北师大版七年级上册数学第二章有理数第8节有理数的除法法则

合集下载

七年级数学上册 第二章 有理数及其运算 8 有理数的除法教案 (新版)北师大版-(新版)北师大版初中

七年级数学上册 第二章 有理数及其运算 8 有理数的除法教案 (新版)北师大版-(新版)北师大版初中

8 有理数的除法1.理解有理数除法法则,体会除法与乘法的联系.2.会利用有理数除法法则进行有理数的除法运算.重点理解有理数除法法则,会进行有理数的除法运算.难点理解商的符号及其绝对值与被除数和除数的关系.一、复习导入教师:我们知道乘法与除法是互为逆运算的,那么被除数、除数、商之间有什么关系? 学生思考后举手回答,教师点评.教师:前面我们学习了有理数的乘法,就自然会想到有理数的除法,那么如何进行有理数的除法运算呢?这就是本节课要学习的内容.二、探究新知教师:一个数与2的乘积是-6,这个数是几?学生回答问题,教师讲评:这个问题写成算式有两种:2×(?)=-6(乘法算式);(-6)÷2=(?)(除法算式).由2×(-3)=-6,我们有(-6)÷2=-3.另外,我们还知道(-6)×12=-3.所以,(-6)÷2=(-6)×12.这表明除法可以转化为乘法来进行计算. 课件出示练习:8÷(-2)=8×( );6÷(-3)=6×( ).学生独立完成后汇报答案,教师点评,进一步讲解:除以一个数等于乘这个数的倒数.注意:0不能作除数.教师:除法可化为乘法,结合所学的乘法法则,你能总结出除法法则吗?学生分小组讨论后分享,教师讲评.有理数的除法有与乘法类似的法则:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何非0的数,都得0.三、举例分析例1(课件出示教材第55页例1)学生独立完成,指名板演,集体订正.例2(课件出示教材第56页例2)学生独立完成后汇报答案,教师讲评,并让学生总结计算有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.四、练习巩固1.教材第56页“随堂练习”.2.下列说法错误的是( )A .正数的倒数是正数B .负数的倒数是负数C .任何一个有理数a 的倒数等于1aD .乘积为-1的两个有理数互为负倒数五、小结1.通过本节课的学习,你学到了哪些知识?2.有理数除法法则是什么?3.计算有理数除法的一般步骤有哪些?六、课外作业教材第56页习题2.12第1,3题.学生已学过有理数的加法、减法、乘法,这些运算为学习有理数的除法作了铺垫,而除法在小学时已经接触过,学生也知道除法是乘法的逆运算.本课的重点是有理数除法法则.在教学过程中,通过小组合作、教师引导,让学生自己探索并总结有理数除法法则.同时也让学生对比乘法法则和除法法则,加深印象.在练习训练中,让学生理清有理数除法的解题步骤及注意事项,这样不仅能突破重点,也能培养学生观察问题、分析问题和解决问题的能力.。

七年级数学上册第二章有理数及其运算8有理数的除法课件(新版)北师大版

七年级数学上册第二章有理数及其运算8有理数的除法课件(新版)北师大版

1.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那
么这两个数一定 ( ) A.相等 B.互为相反数 C.互为倒数 D.相等或互为相反数 答案 D 两个数相等时,商都为1,两个数互为相反数时,商都为-1,故选
D.
2.等式

2
1 3



÷ 3
除;多个有理数相除时,可以按从左到右的顺序依次计算,也可以转化为
乘法后再计算.
解析 (1)(-15)÷(-3)=15÷3=5.
(2)2 13 ÷ 1
1 6

=- 7 × 6 =-2.
37
(3)0÷ 18
7 25

=0.
(4)解法一:(-12)÷ 112

1.下列运算结果错误的是 ( )
A. 1 ÷(-3)=3×(-3)=-9
3
B.-5÷ 12

=5×2=10
C.8÷(-2)=-(8÷2)=-4
D.0÷(-3)=0
答案
A
选项A中, 13 ÷(-3)=- 13
1 3

=- 1 .
9
2.一个数与-4的乘积等于1 53 ,这个数是 (
3
3.已知a、b在数轴上的位置如图,则a÷b的值 ( ) A.大于0 B.小于0 C.等于0 D.以上答案均有可能 答案 B 由数轴可知a<0,b>0,两个不等于0的数相除,异号得负,负数 小于0.故选B.
1.如果a+b<0且 b >0,那么下列结论成立的是 ( )
a
A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0

