全等三角形练习题及答案
全等三角形经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACAD BC BACDF21E5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD8. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB AD BC A9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。
∵BC=ED,CF=DF,∠BCF=∠EDF。
∴三角形BCF全等于三角形EDF(边角边)。
∴BF=EF,∠CBF=∠DEF。
连接BE。
在三角形BEF中,BF=EF。
∴ ∠EBF=∠BEF 。
又∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
10. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又EF ∥AB∴∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC11. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CB ACDF21 E证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠E∵∠ABC =∠E+∠BDE∴∠ABC =2∠E∴∠ABC =2∠C12. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC又∵AC =AC∴△ADC ≌△AFC (SAS )CD B A∴AD =AF∴AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
全等三角形基础练习题及答案

全等三角形基础练习题及答案一、选择题1. △ABC和△A.△ABC≌△C. △ABC≌△2. 如图,已知AB=CD,AD=BC,则下列结论中错误的是A.AB∥DCB.∠B=∠DC.∠A=∠CD.AB=BC 中,若AB=,BC=,AC= .则B. △ABC≌△ D. △ABC≌△3. 下列判断正确的是A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB、CD、EF相交于O,且被O点平分,DF =CE,BF=AE,则图中全等三角形的对数共有A. 1对B.对C.对D.对5. 如图,将两根钢条,的中点O连在一起,使,可以绕着点O自由的转动,就做成了一个测量工件,则理由是的长等于内槽宽AB,那么判定△OAB≌△A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9. 如图,在△ABC和△EFD中,AD=FC,AB=FE,当添加条件_______时,就可得△ABC≌△EFD10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=______. 12. 已知,如图,AB=CD,AC=BD,则△ABC≌______,△ADC≌ ______.三、解答题13. 已知:如图,四边形ABCD中,对角线AC、BD相交于O,∠ADC=∠BCD,AD=BC,求证:CO=DO.14. 已知:如图,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD∥BC,只要证∠______=∠______,又需证______≌______.证明:∵ AB∥CD ,∴ ∠______=∠______ ,在△______和△______中,∴ Δ______≌Δ______ .∴ ∠______=∠______ .∴ ______∥______.15. 如图,已知AB=DC,AC=DB,BE=CE求证:AE =DE.答案与解析一.选择题1. B;注意对应顶点写在相应的位置.2. D;连接AC或BD证全等.3. D;4. C;△DOF≌△COE,△BOF≌△AOE,△DOB≌△COA.5. A;将两根钢条再由对顶角相等可证.6. D;△ABC≌△EDC,∠ECD+∠ACB=∠CAB+∠ACB=90°,所以EC⊥AC,ED +AB =BC+CD=DB.,的中点O连在一起,说明OA=,OB=,二.填空题7. 66°;可由SSS证明△ABC≌△DCB,∠OBC=∠OCB=∠ABC=25°+41°=66°.8. 4;,所以∠DCB=△AOD≌△COB,△AOB≌△COD,△ABD≌△CDB,△ABC≌△CDA.9. BC=ED;10.56°;∠CBE=26°+30°=56°.11.20°;△ABE≌△ACD12.△DCB,△DAB;注意对应顶点写在相应的位置上.三.解答题13.证明:在△ADC与△BCD中,14.3,4;ABD,CDB;已知;1,2;两直线平行,内错角相等;ABD,CDB;AB,CD,已知;全等三角形 one 姓名一.填空题1.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC 是对应角,其对应边:_______.2.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_________.. 已知:如图,△ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.. 如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.5. 已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.6.已知:如图, AC⊥BC于C , DE⊥AC于E , AD⊥AB 于 A , BC=AE.