北师大版初一数学上册有理数
北师大版数学七年级上册2.1《有理数》教案

北师大版数学七年级上册2.1《有理数》教案一. 教材分析《有理数》是北师大版数学七年级上册第二章第一节的内容,本节课主要介绍了有理数的定义、分类以及有理数的运算。
有理数是中学数学中的基础概念,对于学生理解数学的本质和后续学习其他数学知识具有重要意义。
本节课的内容是学生进一步学习实数、方程、函数等知识的基础。
二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对运算也有一定的了解。
但学生在理解有理数的定义和分类方面可能会存在一定的困难。
因此,在教学过程中,教师需要引导学生从实际问题出发,理解有理数的概念,并通过具体的例子让学生掌握有理数的分类。
三. 教学目标1.了解有理数的定义,掌握有理数的分类。
2.能够进行有理数的运算。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过具体的案例,让学生理解和掌握有理数的概念和运算;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的问题和案例。
2.准备教学PPT。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过设置问题,引导学生思考:什么是整数?什么是分数?整数和分数有什么关系?从而引出有理数的概念。
2.呈现(15分钟)呈现有理数的定义和分类,让学生了解有理数的四种类型:正整数、负整数、正分数、负分数。
并通过具体的例子让学生理解和掌握有理数的分类。
3.操练(15分钟)让学生进行有理数的运算练习,包括加、减、乘、除等。
教师可以设置一些具有代表性的题目,让学生在课堂上进行讲解和讨论,从而加深对有理数运算的理解。
4.巩固(10分钟)通过一些填空题和选择题,让学生巩固所学的内容。
教师可以设置一些易错题,让学生在解答过程中发现问题,从而加深对有理数概念和运算的理解。
5.拓展(5分钟)引导学生思考:有理数和无理数有什么关系?从而引出实数的概念。
北师大版七年级数学上册第二章有理数及其运算有理数课件

(2)“零上”和“零下”意义相反,零上41 ℃记作+41 ℃,那么零下3 ℃可表示为-3 ℃.
B C
“±5 mL”表示实际容量比250 mL最多多5 mL,最少少5 mL,抽查的 5盒容量都在(250±5) mL范围内,所以它们都是合格的.
【拓展训练】 9. 某农民出售10麻袋黄豆给镇粮食收购站,按规定,每袋应为100千克,在 过磅时,记录如下表(单位:千克):
试完成表格,并计算一下这位农民共出售了多少千克黄豆,实际平均每袋黄 豆多少千克.
第二章 有理数及其运负
负数 负数
0 整数 分数
负整数
正数 负分数
比海平面低100m的地方
C A
5. (1)小明家今年八月份的总收入为2 500元,可表示为+2 500元,那么 他们家八月份的总支出1 500 元如何表示呢?
(2)武汉市某年七月份的最高气温为零上41 ℃,可表示为+41 ℃,一月份 的最低气温为零下3 ℃又该如何表示呢?
差,即最多超出标准质量5g,最少少于标准质量5g.
【提升训练】 7. 一架飞机进行特技表演,第一次上升6 m,第二次上升4 m,第三次下降5 m, 第四次又下降7 m(记升为正,下降为负). (1)这时飞机在初始位置的上方还是下方?相距初始位置多少米? (2)飞机在表演中共运行了多少米?
8. 某乳品公司的一种盒装牛奶的外包装上标注着“250 mL ±5 mL”的 字样,“±5 mL”是什么含义?质检局对该产品抽查了5盒,容量分别为253 mL,252 mL,249 mL,246 mL,254 mL,则被抽查产品的容量是否合格?
2024北师大数学七年级上册

2024北师大数学七年级上册一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:2, -3,0,0.5(可化为(1)/(2)),-(3)/(4)等都是有理数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数一一对应。
右边的数总比左边的数大。
- 例如:在数轴上表示 -2和3, -2在原点左边2个单位长度处,3在原点右边3个单位长度处。
3. 相反数与绝对值。
- 相反数:只有符号不同的两个数互为相反数。
0的相反数是0。
例如:3和 -3互为相反数。
- 绝对值:一个数在数轴上所对应的点与原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
例如:| -5| = 5,| 4| = 4。
4. 有理数的运算。
- 加法:- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,(-2)+(-3)= - 5。
- 异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+(-2)=1,-5 + 3=-2。
- 减法:减去一个数等于加上这个数的相反数。
例如:5 - 3 = 5+(-3)=2。
- 乘法:- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,(-2)×(-3)=6,3×(-4)= - 12。
- 任何数与0相乘都得0。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
例如:6÷3 =6×(1)/(3)=2,(-8)÷(-2)=(-8)×(-(1)/(2)) = 4。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n中,a 叫做底数,n叫做指数。
例如:2^3 = 2×2×2 = 8,(-3)^2=(-3)×(-3)=9。
北师大版七年级数学上册-第二章 有理数及其运算串讲

