测试试题以及答案

最新七年级下册三角形单元测试试题一、选择题1.一定在△ABC内部的线段是()。
A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()。
A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()。
A.4对 B.5对 C.6对 D.7对4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.4厘米、5厘米、6厘米B.4厘米、4厘米、4厘米C.5厘米、13厘米、6厘米D.7厘米、9厘米、7厘米6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()。
A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为6cm和9cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种。
A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个。
A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是( ) A .0°<α<90°; B .60°<α<180°; C .60°<α<90°; D .60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( )A .锐角或直角三角形;B .钝角或锐角三角形C .直角三角形;D .钝角或直角三角形13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( )A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高, ∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=∠________,AH叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.212.如图,∠ABC=∠ADC=∠FEC=90°.(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)在△FEC中,EC边上的高是________;(4)若AB=CD=3,AE=5,则△AEC的面积为________.3.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.4.五段线段长分别为1cm、2cm、3cm、4cm、5cm,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm,如果它的三边长都是整数,那么它的腰长为________cm.7.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B =______;∠C=______.8.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=________;(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.三、解答题1.在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,,求△ABD 中AB 边上的高.212cm =∆ABCS4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作、、……、.当作出时,图中共有多少个不同的直角三角形?1DD 21D D 32D D k k D D 1-k k D D 1-6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成18cm和9cm两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC 中,D 是AB 上一点.求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .13.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,(1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =∠BMN ( ),同理∠GNM =∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ).∴ ∠GMN +∠GNM =________.2121∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC =60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.。
北师大版七年级数学下册第三章《全等三角形检测试题(精)

《全等三角形》检测试题姓名 班级 座号 成绩一、选择题(每题3分,共18分)1.下列命题①同旁内角互补,两直线平行;②全等三角形的周长相等;③直角都相等;④等边对等角.它们的逆命题是真命题的个数是( ) A.1个 B.2个 C.3个 D.4个2.命题“到线段两端距离相等的点在这条线段的垂直平分线上”的结论是 ( ) (A)在这条线段的垂直平分线上 (B)线段的垂直平分线上有个点 (C)这点在这条线段的垂直平分线上 (D)这点在垂直平分线上 3.下列命题中,真命题是( )A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有具只有一条直线.4。
命题:①对顶角相等;②平面内垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A 、1个B 、2个C 、3个D 、4个 5.只用无刻度的直尺就能作出的图形是( )A.延长线段AB 至C ,使BC =ABB.过直线L 上一点A 作L 的垂线C.作已知角的平分线D.从点O 再经过点P 作射线OP6.用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是( ) A.SAS B.ASA C.AAS D.SSS二、填空题(每题3分,共15分)7.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果……,那么…….”的形式:如果 ,那么 . 8. 为说明“如果b a >,那么ba 11>”是假命题,你举出的反例是 . 9.命题“等边三角形的一个外角等于相邻内角的2倍”的逆命题是 ,这个逆命题是 命题10.命题“垂直于同一条直线的两直线平行”的题设是______ _,命题“平行于同一条直线的两直线平行”的结论是____ __.11.定理“直角三角形的两直角平方和等于斜边的平方”的逆定理是 三、选择题(每题4分,共20分)12.如图7所示,若△ABE ≌△A CF ,且AB =5,AE =2,则EC 的长为( )A.2B.3C.5D.2.513.如图8,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则须补充一个条件是( )A.AB =DEB.∠ACE =∠DFBC.BF =ECD.∠ABC =∠DEF 14.如图10,△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是( )A.△ABD ≌△ACDB.∠B =∠CC.AD 是∠BAC 的平分线D.△ABC 是等边三角形15.如图11,∠1=∠2,∠C =∠D ,AC 、BD 交于E 点,下列不正确的是( )图7 F EB A 图8A.∠DAE =∠CBEB.CEC.△DEA 不全等于△CBED.△16.如图12,在△ABC 中,AB >AC ,AC 周长为18,则BC 的长为( )A.8B.6C.4D.2 四、填空题(每题3分,共24分)17.如图1,根据SAS ,如果AB =AC , =,即可判定ΔABD ≌ΔACE .18.如图2,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,PE =3cm ,则P 点到直线AB 的距离是___. 19.如图3,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于D ,若AB=10,则△BDE 的周长等于____. 20.如图4,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 21.如图5,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌ ,理由是 ,△ABE ≌△ ,22.如图6,AD ⊥BC ,DE ⊥AB ,DF ⊥AC ,D 、E 、F 是垂足,BD =CD , 那么图中的全等三角形有_______.23.如图,直线l 过正方形ABCD 的顶点B ,点C A 、到直线l 的距离分别是1和2,则正方形的边长为 .24.如图,等边△ABC ,B 点在坐标原点, C 点的坐标为(6,0),点A 关于x 轴对称点A•′的坐标为_______. 五、解答题(共24分)25.如图,在□ABCD 中,F E 、分别是边BC 和AD 上的点. 请你补充一个条件,使CDF ABE ∆∆≌,并给予证明.(9分)B 图11 2(12)CB A 1EDA 图2E C DPA B图3 EDCBA图1 EDC B A 图5图6 AF (8)C E B D26.“太湖明珠”无锡要建特大城市,有人建议无锡(A )、 江阴(B )、宜兴(C )三市共建一个国际机场,使飞 机场到江阴、宜兴两城市距离相等,且到无锡市的距离 最近.请你设计机场的位置(要保留作图痕迹哦!).(8分)27.ABC Δ的三边分别为a,b,c 且a=22n m -,b=2mn,c=22n m +(m>n,m,n 是正整数),ABC Δ是直角三角形吗?说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级数学下册 第三章 全等三角形 单元测试题
一、选择题(每小题3分,共30分)
1. 有下列长度的三条线段,能组成三角形的是( )
A 、 2cm ,3cm ,4cm
B 、 1cm ,4cm ,2cm
C 、1cm ,2cm ,3cm
D 、 6cm ,2cm ,3cm 2. 在下列各组图形中,是全等的图形是( )
3.下列命题中正确的是( )
①全等三角形对应边相等; ②三个角对应相等的两个三角形全等;
A .