若AB=, 则AD=___________..已知:△ABC≌△A’B’C’,△A’B’C’的周长为12cm,则△ABC 的周长为 .8.如图, 已知:∠1=∠, ∠3=∠, 要证BD=CD , 需先证△AEB≌△A EC , 根据是_________再证△BDE≌△______ , 根据是__________.AC’A’AACBC9.如图,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是____________.10.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.二.选择题11、下列条件中,不能判定三角形全等的是 A.三条边对应相等 B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是A.AB=ACB.∠BAE=∠CAD C.BE=DC D.AD=DE14. 图中全等的三角形是A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 下列说法中不正确的是 A.全等三角形的对应高相等 B.全等三角形的面积相等 C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有A.5对B.4对C.3对D.2对CADO17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED 的度数是A.70°B.5°C.5°D. 以上都不对18. 已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是A.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图, ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为A.50°B.30°C.45°D.25°20. 如图, ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC=A.70°B.80°C.100°D.90° 三.解答题21. 已知:如图, 四边形ABCD中, AB∥CD , AD∥BC.求证:△ABD≌△CDB.22. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC 于D , BC=DF.求证:AC=EF.BEDCAGF全等三角形 two一.填空题:1.如图1,AD⊥BC,D为BC的中点,则△ABD≌_________.图1图24. 如图4,△ABC≌△AED,若AB?AE,?1?27?,则?2? .5.如图5,已知AB∥CD,AD∥BC,E.F是BD上两点,且BF=DE,则图中共有对全等三角形.图56.如图6,四边形ABCD的对角线相交于O点,且有AB∥DC,AD∥BC,则图中有___对全等三角形..“全等三角形对应角相等”的条件是 .8.如图8,AE=AF,AB=AC,∠A=60°,∠B=24°,则∠BOC=__________.图9图8图6A9.若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是_______________.10.在Rt△ABC中,∠C=90°,∠A.∠B的平分线相交于O,则∠AOB=_________. 二.选择题:11.如图9,△ABC≌△BAD,A和B.C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为A.4cmB.5cmC.6cmD.以上都不对 12.下列说法正确的是 A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是A.∠AB.∠BC.∠CD.∠B或∠C 14.下列条件中,能判定△ABC≌△DEF的是 A.AB=DE,BC=ED,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EF C.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE15.AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是 A.AD>1B.AD<5C.1<AD< D.2<AD<10 16.下列命题正确的是 A.两条直角边对应相等的两个直角三角形全等; B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC中,AB=AC,BD⊥AC于D,CE⊥AB 于E,BD和CE交于点O,AO的延长线交BC于F,则图中全等直角三角形的对数为A.3对B.4对C.5对D.6对OBD图 11CA图10全等三角形测试题一、选择题 1.下列命题中真命题的个数有⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, A、3个 B、2个 C、1个D、0个2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是 A.甲和乙B.乙和丙C.只有乙D.只有丙3.在⊿ABC和⊿A′B′C′中,AB=A′B′,∠A=∠A′,若证⊿ABC≌⊿A′B′C′还要从下列条件中补选一个,错误的选法是A. ∠B=∠B′B. ∠C=∠C′C. BC=B′C′D. AC=A′C′4.P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.A.小于B.大于 C.等于D.不能确定两直角三角形全等的是6.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。