4.
【例3】.如果点A、B、C、D所对应的数为 a、b、 c、d,则a、b、c、d 的大小关系为( )
A. a<c<d<b C. b<d<c<a
B. b<d<a<c; D. d<b<c<a
【例4】.校、家、书店依次坐落在一条南 北走向的大街上,学校在家的南边20米, 书店在家北边100米,张明同学从家里 出发,向北走了50米,接着又向北走了 -70米,此时张敏的位置在( B ) A. 在家 B. 在学校 C. 在书店 D. 不在上述地方
【例 2】 把下列各数分别填在相应的括号内. 1 22 1 - ,13,-2,+6, ,0,0.8,3 ,-4.2. 2 7 4 正数:{ 负数:{ 正整数:{ 正分数:{ 负整数:{ 负分数:{ ,„}; ,„}; ,„}; ,„}; ,„}; ,„}.
课堂小结
1、正数与负数都来自于实际生活;用正、 负数可以表示实际问题中具有相反意义的量, 例如… 2、小学里学过的数除0外都是正数;正数前 面添上“-”号的数是负数;0既不是正数, 也不是负数,它表示正、负数的界限。 3、有理数的分类方法不是唯一的,可以按 整数和分数分成两大类,也可以按正数、零、 负数分成三大类。
第二章 有理数及其运算
七年级(上册)
第一单元:有理数
一. 正数、负数和0
1. 2. 3. 4. 相反意义的量:由具有相反意义的词表示的两个 量叫做具有相反意义的量。 具有相反意义的两个量,规定其中一个量用正数 表示;另一个量就用负数表示。 正数:带正号“+”的数;负数:带负号“-”的 数 。其中正数的正号可省略不写。 0不仅表示“没有”,它还是正数与负数的分界。 同时也是具有相反意义的量的基准量。既不是正 数又不是负数。 重新认识两个符号——
北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

知2-讲
1.生活中到处都存在相反意义的量. 2.在相反意义的量中,我们把其中一个意义的量规定为正,
那么另一个量就是负. 要点精析: (1)相反意义的量是指意义相反的两个量,相反意义
的量是成对出现的. (2)判断相反意义的量的标准:①两个同类量;②意义相反. (3)具有相反意义的量的正负性是相对的,且是可以互换的.
(来自《典中点》)
知识点 3 有理数及其分类
知3-讲
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一 定不是有理数.
知3-讲
2. 整数和分数:正整数、0、负整数统称为整数. 正分数、负分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数; (2)负整数:既是负数,又是整数的数; (3)正分数:既是正数,又是分数的数; (4)负分数:既是负数,又是分数的数; (5)非负整数:正整数和0; (6)非正整数:0和负整数.
(3)判断一个数是正、负数的方法:①不为零;②含 “+”“-”的情况 (无“+” “-”视同含“+”),两 者必须同时看.
知1-讲
2. 数的特征及种类: (1)数有带符号(+、-)的数和不带符号的数两 种呈现形式; (2)数包括正数、0、负数三种情况. 拓展:符号“+” “-”的含义: (1)作为运算符号是加减号; (2)作为数的性质是正负号.
解题关键点 看符号
特征 数(0除外)前面带“+”
或无符号 数(0除外)前面带
“-”的数
结论 正数 负数
(来自《点拨》)
知1-练
1 (中考·广州)四个数-3.14,0,1,2中为负数
的是( A )
北师大版七年级数学上册有理数全章考点归纳及练习

【课堂练习】
1.下列各数中是负数的是( )
A.-3 B.0
1 C.1.7 D.
2
2.飞机在飞行过程中,如果上升 23 米记作“+23 米”,那么下降 15 米应记作( )
A.-8 米 B.+8 米 C.-15 米 D.+15 米
3.下列说法正确的是( )
A.非负数包括 0 和整数 B.正整数包括自然数和 0
(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;
(2)一列数:-1,1,-3,1,-5,1,____,____,____,….
2
4
6
解析:(1)对第 n 个数,当 n 为奇数时,此数为 n,当 n 为偶数时,此数为-n;(2)对 第 n 个数,当 n 为奇数时,此数为-n;当 n 为偶数时,此数为1.
考点四: 绝对值的实际应用
【例 4】 检测四个足球,把超过标准重量的克数记为正数,不足标准重量的克数记为 负数,从轻重的角度看,最接近标准的球是( )
解析:因为|+0.9|=0.9,|-2.6|=2.6,|+2.4|=2.4,|-0.8|=0.8,0.8<0.9<2.4<2.6,所 以最接近标准的球是 D.故选 D.
A.0m B.0.5m
C.-0.8m D.-0.5m
解析:由水位升高 0.8m 时水位变化记作+0.8m,根据相反意义的量的含义,则水位 下降 0.5m 时水位变化就记作-0.5m,故选 D.
方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+” 的多少,少多少记为“-”的多少.另外通常把“零上、上升、前进、收入、运进、增产”等 规定为正,与它们意义相反的量表示为负.
方法总结:“0”的意义不要单纯地认为表示“没有”,其实“0”表示的意义非常广泛,比 如:冰水混合物的温度就是 0℃,0 是正、负数的分界点等.
北师大版初一数学上册知识点

