八年级数学全等三角形练习题含答案
八年级数学:全等三角形的判定测试题(含答案)

八年级数学:全等三角形的判定测试题(含答案)一、选择题1.下列说法中,错误的有()个(1)周长相等的两个三角形全等。
(2)周长相等的两个等边三角形全等。
(3)有三个角对应相等的两个三角形全等。
(4)有三边对应相等的两个三角形全等A、1B、2C、3D、4【答案】B.【解析】(1)周长相等的两个三角形不一定全等,故该说法错误;(2)周长相等的两个等边三角形全等,该说法正确;(3)有三个角对应相等的两个三角形不一定全等,故该说法错误;(4)有三边对应相等的两个三角形全等,此说法正确.共有两个说法正确.故选B.2.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【答案】A.【解析】做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选A.3. 如图1所示,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△EBD≌△ECDD、以上答案都不对【答案】B.【解析】∵在△ABE和△ACE中AB ECEB ACAE AE=⎧⎪=⎨⎪=⎩,∴△ABE≌△ACE(SSS),故选B.4. 如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF【答案】D.【解析】A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选D.5. 在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【答案】D.【解析】以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.6. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C.【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C.二、填空题7.如图,已知AB=AD,需要条件(用图中的字母表示),可得△ABC≌△ADC,根据是.【答案】BC=DC,SSS.【解析】添加条件BC=DC,∵在△ABC和△ADC中AB ADBC CDAC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),8.如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件,可以判断△ABF≌△DCE.【答案】AB=DC.【解析】由条件可再添加AB=DC,在△ABF和△DCE中,AB DCBE CFAF DE=⎧⎪=⎨⎪=⎩,∴△ABF≌△DCE(SSS).9.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【答案】ABD;SSS.【解析】∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).10.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB= .【答案】46°【解析】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=12∠AFB=46°.11.如图,已知AE=DF、EC=BF,添加,可得△AEC≌△DFB.【答案】AC=DB【解析】AC=DB,在△AEC和△DFB中,AE DFAC BDEC BF=⎧⎪=⎨⎪=⎩,∴△AEC≌△DFB(SSS).12.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.【答案】SSS【解析】由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中AB ADAC ACCB CD=⎧⎪=⎨⎪=⎩∴△ABC≌△ADC(SSS),三、解答题13.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。
八年级数学:全等三角形测试题(含答案)

八年级数学:全等三角形测试题(含答案)一、选择题1.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【答案】D.【解析】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选D.2.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30° B.50° C.60° D.100°【答案】D.【解析】∵△ABC≌△DEF,∠A=50°,∠C=30°,∴∠F=∠C=30°,∠D=∠A=50°,∴∠D=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°,故选D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【答案】D.【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°【答案】D.【解析】如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选D.5.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等【答案】C.【解析】A.如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B.图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;C.全等图形的面积相等,但是面积相等的两个图形不一定是全等图形,故此选项错误,符合题意;D.全等三角形的对应边相等,对应角相等,正确,不合题意;故选C.6.如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°【答案】B.【解析】∵△ABC≌△DCB,∴∠ACB=∠DBC,∠ABC=∠DCB,△ABC中,∠A=80°,∠ACB=40°,∴∠ABC=180°﹣80°﹣40°=60°,∴∠BCD=∠ABC=60°,故选B.7.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°【答案】B.【解析】∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=12(∠BAE﹣∠DAC)=12(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.二、填空题8.如图,△AEB≌△ACD,AB=10cm,∠A=60°,∠ADC=90°,则AD= .【答案】5cm.【解析】∵∠A=60°,∠ADC=90°,∴∠C=30°,∵△AEB≌△ACD,∴AC=AB=10cm,∴AD=12AC=5cm.9.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=度,A′B′=cm.【答案】70;15.【解析】∵△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∴∠C′与∠C是对应角,A′B′与边AB是对应边,故填∠C′=70°,A′B′=15cm.10.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=°.【答案】110.