全等三角形练习题(含答案)

全等三角形练习题(含答案)篇一:全等三角形习题选(含)经典三角形证明题选讲(含答案)三角形辅助线做法线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADD1. 证明:延长AD到E,使DE=AD, 则△ADC≌△EBD ∴BE=AC=2 在△ABE中,AB-BE AE AB+BE ,∴10-2 2AD 10+2 4 AD 6又AD是整数,则AD=5思路点拨:三角形中有中线,延长中线等中线。
2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠22.证明:连接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ △BCF≌△EDF(边角边). ∴BF=EF,∠CBF=∠DEF. 连接BE.在△BEF中,BF=EF,∴∠EBF=∠BEF又∵ ∠ABC=∠AED,∴ ∠ABE=∠AEB. ∴ AB=AE在△ABF和△AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF. ∴△ABF≌△AEF∴∠1=∠2.思路点拨:解答本题的关键是能够想到证明AB=AE,而AB、AE在同一个△ABE 中,可利用∠ABE=∠AEB来证明.同一三角形中线段等,可用等角对等边3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴△ADC≌△GDE(AAS)∴EG=AC ∵EF∥AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC 思路点拨:角平分线平行线,等腰三角形来添。
4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 证明:延长AC到E使CE=CD,连接 ED,则∠CDE= ∠E∵ AB=AC+CD ∴AB=AC+CE=AE又∵∠BAD=∠EAD,AD=AD∴△BAD≌△EAD ∴∠B=∠E∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B方法二在AC上截取AE=AB,连接ED A∵A D平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB CBD∵AC=AB+BD ,AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C思路点拨:线段等于线段和,理应截长或补短5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明:过C作CF⊥AD交AD的延长线于F.在△CFA和△CEA中∴∠CFA=∠CEA=90°又∵∠CAF=∠CAE, AC=AC∴△CFA≌△CEA ,∴AE=AF=AD+DF, CE=CF∵∠B+∠ADC=180°,∠FDC+∠ADC=180°∴∠B=∠FDCE在△CEB和△CFD中,CE=CF,∠CEB=∠CFD=90°, ∠B=∠FDCE∴△CEB≌△CFD∴BE=DF∴ AE=AD+BE思路点拨:图中有角平分线,可向两边作垂线。
全等三角形练习题(含答案)

1.下列图形中,和所给图形全等的图形是A.B.C.D.2.下列说法正确的有①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.A.1个B.2个C.3个D.4个3.如图,ΔABC≌ΔCDA,∠BAC=∠DCA,则BC的对应边是A.CD B.CA C.DA D.AB4.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为A.2 B.3 C.5 D.2.55.如图,△ABC≌△AED,∠C=40°,∠EAC=30°,∠B=30°,则∠EAD=A.30°B.70°C.40°D.110°6.如图,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.7.如图,△ABE≌△ACD,AE=5 cm,∠A=60°,∠B=30°,则∠ADC=__________°,AD=__________cm.8.如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为__________度.9.如图,△ACB与△BDA全等,AC与BD对应,BC与AD对应,写出其余的对应边和对应角.10.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.11.如图,△ABC≌△CDA,且AD=CB,下列结论错误的是A.∠B=∠D B.∠CAB=∠ACD C.BC=CD D.AC=CA12.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是A.PO B.PQ C.MO D.MQ13.已知△ABC≌△DEF,若AB=5,BC=6,AC=8,则△DEF的周长是__________.14.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.15.如图,ΔABC≌ΔDEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.16.(2016•厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=A.∠B B.∠A C.∠EMF D.∠AFB4.【答案】B【解析】∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC−AE=5−2=3,故选B.5.