北师大版七年级上册数学教案:第二章有理数及其运算

北师大版七年级上册数学教案:第二章有理数及其运算
举例:解释为何0乘以任何数都等于0,以及-3÷(-2)=1.5的运算过程。
(4)混合运算中的运算顺序:学生在进行有理数混合运算时,容易忽视运算顺序,导致计算错误。
举例:强调先计算括号内的运算,再进行乘除运算,最后进行加减运算。
(5)运算律的应用:学生在运用运算律简化运算时,可能不熟练,需要加强练习。
举例:解释为何-3表示3的相反数,理解负数在实际问题中的应用。
(2)有理数的加减运算:特别是在异号相加和减法运算中,理解为何同号相加取相同符号,异号相加取绝对值较大的加数的符号。
举例:讲解-3+2的结果是-1,而不是1,理解其背后的运算规律。
(3)有理数的乘除运算:掌握有理数乘除运算的符号规律,尤其是零与有理数相乘、不为零的有理数相除的规则。
北师大版七年级上册数学教案:第二章有理数及其运算
一、教学内容
本节课选自北师大版七年级上册数学教材第二章“有理数及其运算”。主要内容包括:
1.有理数的概念:整数和分数统称为有理数,介绍正有理数、负有理数和零的概念。
2.有理数的分类:将有理数按照正、负和零进行分类,并了解它们的特点。
3.有理数的加法:掌握同号相加、异号相加、零与有理数相加的法则,并能熟练进行计算。
举例:运用结合律将(3+4)×5简化为3×5+4×5,降低计算难度。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数及其运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数字的正负和计算的问题?”比如,温度上升和下降,银行存款和取款等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数的奥秘。

北师大版七年级数学上册第二章《有理数及其运算》复习教案

北师大版七年级数学上册第二章《有理数及其运算》复习教案
(1)有理数的概念及其分类,特别是正数、负数、整数、分数的认知。
(2)有理数的性质,如相反数、绝对值的概念和理解。
(3)有理数的加减乘除运算规则,包括同号相加、异号相加、乘法法则等。
(4)混合运算的顺序和法则,以及在实际问题中的应用。
举例:
-重点讲解正负数的加减法运算,如3 + (-2)的计算方法和规则。
最后,通过这节课的教学,我认识到要关注每一个学生的个体差异。对于学习有困难的学生,我需要给予更多的关心和指导,帮助他们克服困难,提高学习效果。同时,对于学习优秀的学生,我也要适当提高要求,让他们在掌握基础知识的同时,拓展思维,提高解决问题的能力。
3.培养学生具备良好的逻辑思维能力,通过有理数运算掌握数学推理方法。
4.培养学生养成数学运算的准确性和规范性,提高运算速度和效率。
5.引导学生体会数学在生活中的广泛应用,激发学习数学的兴趣和积极性。
6.培养学生面对数学问题敢于探究、勇于创新的精神,发展数学思维能力。
三、教学难点与重点
1.教学重点
本节课的核心内容包括:
北师大版七年级数学上册第二章《有理数及其运算》复习教案
一、教学内容
北师大版七年级数学上册第二章《有理数及其运算》复习教案,主要包括以下内容:
1.有理数的概念:正数、负数、整数、分数、有理数的定义及其分类。
2.有理数的性质:相反数、绝对值、有理数的加减乘除运算性质。
3.有理数的运算:
(1)有理数的加减法运算:同号相加、异号相加、加减混合运算。
-难点巩固:通过复杂混合运算的题目,训练学生识别运算顺序,正确运用括号,解决实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《有理数及其运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾有理数的奥秘。