【解析】∵△ABC≌△DEF,∴∠E=∠B=40°,∴∠F=180°﹣∠E﹣∠D=180°﹣40°﹣30°=110°.11.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.【答案】30°.【解析】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=12∠BAC=30°,∴∠CAE=∠DAE﹣∠DAC=60°﹣30°=30°.12.如图,△ABC≌△D CB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的长是 cm.【答案】7.【解析】由题意得:AB=DC,∠A=∠D,∠AOB=∠DOC,∴△AOB≌△DOC,∴OC=BO=BD﹣DO=AC﹣OD=7.13.已知△ABD≌△CDB,AD=BD,BE⊥AD于E,∠EBD=20°,则∠CDE的度数为【答案】125°或15°.【解析】∵BE⊥AD于E,∠EBD=20°,∴∠BDA=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD=55°,∵△ABD≌△CDB,∴∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,分两种情况:①如图1所示:∠CDE=70°+55°=125°;②如图2所示:∠CDE=70°﹣55°=15°;综上所述:∠CDE的度数为125°或15°.三、解答题14.,如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.【答案】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,【解析】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.【答案】(1)∠D=50°,∠E=40°,∠EBD=90°;(2)3. 【解析】(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=12(AD﹣BC)=3.16.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【答案】(1)EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM, ∴FH=GM,∠EGM=∠NHF;(2)2.1cm.2.2cm.【解析】(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.。
(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)

一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100° 3.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 4.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°5.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm 6.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 7.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .18.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 9.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20° 10.到ABC 的三条边距离相等的点是ABC 的( ) A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点11.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 12.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°13.如图,在ABC 中,B C ∠=∠,E 、D 、 F 分别是AB 、BC 、AC 上的点,且BE CD =,BD CF =,若 104A ∠=︒,则EDF ∠的度数为( )A .24°B .32°C .38°D .52° 14.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OB B .AC =BC C .∠A =∠BD .∠1=∠2 15.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒二、填空题16.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.17.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).18.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.19.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.20.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .21.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 22.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.23.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.24.如图,△ABC 中,∠C=90°,AC=40cm ,BD 平分∠ABC ,DE ⊥AB 于E ,AD :DC=5:3,则D 到AB 的距离为__________cm .25.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.26.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.三、解答题27.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .28.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.29.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.30.已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直CE 于点F ,交CD 于点G (如图1),求证:AE =CG ;(2)直线AH 垂直于CE ,垂足为H ,交CD 的延长线于点M (如图2),找出图中与BE 相等的线段,并说明理由.。
八年级数学:全等三角形练习(含答案)

八年级数学:全等三角形练习(含答案)一、选择题1.已知图中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°2.如图,Rt ABC △沿直角边BC 所在的直线向右平移得到DEF △,下列结论中错误的是( ) A.ABC DEF △≌△B.90DEF ∠= C.AC DF = D.EC CF =3. 如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若B A AC ''⊥,则BAC ∠的度数是…( )A .50°B .60°C .70°D .80°4.边长都为整数的△ABC ≌△DEF ,AB 与DE 是对应边, AB=2 ,BC=4 ,若△DEF 的周长为偶数,则 DF 的取值为 ( )(A ). 3 (B). 4 (C). 5 (D). 3或4或5二、填空题1.全等三角形的______相等,______相等。