北师大版初一数学上册知识点北师大版初一数学上册学问点1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;π不是有理数;(2)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;(2)肯定值可表示为:肯定值的问题常常分类商量;(3)a|是重要的非负数,即|a|≥0;留意:|a|?|b|=|a?b|, 5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.北师大版初一数学上册学问点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要转变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式全部解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但肯定要留意不等式性质3的应用;留意:在数轴上表示不等式的解集时,要留意空圈和实点.北师大版初一数学上册学问点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
北师大版七年级数学上册《有理数》课件(共29张PPT)

199
奇数为+ 偶数为-
+
-279
-345
2002
-2002
3的倍数为-其它为+
奇数为- 偶数为+
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
用正数和负数可以表示具有相反意义的量
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么?
0
数怎么不够用了?
加10分
扣10分
得0分
第1题
第2题
第3题
第4题
第5题
第一队
第二队
第三队
第四队
某班进行知识竞赛,评分标准是:答对一题加10分, 答错一题扣10分,不答不得分;每一个队的基础分都是0分。
红色所表示的得 分比0分低。
带“-”的得分比0分低。
这里出现了比0分低的得分,我们可以用带有“-”号的数来表示,如-10(读作:负10)表示比0分低10分的数; 对于比0分高的得分,可以在前面加上“+”号,如+10(读作:正10)表示比0分高10的数。
里面食品的重量为比150g左右,多不会超过155g, 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流.
总结:
具有相反意义的量包含两个要素:一 是意义相反,如上升和下降;二是有 两个量,而且是同类量,为了表示具 有相反意义的量,一般地我们把其中 一个量规定为正的,用正数来表示, 记作“+”把另一个与之相反的量规定 为负的,用负数来表示,记作“-”.
练习:
知识竞赛中如果用“+10”表示加10分, 那么扣20分记作什么?
总结:
一般的我们把大于0的数叫做正数,表示 “+”,读作“正”,如+5,+3,+1.5,有时 可省略“+”。
把小于0的数叫做负数,表示“-”,读作 “负”,“-”不能省略。0既不是正数也不 是负数。
有理数的分类
我们把正整数、0和负整数统称为整数; 正分数和负分数统称为分数。如2是整 数,而且是正整数;2/3是分数,而且 是正分数,-2是负整数,-2/3是负分数。
刘丽翠
1. 小学学过哪些数,这些数中最小的数是多少?
2. 假如你是天气预报播音员,你能播报下列城市的天 气吗?
(1)哈尔滨:-13 ~ -7 ℃ ⑵ 北 京:-3 ~ 0 ℃ ⑶ 天ቤተ መጻሕፍቲ ባይዱ津:-3 ~ -1 ℃ ⑷ 沈 阳 -5 ~ -1 ℃
探究正数与负数
活动 答对 答错 不回答 某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,
不回答得0分;每个队的基本分均为0分.两个代表队答题情况如下表:
答题情况 第一队 第二队 如果答对题所得的分用正数表示,那么你能用正负数表示每个代表队
答题得分的情况吗?试完成下表:
答对题的得分 答错题的得分 未回答题的得分 第一队 第二队
练习
1.把消费价格比上年上涨4.8%记为+4.8%,那么下跌 0.6%记为 .
例如:
例 (1)某人转动转盘,如果用+5圈表示沿 逆时针方向转了5圈,那么沿顺时针方向转 了12圈怎样表示?(2)某次乒乓球质量检 测中,一只乒乓球超出标准质量0.02克记作 +0.02克,那么﹣0.03克表示什么?
(3)某大米包装袋上标注着:“净重量: 10kg±150g”,这里的“10kg±150g” 表示 什么?
整数和分数统称为有理数。
练习
(1)将学过的数进行分类,并与同伴 交流。
(2)把下列各数填入相应的集合中:
3,-7, , ,0, , 15,
正数集合:{
…}
负数集合:{
…}
整数集合:{
…}
分数集合:{
…}