七年级数学上册第二章有理数及其运算8有理数的除法教案新版北师大版

七年级数学上册第二章有理数及其运算8有理数的除法教案新版北师大版

8有理数的除法【知识与技能】理解有理数除法的法则,会进行有理数的除法运算,会求有理数的倒数.【过程与方法】经历探索有理数除法法则的过程,发展学生观察、归纳、猜想、验证等能力.【情感态度】结合本课教学特点,教育学生热爱生活、热爱学习,使学生认识到通过观察、归纳、推断可以获得数学猜想,激发学生学习兴趣.【教学重点】理解有理数除法的法则,会进行有理数的除法运算.【教学难点】根据不同的情况选取适当的计算法则求商.一、情境导入,初步认识除法与乘法是互逆运算,在小学我们就认识到除法与乘法相互转化可以简化运算,那么在有理数范围内,又怎样将除法转化成乘法?有理数的除法可以怎样进行计算呢?(-12)÷(-3)=?由(-3)×4=-12,你能得出结果吗?【教学说明】学生已经知道除法与乘法的互逆关系,很容易得出正确的结果,使学生初步认识有理数的除法.二、思考探究,获取新知1.有理数除法法则(直接相除)问题1观察下面的算式及计算结果,你有什么发现?(-18)÷6= ,(-27)÷(-9)= ,0÷(-2) =.【教学说明】学生通过计算、观察、分析,与同伴交流,归纳有理数除法的计算法则.【归纳结论】两个有理数相除,同号得正,异号得负,并把绝对值相除.0除以任何非0的数都得0.注意:0不能作除数.2.有理数除法法则的应用问题2计算:【教学说明】学生通过计算、交流,进一步掌握有理数除法法则.【归纳结论】有理数除法与有理数乘法的计算步骤类似:先确定商的符号,再把绝对值相除.3.有理数除法的第二个法则(化除为乘)问题3比较下列各组数的计算结果,你能得到什么结论?【教学说明】学生通过计算,很容易发现每题中两个式子的结果是相等,教师引导归纳,加以规范,得出第二个计算法则.【归纳结论】除以一个数等于乘这个数的倒数.4.有理数除法第二个法则的应用问题4计算:【教学说明】通过计算、交流,熟练掌握有理数除法的第二个法则.能根据不同的情况选取适当的计算法则进行有理数除法的运算.【归纳结论】有理数的除法法则有两个,一个是直接相除的法则,一个是化除为乘的法则,第二个法则适合于小数、分数的除法,对于整数的除数,能整除时用第一个,不能整除时用第二个. 三、运用新知,深化理解5.已知|a|=8,|b|=2,且a+b<0,求(a-b)÷ab的值.6.根据实验测定,高度每增加1km,气温大约下降6℃,某登山队员攀登某山峰的途中发回信息,报告他们所在高度的气温是-15℃,测得当时地面气温是3℃.请你确定登山运动员所在位置的高度.【教学说明】学生自主完成,加深对新学知识的理解,检测对有理数除法运算的掌握情况,为后面混合运算的学习打下坚实的基础.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.D2.A3.(1)-14(2)-3(3)3(4)306.[3-(-15)]÷6×1=3(km)四、师生互动,课堂小结1.师生共同回顾有理数除法法则.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对有理数除法法则的理解与运用,会选择适当的法则进行有理数除法的运算.【板书设计】1.布置作业:从教材“习题2.12”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究有理数的除法法则,到运用除法法则进行计算,培养学生动手,动脑习惯,提高了学生的运算能力.。

2024秋七年级数学上册第2章有理数及其运算2.8有理数的除法说课稿(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.8有理数的除法说课稿(新版)北师大版
5.合作交流:学生分组讨论,共同解决合作交流题目,培养学生的合作意识和解决问题的能力。
6.总结提升:教师对课堂内容进行总结,强调重点和难点,帮助学生巩固知识。
四、作业布置
1.课后练习:学生完成课后练习题,巩固课堂所学知识。
2.拓展作业:学生选择一道实际问题进行解决,培养学生的应用能力。
五、教学反思
教师在课后对自己的教学进行反思,分析教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
知识拓展:
介绍与有理数除法内容相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
情感升华:
结合有理数除法内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
鼓励学生分享学习有理数除法的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
2024秋七年级数学上册 第2章 有理数及其运算2.8 有理数的除法说课稿(新版)北师大版
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、课程基本信息
1.课程名称:七年级数学——有理数的除法
2.教学年级和班级:七年级一班
3.授课时间:2024年秋天
4.教学时数:45分钟
二、教学内容和目标
1.教学内容:
- 练习法:学生进行课堂练习和课后作业,巩固所学知识;
- 合作学习:学生分组讨论和合作解决实际问题;
- 反馈与评价:教师对学生的学习情况进行观察和评价,提供反馈。
五、教学流程
(一)课前准备(预计用时:5分钟)
学生预习:
发放预习材料,引导学生提前了解有理数除法的学习内容,标记出有疑问或不懂的地方。