2.若△ABC 与△DEF 全等,则相等的边有:____________________________,相等的角有_______________________。
A DB C E F3.如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .4.已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD=____ ,∠A=______________;三、解答题1.如图,已知△ABE ≌△ACD ,∠ADE =∠AED ,∠B =∠C ,•指出其他的对应边和对应角.2.如图, △ABD ≌△ACE , AB=AC,写出图中的对应边和对应角。
参考答案:一、选择题 1.D , 2.D , 3.C , 4.B二、填空题 1.对应边 对应角 2.AB=DE,AC=DF,BC=EF 3.30° 4.CB ∠C三、解答题 1. 对应边:AB 与AC,AD 与AE,BE 与CD.对应角:BAE ∠与CAD ∠ ,AEB ∠与ADC ∠AB CC 1 A 1 B 1 AD EBC _D _C_A _B _E2.对应边:AB 与AC,AD 与AE,BD 与CE. 对应角:A ∠与A ∠,B ∠与C ∠,ADB ∠与AEC ∠.。
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。
(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)

一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒D解析:D【分析】 先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB 即可得出∠BAD 的度数.【详解】解:∵△ABC ≌△ADE ,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°-28°-95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选:D .【点睛】本题考查了全等三角形的性质,三角形内角和定理,比较简单.由全等三角形的对应角相等得出∠B=∠D=28°是解题的关键.2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒D解析:D【分析】根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.3.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > A解析:A【分析】 当x =d 时,BC ⊥AM ,C 点唯一;当x ≥a 时,能构成△ABC 的C 点唯一,可确定取值范围.【详解】解:若△ABC 的形状、大小是唯一确定的,则C 点唯一即可,当x =d 时,BC ⊥AM ,C 点唯一;当x >a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有一个交点,x =a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有两个交点,一个与A 重合, 所以,当x ≥a 时,能构成△ABC 的C 点唯一,故选为:A .【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键.4.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = D解析:D【分析】 根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.5.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4B解析:B【分析】 先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边. 6.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒C解析:C【分析】 先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA C解析:C【分析】 根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.9.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD C解析:C【分析】 利用全等三角形的判断方法进行求解即可.【详解】A 、因为 BM ∥CN ,所以∠ABM=∠DCN ,又因为∠A=∠D , AM=DN ,所以△ABN ≅△DCN(AAS),故A 选项不符合题意;B 、因为∠M=∠N ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(ASA),故B 选项不符合题意;C 、BM=CN ,不能判定△ABN ≅△DCN ,故C 选项符合题意;D 、因为AB=CD ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(SAS),故D 选项不符合题意.故选:C .【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④B解析:B【分析】 由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中 OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】 本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.二、填空题11.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角 解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE 平分CBA ∠,ABE MBE ∴∠=∠,BAE CME ABE MBE ∠=∠∠=∠,,BE=BE ,()ABE MBE AAS ∴≅,90BEA BEM AE ME ∴∠=∠=︒=,,DAE CME AE ME ∠=∠=,,AED MEC ∠=∠,()ADE MCE ASA ∴≅,ADE MCE S S ∴=,3cm AE =,4cm BE =,21==2234122ABM ABE ABCD S S S cm ∴=⨯⨯⨯=四边形, 故答案为:212cm .【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.12.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.15【分析】如图过点D 作DE ⊥AB 于E 首先证明DE=CD=3再利用三角形的面积公式计算即可【详解】解:如图过点D 作DE ⊥AB 于E 由作图可知AD 平分∠CAB ∵CD ⊥ACDE ⊥AB ∴DE=CD=3∴S △ 解析:15【分析】如图,过点D 作DE ⊥AB 于E .首先证明DE=CD=3,再利用三角形的面积公式计算即可.【详解】解:如图,过点D 作DE ⊥AB 于E .