【答案】D【解析】∵△ABC≌△AED,∴∠C=40°,∠B=30°,∴∠EAD=∠BAC=180°-∠B-∠C=110°,故选D.6.【答案】∠OBA;OA=OC,OB=OD,AB=CD【解析】∵△AOB≌△COD,∴∠D=∠OBA,OA=OC,OB=OD,AB=CD.故答案为:∠OBA;OA=OC,OB=OD,AB=CD.7.【答案】90;5【解析】在三角形ABE中,∠A=60°,∠B=30°,所以,∠AEB=180-∠A-∠B=90°.因为,△ABE≌△ACD,所以AD=AE=5 cm,∠ADC=∠AEB=90°.故答案为:90;5.11.【答案】C【解析】∵△ABC≌△CDA,∴∠CAB=∠ACD,CA=AC,∠D=∠B,故A、B、D正确,不符合题意,BC不一定等于CD,C错误,符合题意,故选C.12.【答案】B,则只需测出PQ的长即可求出M、N之间的距离.故选B.【解析】∵△PQO≌△NMO,∴PQ MN13.【答案】19【解析】∵AB=5,BC=6,AC=8,∴△ABC的周长=AB+BC+AC=5+6+8=19.∵△ABC≌△DEF,∴△DEF的周长等于△ABC的周长,∴△DEF的周长是19.故答案为:19.14.【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴点A的对应点是A,点B的对应点是C,点E的对应点是D,∴∠BAE与∠CAD是对应角,AB与AC,BE与CD,AD与AE是对应边.15.【解析】△ABC中,∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3 cm,∴∠DFE=90°,EC=3 cm.16.【答案】A【解析】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.。
(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
全等三角形测试题及答案

全等三角形测试题一.选择题:1. 在△ABC 和△A ’B ’C ’中, AB=A ’B ’, ∠B=∠B ’, 补充条件后仍不一定能保证△ABC ≌△A ’B ’C ’, 则补充的这个条件是( )A .BC=B ’C ’ B .∠A=∠A ’ C .AC=A ’C ’D .∠C=∠C ’2. 直角三角形两锐角的角平分线所交成的角的度数是( )A .45°B .135°C .45°或135°D .都不对3. 现有两根木棒,它们的长分别是40cm 和50cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒4.根据下列已知条件,能惟一画出三角形ABC 的是( )A . AB =3,BC =4,AC =8;B . AB =4,BC =3,∠A =30;C . ∠A =60,∠B =45,AB =4;D . ∠C =90,AB =65.如图3,D ,E 分别是△ABC 的边BC ,AC 上的点,若∠B =∠C ,∠ADE =∠AED ,则( )A . 当∠B 为定值时,∠CDE 为定值 B . 当∠α为定值时,∠CDE 为定值C . 当∠β为定值时,∠CDE 为定值D . 当∠γ为定值时,∠CDE 为定值 二、填空题:6.三角形ABC 中,∠A 是∠B 的2倍,∠C 比∠A +∠B 还大12度,则这个三角形是__三角形.7.以三条线段3、4、x -5为这组成三角形,则x 的取值为____.8.杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是____.9.△ABC 中,∠A +∠B =∠C ,∠A 的平分线交BC 于点D ,若CD =8cm ,则点D 到AB 的距离为____cm .10.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是____;中线AD 的取值范围是____. 三、解答题: 11. 已知:如图13-4,AE=AC , AD=AB ,∠EAC=∠DAB ,求证:△EAD ≌△CAB .12. 如图13-5,△ACD 中,已知AB ⊥CD ,且BD>CB, △BCE 和△ABD 都是等腰直角三角形,王刚同学说有下列全等三角形:①△ABC ≌△DBE ;②△ACB ≌△ABD ; ③△CBE ≌△BED ;④△ACE ≌△ADE .这些三角形真的全等吗?简要说明理由. 13. 已知,如图13-6,D 是△ABC 的边AB 上一点, DF 交AC 于点E, DE=FE, FC ∥AB,求证:AD=CF .A B D C E 图13-5 A B FCD E 图13-6 A B D F C A C B E D 图13-4 B 图13-314. 如图5-7,△ABC 的边BC 的中垂线DF 交△BAC 的外角平分线AD 于D, F 为垂足, DE ⊥AB 于E ,且AB>AC ,求证:BE -AC=AE .15. 阅读下题及证明过程:已知:如图8, D 是△ABC 中BC 边上一点,E 是AD 上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE .证明:在△AEB 和△AEC 中,∵EB=EC ,∠ABE=∠ACE ,AE=AE , ∴△AEB ≌△AEC ……第一步∴∠BAE=∠CAE ……第二步 问上面证明过程是否正确?若正确,请写出每一步推理的依 据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.16.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .参考答案提示1. C .(提示:边边角不能判定两个三角形全等.)2. C .(提示:由三角形内角和为180°可求,要注意有两个不同的角.)3. B .(提示:利用三角形三边的关系,第三根木棒x 的取值范围是:10cm <x <90cm .