最新北师大版初中数学目录

最新北师大版初中数学目录

北师大版七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从三个方向看物体的形状回顾与思考复习题第二章有理数及其运算1.有理数2.数轴3.绝对值4.有理数的加法5.有理数的剑法6.有理数的加减混合运算7.有理数的乘法8.有理数的除法9.有理数的乘方10.科学计数法11.有理数的混合运算12.用计算器进行运算回顾与思考复习题第三章整式及其加减1.字母表示数2.代数式3.整式4.整式的加减5.探索与表达规律回顾与思考复习题第四章基本平面图形1.线段、射线、直线2.比较线段的长短3.角4.角的比较5.多边形与圆的初步认识回顾与思考复习题第五章一元一次方程1.认识一元一次方程2.求解一元一次方程3.应用一元一次方程---水箱变高4.应用一元一次方程---打折销售5.应用一元一次方程---“希望工程”6.应用一元一次方程---追赶小明回顾与思考复习题第六章数据的收集与整理1.收据的收集2.普查与抽样调查3.数据的表示4.统计图的选择回顾与思考复习题综合与实践探寻神奇的幻方关注人口老龄化制作一个尽可能大的无盖长方体课题学习制作一个尽可能大的无盖长方体总复习北师大版七年级下册第一章整式的乘法1.同底数幂的乘法2.幂的乘方与积的乘方3.同底数幂的除法4.整式的乘法5.平方差公式6.完全平方公式7.整式的除法回顾与思考复习题第二章相交线与平行线1.两条直线的位置关系2.探索直线平行的条件3.平行线的性质4.用尺规作角回顾与思考总复习第三章三角形1.认识三角形2.图形的全等3.探索三角形全等的条件1.用尺规作三角形2.利用三角形全等测距离回顾与思考总复习第四章变量之间的关系1.用表格表示的变量之间的关系2.用关系式表示的变量之间的关系3.用图像表示的变量之间的关系回顾与思考总复习第五章生活中的轴对称1.轴对称现象2.探索轴对称的性质3.简单的轴对称图形4.利用轴对称进行设计回顾与思考总复习第六章概率初步1.感受可能性2.频率的稳定性3.等可能事件的概率回顾与思考总复习综合与实践设计自己的运算程序综合与实践七巧板总复习北师大版八年级上册第一章勾股定理1.探索勾股定理2.一定是直角三角形吗3.勾股定理的应用回顾与思考复习题第二章实数1.认识无理数2.平方根3.立方根4.估算5.用计算器开方6.实数7.二次根式回顾与思考复习题第三章位置与坐标1.确定位置2.平面直角坐标系3.平行线的判定4.平行线的性质5.三角形内角和定理回顾与思考复习题第四章一次函数1.函数2.一次函数与正比例函数3.一次函数图像4.一次函数的应用回顾与思考复习题第五章二元一次方程组1.认识二元一次方程组2.求解二元一次方程组3.应用二元一次方程组--鸡兔同笼4.应用二元一次方程组--增收节支5.应用二元一次方程组--里程碑的数6.二元一次放陈玉一次函数7.用二元一次方程组确定一次函数8.三元一次方程组回顾与思考复习题第六章数据的分析1.平均数2.中为数与众数3.从统计图分析数据的集中趋势4.数据的离散程度回顾与思考复习题第七章平行线的证明1.为什么要证明2.定义与命题3.平行线的判定4.平行线的性质5.三角形内角和定理回顾与思考复习题综合与实践计算器运用与功能探索综合与实践哪一款手资费套餐更合适综合与实践哪个城市更热北师大版八年级下册第一章三角形的证明1.等腰三角形2.直角三角形3.线段的垂直平分线4.角平分线回顾与思考复习题第二章一元一次不等式与一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第三章图形的平移与旋转1.图形的平移2.图形的旋转3.中心对称4.简单的图案设计回顾与思考复习题第四章因式分解1.因式分解2.提公因式法3.公式法回顾与思考复习题第五章分式与分式方程1.认识分式2.分式的乘除法3.分式的加减法4.分式方程回顾与思考复习题第六章平行四边形1.平行四边形的性质2.平行四边形的判定3.三角形的中位线4.多边形的内角和与外角和回顾与思考复习题综合与实践生活中的“一次模型”综合与实践平面图形的镶嵌总复习旧版资源第一章一元一次不等式和一元一次方程第二章因式分解第三章分式第四章相似图形第五章数据的收集与处理第六章证明(一)总复习北师大版九年级上册第一章证明(二)1.你能证明它们吗2.直角三角形3.线段的垂直平分线4.角平分线回顾与思考复习题第二章一元二次方程1.花边有多宽2.配方法3.公式法4.分解因式法5.为什么是0.618回顾与思考复习题第三章证明(三)1.平行四边形2.特殊的平行四边形回顾与思考复习题第四章视图与投影1.视图2.太阳光与影子3.灯光与影子回顾与思考复习题第五章反比例函数1.反比例函数2.反比例函数的图像与性质3.反比例函数的应用回顾与思考复习题课题学习猜想、证明与拓广第六章频率与概率1.频率与概率2.投针试验3.生日相同的概率4.池塘里有多少条鱼回顾与思考复习题总复习北师大版九年级下册第一章直角三角形的边角关系1.从梯子的倾斜成都谈起2.30、45、60角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗5.测量物体的高度回顾与思考复习题第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数图像5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程回顾与思考复习题课题学习拱桥设计第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角与圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆与圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积回顾与思考复习题课题学习设计遮阳蓬第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗回顾与思考复习题总复习。