由作图可知,AD 平分∠CAB ,∵CD ⊥AC ,DE ⊥AB ,∴DE=CD=3,∴S △ABD =12•AB•DE=12×10×3=15, 故答案为15.【点睛】本题考查了作图-基本作图,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.13.如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D,若∠D=20°,则∠A=_____.40°【分析】利用角平分线的性质可知∠ABC=2∠DBC∠ACE=2∠DCE再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE∠A=∠ACE﹣∠ABC即得出∠A=2∠D即得出答案【详解】∵∠ABC解析:40°【分析】利用角平分线的性质可知∠ABC=2∠DBC,∠ACE=2∠DCE.再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE,∠A=∠ACE﹣∠ABC.即得出∠A=2∠D,即得出答案.【详解】∵∠ABC的平分线交∠ACE的外角平分线∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE﹣∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE﹣∠ABC=2∠DCE﹣2∠DBE=2(∠DCE﹣∠DBE),∴∠A=2∠D=40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.≅,延长BC,分别交AD,ED于点F,G,若14.如图,ABC ADE∠=________︒.∠=︒,10B∠=︒,30EAB120CAD∠=︒,则CFD95【分析】根据全等三角形的性质得∠BAC=∠DAE 结合三角形外角的性质和三角形内角和定理即可求解【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查全等三角形的性质三角形外角的性质和三角形内角和定解析:95【分析】根据全等三角形的性质,得∠BAC=∠DAE ,结合三角形外角的性质和三角形内角和定理,即可求解.【详解】解:∵ABC ADE ≅,∴()12010255BAC DAE ∠=∠=-÷=,∴85ACF BAC B ∠=∠+∠=,∴18085CFA ACF CAD ∠=-∠-∠=,∴1808595CFD ∠=-=.故答案为:95.【点睛】本题主要考查全等三角形的性质,三角形外角的性质和三角形内角和定理,熟练掌握上述定理和性质,是解题的关键.15.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.3【分析】由AD ⊥CEBE ⊥CE 可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD 从而求得△CEB ≌△ADC 然后利用全等三角形的性质可以求得BE 的长【详解】解:∵∠A解析:3【分析】由AD ⊥CE ,BE ⊥CE ,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD ,从而求得△CEB ≌△ADC ,然后利用全等三角形的性质可以求得BE 的长.【详解】解:∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD ,在△CEB 和△ADC 中,BCE CAD BEC CDA AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△ADC (AAS );∴BE=CD ,CE=AD=9.∵DC=CE-DE ,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)AB =AD (答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC =AC 然后即可得到使得△ABC ≌△ADC 需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC =AC ∴若添加条件AB =A解析:AB =AD (答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC =AC ,然后即可得到使得△ABC ≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC =AC ,∴若添加条件AB =AD ,则△ABC ≌△ADC (SAS );若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AD(答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,AB=8cm,AC=5cm,∠A=∠B,点P在线段AB上以2cm/s的速度由点A向B 运动,同时,点Q以x cm/s的速度从点B出发在射线BD上运动,则△ACP与△BPQ全等时,x的值为_____________2或【分析】由∠A=∠B可知△ACP与△BPQ全等时CP和PQ是对应边则分AP=BQ和AP=PB两种情况进行讨论即可【详解】设动点的运动时间为t秒则AP=2tBP=AB-AP=8-2tBQ=xt∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.19.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为___.cm2【分析】如图延长AP 交BC 于T 利用全等三角形的性质证明AP=PT 即可解决问题【详解】解:如图延长AP 交BC 于T ∵BP ⊥AT ∴∠BPA=∠BPT=90°∵BP=BP ∠PBA=∠PBT ∴△BPA ≌ 解析:12 cm 2 【分析】如图,延长AP 交BC 于T .利用全等三角形的性质证明AP=PT 即可解决问题.【详解】解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==,1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.20.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.或【分析】对点P 和点Q 是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或7 2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或72.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题21.(1)如图,∠MAB=30°,AB=2cm,点C在射线AM上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .解析:(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可; (2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.22.如图,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,C E ∠=∠,CDE ABD ∠=∠.(1)求证:ABC DBE ≌;(2)已知162ABE ∠=︒,30DBC ∠=︒,求CDE ∠的度数.解析:(1)见解析;(2)66°【分析】(1)根据三角形内角和定理说明∠CDE=∠CBE ,再证明∠ABC=∠DBE ,根据AAS 可证明△ABC ≌△DBE ;(2)根据∠ABE 和∠DBC 的度数可以算出∠CBE 和∠ABD 的度数,从而得到∠CDE .