4个 B 、3
个 C
、
2
个
D
、
1
4.如图,已知AB=CD ,AD=BC ,则图中全等三角形共有(A .2对 B 、3对 C 、4对 D 、5对 5. 具备下列条件的两个三角形中,不一定全等的是 ( (A) 有两边一角对应相等 (B) 三边对应相等
(C) 两角一边对应相等 (D )有两边对应相等的两个直角三角形
6.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去
B. 带②去
C. 带③去
D. 带①和②去
7.已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )
(A ) 80° (B ) 70° (C ) 30° (D ) 100°
8.对于下列各组条件,不能判定△ABC ≌△C B A '''的一组是 ( )
(A ) ∠A=∠A ′,∠B=∠B ′,AB=A ′B ′ (B ) ∠A=∠A ′,AB=A ′B ′,AC=A ′C ′ (C ) ∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ (D ) AB=A ′B ′,AC=A ′C ′,BC=B ′C ′
9.如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是 ( ) (A )∠DAC=∠BCA (B )AC=CA (C )∠D=∠B (D )AC=BC
10.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,
则在下列条件中,无法判定△ABE ≌△ACD 的是( )
(A )AD=AE (B )AB=AC
(C )BE=CD (D )∠AEB=∠ADC
二、填空: (每小题3分,共30分)
1、全等三角形的_________和_________相等;
2.已知△ABC 与△DEF 中 AB=DE ,∠B=∠E ,若要使△ABC ≌△DEF , 还需条件:_____________,
3.如右图,已知∠B =∠D=90°,,若要使△AB C ≌△ABD ,还要需条件:_____________,
4.如图5,⊿ABC ≌⊿ADE ,若∠B=40°,∠EAB=80°,
DAC= 。
5.如图7,已知∠1=∠2,AB ⊥AC ,BD ⊥CD ,则图中全等三角形有 _____________; ≌ΔBOC 。
7.如图9,AE=BF ,AD ∥BC ,AD=BC ,则有ΔADF ≌ ,且DF= 。
8.如图10,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠ =∠ 或 ∥ ,就可证明ΔABC ≌ΔDEF 。
9、已知ABC 与△DEF 中,∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF , (1)若以“ASA ”为依据,还缺条件 (2)若以“AAS ”为依据,还缺条件 . 10、为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。
A
B C D A B C
D E
三、证明题(每小题5分,共40分)
1、如右图,已知AB=AD ,且AC 平分∠BAD ,BC=DC 吗?为什么?
2.已知:点 A 、C 、B 、D 在同一条直线,AC=BD ,∠M=∠N ,AM=CN 。
MB ∥ND 吗?为什么?
3、如右图,AB =AD ,∠BAD =∠C AE ,AC=AE ,求证:AB=AD
4、已知:如图,AB =CD ,AB ∥D C .求证:AD∥BC, AD =BC
5.已知:如图,AB=AC ,DB=DC .F 是AD 的延长线上一点. 求证: (1) ∠ABD =∠ACD (2)BF=CF
A
B
C
D
第
2题
A
B
C
D
E
6、(7分)已知:如图,,。
求证:。
7、已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.
试说明AD是∠BAC的平分线。
8、如图,在一小水库的两测有A、B两点,A、B间的距离不能直接测得,采用方法如下:取一点可以同时到达A、B的点C,连结AC并延长到D,使AC=DC;同法,连结BC并延长到E,使BC=EC;这样,只要测量CD的长度,就可以得到A、B的距离了,这是为什么呢?根据以上的描述,请画出图形,并写出已知、求证、证明。
A
B
C。