七年级数学上册第二章有理数及其运算8有理数的除法素材北师大版

七年级数学上册第二章有理数及其运算8有理数的除法素材北师大版

有理数的除法(一)为什么零不能做除数?设a 是任意有理数,a ÷0=?就是求?×0=a ,当a ≠0时,这是不可能的;当a =0时,任意数都行.因为5×0=0,0÷0=5;6×0=0;0÷0=6等等,0÷0结果就不惟一了,即它不符合运算惟一的要求,所以不许零作除数.(二)参考例题[例1]计算:(1)29÷3×31 (2)(-53)×(-321)÷(-141)÷3 (3)[(+71)-(-31)-(+51)]÷(-1051) 分析:对于乘除混合运算,首先由负数的个数确定符号,同时将小数化成分数,带分数化为假分数,算式化成连乘积的形式,再进行约分.注意:同级运算,按顺序依次进行.解:(1)29÷3×31=329×31=929 (2)(-53)×(-321)÷(-141)÷3=-53×5427 ×31=-2514 (3)[(+71)-(-31)-(+51)]÷(-1051)=(71+31-51)×(-105) =71×(-105)+31×(-105)-51×(-105) =-15-35+21=-29(三)活动与探究1.若1059、1417、2312分别被自然数x 除时,所得的余数都是y ,则x -y 的值等于( )A .15B .1C .164D .179(1999年竞赛)过程:对于除法运算中的整除性与非整除性,小学已初步探讨过.有以下公式:被除数=除数×商被除数=除数×商+余数可以让学生利用此公式进行变化、培养学生灵活解题的能力.设已知三数被自然数x除时,商分别为自然数a、b、c.那么:ax+y=1059 ①bx+y=1417 ②cx+y=2312 ③②-①得(b-a)x=358③-①得(c-a)x=1253③-②得(c-b)x=895由于:a≠b b≠c c≠a所以,x是358、1253、895的公约数即x=179,由此可得y=164x-y=15结果:选A2.求除以8和9都是余1的所有三位数的和.过程:可以让学生借鉴(1)题来变化、运算.可设三位数为n,它是除以8、9的商分别为x、y余1的数.则:n=8x+1;n=9y+1由此可知:三位数n减去1,就是8和9的公倍数,即为:144、216、288、360、432、504、576、648、720、792、864、936.所以满足条件的所有三位数的和为:144+216+288+360+432+504+576+648+720+792+864+936+1×12=72×(2+3+4+5+6+7+8+9+10+11+12+13)+1×12=72×(2+13)×6+12=6492答案:6492尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学冯老师
第 1 页 共 2 页
2.8有理数的除法法则
1.理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;(重点) 2.通过学习有理数除法法则,体会转化思想,会
将乘除混合运算统一为乘法运算.(难点)
一、情境导入
1.计算:(1)2
5×0.2=________;
(2)12×(-3)=________;
(3)(-1.2)×(-2)=________; (4)(-12
5
)×0=________.
2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.
同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________.
观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.
二、合作探究
探究点一:有理数的除法及分数化简
【类型一】 直接判定商的符号和绝对值进行除法运算
计算:
(1)(-15)÷(-3);
(2)12÷(-1
4