【详解】解:(1)∵∠C=∠E ,∠CPD=∠EPB ,∴∠CDE=∠CBE ,∵∠CDE=∠ABD ,∴∠CBE=∠ABD ,∴∠CBE+∠CBD=∠ABD+∠CBD ,即∠ABC=∠DBE ,又∠C=∠E ,AB=DB ,∴△ABC ≌△DBE (AAS );(2)∵162ABE ∠=︒,30DBC ∠=︒,∴∠ABD=∠CBE=(162°-30°)÷2=66°,∴∠CDE=∠CBE=66°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理的应用,寻找三角形全等的条件是解题的关键.23.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.24.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB =90°,在图中动手画图(不用写画法).在∠AOB 内部任意画一条射线OC ;画∠AOC 的平分线OM ,画∠BOC 的平分线ON ;用量角器量得∠MON =______. (2)如图2,∠AOB =90°,将OC 向下旋转,使∠BOC =30°,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.解析:(1)作图见解析,45;(2)能,45【分析】(1)以点O 为圆心,任意长为半径,画圆弧,并分别交OA 、OC 于点H 、点G ;再分别以点H 、点G 为圆心,以大于12HG 的长度为半径画圆弧并相较于点P ,过点P 作射线OM 即为∠AOC 的平分线;同理得∠BOC 的平分线ON ;通过量角器测量即可得到∠MON ;(2)根据题意,得114522COM AOC BOC ∠=∠=+∠,12CON BOC ∠=∠,结合MON COM CON ∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON =45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90°∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.25.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .解析:见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF ≌∴∠B =∠C .【点睛】 本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.26.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.解析:证明见解析【分析】利用AAS 证明△ABC ≌△CED 即可得到结论.【详解】证明:∵//AB CD ,∴BAC ECD ∠=∠,在ABC 和CED 中BAC ECD B EAC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CED AAS △≌△,∴BC ED =.【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据已知题意确定两个三角形对应相等的条件是解题的关键.27.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 28.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.解析:(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.。
人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
初二数学全等三角形练习题(含答案)

初二数学全等三角形练习题(含答案) 导语:学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此精心为大家了这篇初二数学全等三角形练习题(含答案),供大家参考。
◆夯实基础一、耐心选一选,你会开心:(每题6分,共30分)1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②③④B.①③④C.①②④D.②③④2.如果是中边上一点,并且,则是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形3.一个正方形的侧面展开图有()个全等的正方形.A.2个B.3个C.4个D.6个4.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有()A.1个B.2个C.3个D.4个5.下列说法正确的是()A.若,且的两条直角边分别是水平和竖直状态,那么的两条直角边也一定分别是水平和竖直状态B.如果,,那么C.有一条公共边,而且公共边在每个三角形中都是腰的两个等腰三角形一定全等D.有一条相等的边,而且相等的边在每个三角形中都是底边的两个等腰三角形全等二、精心填一填,你会轻松(每题6分,共30分)6.如图所示,沿直线对折,△ABC与△ADC重合,则△ABC≌,AB的对应边是,BC的对应边是,∠BCA的对应角是.第6题第7题7.如图所示,△ACB≌△DEF,其中A与D,C与E是对应顶点,则CB的对应边是,∠ABC的对应角是.8.如图,AB、DC相交于点O,△AOB≌△DOC,A、D为对应顶点,则这两个三角形中,相等的边是____________________,相等的角是____________________.9.已知,,,则,,和的度数分别为,,.10.请在下图中把正方形分成2个、4个、8个全等的图形:三、细心做一做,你会成功(共40分)11.找出下列图中的全等图形.12.找出下列图形中的全等图形.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)13.如图,AB=DC,AC=DB,求证AB∥CD.◆综合创新14.如图,点在一条直线上,△△你能得出哪些结论?(请写出三个以上的结论)15.把一张方格纸贴在纸板上.按图1所示画上正方形,然后沿图示的直线切成5小块.当你照图2的样子把这些拼成正方形的时候中间居然出现了一个洞!我们发现,图1的正方形是由49个小正方形组成的.图2中拼成的正方形却只有48个小正方形.哪一个小正方形没有了?它到哪去了?16.如图,,则的度数为()A.B.C.D.17.如图,若,且,则.18.右图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.参考答案夯实基础1.A2.D3.C4.A.5.B6.△ADC,AD,AC,∠DCA7.EF,∠DFE8.AB=DC、AO=DO、OB=OC,∠AOB=∠DOC、∠A=∠D、∠B=∠C.9.;,,10.分法可分别如下所示:11.根据全等形的定义得全等形有天鹅、荷花.12.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形13.分析:要证AB∥CD,只需∠ABC=∠DCB,要证∠ABC=∠DCB,只需△ABC≌△DCB.证明:∵在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.∴AB∥CD.综合创新14.由△△可得到△△等.15.5小块图形中最大的两块对换了位置之后,被那条对角线切开的每个小正方形都变得高比宽大一点点.这意味着这个大正方形不再是严格的正方形.它的高增加了,从而使得面积增加,所增加的面积恰好等于那个方洞的面积.中考链接16.C17.18.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形复习练习题