=4.C . (提示:A 不能构成三角形,B 满足边边角,不能判定三角形全等,D 项可画出无数个三角形.)5.B .(提示:∠CDE =∠B +∠α-∠γ=∠γ-∠B ,故得到2(∠B -∠γ)+∠α=0.又∵∠γ-C A BDE 图8 图9 A G B D H EF A B CD E F 图9∠B =∠γ-∠C =∠CDE ,所以可得到∠CDE =2α,故当∠α为定值时,∠CDE 为定值.) 6.钝角.(提示:由三角形的内角和可求出∠A 、∠B 和∠C 的度数)7.6<x<12.(提示:由三边关系可知:4-3<x -5<4+3.8.三角形的稳定性.9.8.(提示:点D 到AB 的距离与CD 的长相等.)10.4<BC <20;2<AD <10.(提示:要注意三角形一边上的中线的取值范围是大于另两边之差的一半,小于两边之和的一半.)11. 提示:先证∠EAD=∠CAB ,再由SAS 即可证明.12. ①△ABC ≌△DBE ,BC=BE ,∠ABC=∠DBE=90°,AB=BD ,符合SAS ;②△ACB 与△ABD 不全等,因为它们的形状不相同,△ACB 只是直角三角形,△ABD 是等腰直角三角形;③△CBE 与△BED 不全等,理由同②;④△ACE 与△ADE 不全等,它们只有一边一角对应相等.13. 提示:由ASA 或AAS ,证明△ADE ≌△CFE .14. 过D 作DN ⊥AC, 垂足为N, 连结DB 、DC 则DN=DE ,DB=DC ,又∵DE ⊥AB, DN ⊥AC, ∴Rt △DBE ≌Rt △DCN , ∴BE=CN .又∵AD=AD ,DE=DN ,∴Rt △DEA ≌Rt △DNA ,∴AN=AE ,∴BE=AC+AN=AC+AE ,∴BE -AC=AE .15.上面证明过程不正确; 错在第一步. 正确过程如下:在△BEC 中,∵BE=CE , ∴∠EBC=∠ECB , 又∵∠ABE=∠ACE ,∴∠ABC=∠ACB , ∴AB=AC. 在△AEB 和△AEC 中, AE=AE. BE=CE, AB=AC, ∴△AEB ≌△AEC, ∠BAE=∠CAE.16.如图11所示,过B 点作BH ⊥BC 交CE 的延长线于H 点.∵∠CAD +∠ACF =90°,∠BCH +∠ACF =90°, ∴∠CAD =∠BCH .在△ACD 与△CBH 中,∵∠CAD =∠BCH ,AC =CB ,∠ACD =∠CBH =90°, ∴△ACD ≌△CBH .∴∠ADC =∠H ① CD =BH ,∵CD =BD ,∴BD =BH .∵△ABC 是等腰直角三角形,∠CBA =∠HBE =45°∴在△BED 和BEH 中,⎪⎩⎪⎨⎧∠∠=BE,BE EBH,EBD ,==BH BD ,∴△BED ≌△BEH .∴∠BDE =∠H , ② 由①②得,∠ADC =∠BDE .A B C D E F H 图11。
初中数学:《全等三角形》测试题(含答案)

初中数学:《全等三角形》测试题(含答案)一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.53.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠ED A=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤57.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.《全等三角形》参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠B的度数,根据全等三角形的性质得到答案.【解答】解:∵∠A=70°,∠ACB=60°,∴∠B=50°,∵△ABC≌△DEC,∴∠E=∠B=50°,故选:B.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.5【考点】全等三角形的性质.【分析】根据全等三角形的性质求出AC=5,AE=2,进而得出CE的长.【解答】解:∵△ABC≌△DAE,∴AC=DE=5,BC=AE=2,∴CE=5﹣2=3.故选C.【点评】本题考查了全等三角形的性质的应用,关键是求出AC=5,AE=2,主要培养学生的分析问题和解决问题的能力.3.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】根据全等三角形的判定方法解答即可.【解答】解:带③去可以利用“角边角”得到全等的三角形.故选C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD【考点】角平分线的性质.【分析】根据已知条件由角平分线的性质可得结论CD=DE,由此又可得出很多结论,对各选项逐个验证,证明.【解答】解:CD=DE,∴BD+DE=BD+CD=BC;又有AD=AD,可证△AED≌△ACD∴∠ADE=∠ADC即AD平分∠EDC;在△ACD中,CD+AC>AD所以ED+AC>AD.综上只有B选项无法证明,B要成立除非∠B=30°,题干没有此条件,B错误,故选B.【点评】本题主要考查平分线的性质,由已知证明△AED≌△ACD是解决的关键.5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠B和∠C,根据三角形内角和定理求出∠BAC,根据角平分线定义求出即可.【解答】解:∵△ABC≌△EDF,∠EDA=20°,∠F=60°,∴∠B=∠EDF=20°,∠F=∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AD是∠BAC的平分线,∴∠DAC=∠BAC=50°,故选A.