);
(3)(-0.75)÷(0.25).
解析:采用有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除解答.
解:(1)(-15)÷(-3)=+(15÷3)=5;
(2)12÷(-14)=-(12÷1
4
)=-48;
(3)(-0.75)÷(0.25)=-(0.75÷0.25)=-3.
方法总结:注意先确定运算的符号.根据“同号得正,异号得负”的法则进行计算.本题属于基础题,考
查对有理数的除法运算法则掌握的程度. 【类型二】 分数的化简
化简下列分数: (1)-21-7=________;(2)-36=________;(3)
-6
-0.3=________;(4)-28
-49=________.
解析:(1)
-21-7=-7×3-7=3;(2)-3
6
=-3(-3)×(-2)=-12;(3)-6-0.3=(-0.3)×20-0.3=
20;(4)-
28-49=2849=4×77×7=4
7
. 解:(1)3;(2)-12;(3)20;(4)4
7
.
方法总结:化简分数时要注意分子、分母的符号,
同号结果为正,异号结果为负.
【类型三】 将除法转化为乘法进行计算
计算:
(1)(-18)÷(-2
3);
(2)16÷(-43)÷(-9
8
).
解析:本题可采用有理数的除法:除以一个数就等
于乘以这个数的倒数解答.
解:(1)(-18)÷(-23)=(-18)×(-32)=18×3
2=
27;
(2)16÷(-43)÷(-98)=16×(-34)×(-8
9)=
16×34×89=32
3
.
方法总结:此题考查了有理数的除法运算,有理数的除法运算通常利用除以一个数等于乘以这个数的倒数化为乘法运算来求.
【类型四】 根据a b
,a +b 的符号,判断a 和b 的符号
如果a +b <0,a b
>0,那么这两个数( )
初中数学冯老师
第 2 页 共 2 页
A .都是正数
B .符号无法确定
C .一正一负
D .都是负数
解析:∵a
b >0,根据“两数相除,同号得正”可知,
a 、
b 同号,又∵a +b <0,∴可以判断a 、b 均为负数.故
选D.
方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.
探究点二:有理数的乘除混合运算
计算:
(1)-2.5÷58×(-1
4);
(2)(-47)÷(-314)×(-11
2
).
解析:(1)把小数化成分数,同时把除法变成乘法,
再根据有理数的乘法法则进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.
解:(1)原式=-52×85×(-14)=52×85×1
4=1;
(2)原式=(-47)×(-143)×(-32)=-(47×143×3
2)
=-4.
方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算.
三、板书设计 有理数除法法则:
1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1
b
(b ≠0).
2.(1)两个数相除,同号为正,异号得负,并把绝对值相除.
(2)0除以任何一个不为0的数,都得0.
让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律
解决问题.
夯实基础
1.选择题
(1)如果一个数除以它的倒数,商是1,那么这个数是( )
A.1
B.2
C.-1
D.±1
(2)若两个有理数的商是负数,那么这两个数一定是( )
A.都是正数
B.都是负数
C.符号相同
D.符号不同 提升能力
2.计算题
(1)(-2)÷(-0.5);
(2)3.5÷0.5÷(-1);
(3)-5.6÷(-7)÷(-0.125);
(4)(-1)÷(+4)÷(-0.25).。

相关文档
最新文档