一、选择题
1.如图,给出下列四组条件:
①AB DE BC EF AC DF
===
,,;②AB DE B E BC EF
=∠=∠=
,,;
③B E BC EF C F
∠=∠=∠=∠
,,;④AB DE AC DF B E
==∠=∠
,,.其中,能使ABC DEF
△≌△的条件共有()
A.1组B.2组C.3组D.4组
2.如图,D E
,分别为ABC
△的AC,BC边的中点,将此三
角形沿DE折叠,使点C落在AB边上的点P处.若48
CDE
∠=°,
则APD
∠等于()
A.42° B.48° C .52° D.58°
3.如图(四),点P是AB上任意一点,ABC ABD
∠=∠,还应补
充一个条件,才能推出APC APD
△≌△.从下列条件中补充
一个条件,不一定能
....推出APC APD
△≌△的是()
A.BC BD
= B.AC AD
= C.ACB ADB
∠=∠ D.CAB DAB
∠=∠
4.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两
个条件才能使△ABC≌△DEF,不能添加的一组条件是( )
(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF
(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF
C
A
D
P
B
图(四)
5.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线, DE⊥AB 于E ,若AC = 10cm ,则△DBE 的周长约等于( )
A .14cm
B .10cm
C .6cm
D .9cm
6. 如图所示,表示三条相互交叉的公路,现要建一个货物中
转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处
7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的方法是( )
A .带①去
B .带②去
C .带③去
D .带①②③去
8.如图,在Rt ABC △中,ο
90=∠B ,ED 是AC 的垂直平分线,交AC 于
点D ,交BC 于点E .已知ο
10=∠BAE ,则C ∠的度数为( ) A .ο
30 B .ο
40 C .ο
50 D .ο
60 9.如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30°
C .35°
D .40°
10.如图,AC =AD ,BC =BD ,则有( )
A .A
B 垂直平分CD B .CD 垂直平分AB
C .AB 与C
D 互相垂直平分 D .CD 平分∠ACB
11.如图, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm,BD=3cm,则点D 到AB 的距离为( )
A
D
C
E
B
E
D
C
B
A
④
①②
③
A
B
C
D
C A
B
B '
A '
A. 5cm
B. 3cm
C. 2cm
D.
不能确定
12.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论
中不一定成立的是( )
A .PA P
B = B .PO 平分APB ∠
C .OA OB =
D .AB 垂直平分OP
13.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定( )
A .C
B CD = B .BA
C DAC =∠∠
C .BCA DCA =∠∠
D .90B D ==︒∠∠
14.观察下列图形,则第n 个图形中三角形的个数是( )
A .22n +
B .44n +
C .44n -
D .4n
二、填空题
1.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).
……
第1个
第2个
第3个
A C
E
B
D
A
B
C
D
A
B
C
D
O
B
A
P
A
B
C
D E
2.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB 于E,且AB=5cm,则△DEB 的周长为 ________
3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).
4.如图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D 到直线AB 的距离是__________厘米。
5.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形
有 个 .
6.已知:如图,△OAD ≌△OBC ,且∠
O =70°,∠C =25°,则∠AEB =________度.
第1个第2个第3个
O
A B
C
D
E
D
O C
B
A
Q
P
O
B
E
D C
A
7如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°. 恒成立的结论有_______________________(把你认为正确的序号都填上)。
8.如图所示,AB = AD,∠1 = ∠2,添加一个适当的条件,使△ABC≌△ADE,则需要添加的条件是________.
三、解答题
1.如图,已知AB=AC,AD=AE,求证:BD=CE.
A
2.如图,在ABC
,为边作两个等
,°,分别以AB AC
AB AC BAC
=∠=
△中,40
腰直角三角形ABD和ACE,使90
∠=∠=°.
BAD CAE
(1)求DBC
∠的度数;(2)求证:BD CE
=.
4.如图,D 是等边△ABC 的边AB 上的一动点,以CD 为一边向上作等边△EDC ,连接AE ,找出图中的一组全等三角形,并说明理由.
5.如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .
(1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.
9.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的B C
A D
M
N
E
D
C
B
A
F
E
A
延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .
10.如图,,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.
11.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .
(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):
O
E
D
C
B
A
B
D C
F A
郜
E
12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.
(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?
若成立请给予证明;若不成立请说明理由.
全等三角形复习练习题答案
一、选择题
1—5 C B B D A
6—10 A C B B A
11—14 C D C D
二、填空题
1.略;
2.5;
3.AC=BD;
4.6;
5.121;
6.120;
7.①②③⑤;
8.AC=AE;
三、证明题。