【点评】本题考查了全等三角形的性质,三角形内角和定理,角平分线定义的应用,能根据全等三角形的性质求出∠B和∠C是解此题的关键.6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤5【考点】角平分线的性质;垂线段最短.【分析】过点D作DE⊥OB于E,根据角平分线上的点到角的两边距离相等可得DP=DE,再根据垂线段最短解答.【解答】解:如图,过点D作DE⊥OB于E,∵OC是∠AOB的角平分线,DP⊥OA,∴DP=DE,由垂线段最短可得DQ≥DE,∵DP=5,∴DQ≥5.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)【考点】全等三角形的判定.【专题】证明题.【分析】要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.【解答】解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.【考点】全等三角形的应用.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB 即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,在△OA′B′和△OAB中,∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5m,故答案为:5.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .【考点】角平分线的性质.【分析】首先由线段的比求得CD=6,然后利用角平分线的性质可得D到边AB的距离是.【解答】解:∵BC=15,BD:DC=3:2∴CD=6∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=6.故答案为:6.【点评】此题主要考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.做题时要由已知中线段的比求得线段的长,这是解答本题的关键.11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.【考点】全等三角形的性质.【分析】△ABE≌△ACF得到∠EAB=∠FAC从而∠1=∠2,这样求∠2就可以转化为求∠1,在△AEM中可以利用三角形的内角和定理就可以求出.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.【点评】本题主要考查了全等三角形的性质,全等三角形的对应角相等,是需要识记的内容;做题时要认真观察图形,找出各角之间的位置关系,这也是比较重要的.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和Rt △AOP≌Rt△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在Rt △AEP与Rt△BFP中,,∴Rt △AEP≌Rt△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .【考点】全等三角形的性质.【专题】动点型.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=12,P、C重合.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【解答】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【考点】作图—应用与设计作图.【分析】(1)直接利用角平分线的作法得出符合题意的图形;(2)利用全等三角形的判定与性质得出答案.【解答】解:(1)如图所示:OC即为所求.(2)没有偏离预定航行,理由如下:在△AOP与△BOP中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C在∠AOB的平分线上.【点评】此题主要考查了应用设计与作图以及全等三角形的判定与性质,正确应用角平分线的性质是解题关键.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【考点】全等三角形的判定与性质.【专题】证明题;探究型.【分析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.【点评】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】先过点P作PE⊥OA于点E,PF⊥OB于点F,构造全等三角形:Rt△PCE 和Rt△PDF,这两个三角形已具备两个条件:90°的角以及PE=PF,只需再证∠EPC=∠FPD,根据已知,两个角都等于90°减去∠CPF,那么三角形全等就可证.【解答】解:PC与PD相等.理由如下:过点P作PE⊥OA于点E,PF⊥OB于点F.∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,∴PE=PF(角平分线上的点到角两边的距离相等)又∵∠AOB=90°,∠PEO=∠PFO=90°,∴四边形OEPF为矩形,∴∠EPF=90°,∴∠EPC+∠CPF=90°,又∵∠CPD=90°,∴∠CPF+∠FPD=90°,∴∠EPC=∠FPD=90°﹣∠CPF.在△PCE与△PDF中,∵,∴△PCE≌△PDF(ASA),∴PC=PD.【点评】本题考查了角平分线的性质,以及四边形的内角和是360°、还有三角形全等的判定和性质等知识.正确作出辅助线是解答本题的关键.。
全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。
4. SAS全等条件指的是_________。
三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。
()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。
()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。
8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。
若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。
五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。
10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。
答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。
8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
21、如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则∠BOC=__________.22、已知:如图,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为________________.(2)若以“ASA”为依据,还须添加的一个条件为________________.(3)若以“AAS”为依据,还须添加的一个条件为________________.23、如图4,如果AB=AC,,即可判定ΔABD≌ΔACE。
24、如图2,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是__________.25、如图,已知∠ACB=∠BDA,只要再添加一个条件:__________,就能使△ACB≌△BDA.(填一个即可)26、已知,如图2:∠ABC=∠DEF,AB=DE,要说明ΔABC≌ΔDEF(1) 若以“SAS”为依据,还要添加的条件为______________;(2) 若以“ASA”为依据,还要添加的条件为______________;27、如图9所示,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为 [答案不唯一,只需填一个]。
29、如右图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△__________≌△__________,其判定依据是__________,还有△__________≌△__________,其判定依据是__________.31、已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:⑴△ABC≌△DEF;⑵BE=CF.34、如图:AE=DE,BE=CE,AC和BD相交于点E,求证:AB=DC35、如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF .36、如图,已知AB=AD,AC=AE,∠1=∠2,求证△ABC≌△ADE.37、已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.求证:(1)AE=CF(2)AF//CE参考答案一、选择题1、D2、A3、C;4、 A5、 D6、C7、C;8、B9、B、10、、D11、D12、B13、C14、B二、填空题15、4516、一定;17、∠A=∠D或∠ACF=∠DBE;18、AC=BD,(答案不唯一)19、等(不惟一)20、2.7cm21、120°22、BC=EF ∠A=∠D ∠ACB=∠DFE ;23、∠B=∠C(答案不唯一)24、∠B=∠C25、∠CAB=∠DBA或∠CBA=∠DAB26、BC=EF;∠A=∠D27、AC=CD。
28、BE=CF等29、ABC DCB HL ABO DCO AAS30、∠B=∠C_或BD=C D等(答案不唯一)_三、简答题31、证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中∴△ABC≌△DEF(2) ∵△ABC≌△DEF∴BC=EF∴BC–EC=EF–EC即BE=CF32、证明:∵GF=GB,∴∠GFB=∠GBF,……1分∵AF=DB,∴AB=DF,………2分而∠A=∠D,∴△ACB≌△DEF, ………4分∴BC=FE,………5分由GF=GB,可知CG=EG .……7分33、证明:∵AD//CB∴∠A=∠C······························ 2分在△ADF和△CBE中,又∵AD=CB,∠D=∠B·························· 3分∴△ADF≌△CBE···························· 5分∴AF=CE······························· 6分∴AF+EF=EF+CE,∴AE=CF······························· 7分34、略35、证明:(1)∵BE=CF,∴ BE+EF=CF+EF; 即BF=CE. 1分∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形在Rt△ABF和Rt△DCE中, ;∴Rt△ABF≌Rt△DCE(HL). 5(2)∵ Rt△ABF≌Rt△DCE(已证) . 6∴∠AFB=∠DEC .8∴OE=OF.36、证明:∵∠1=∠2∴∠DAE=∠BAC∵ AB=AD,AC=AE∴△ABC≌△ADE37、证明:(1)……1分(SAS) ……3分……4分(2) 先证明……6分得……7分……8分(方法不唯一,其他证明方法酌情给分)38、。