导数综合测试
高等数学导数与微分综合测试题(3)含答案

高等数学导数与微分综合测试题(3)一、选择题1.设函数()n f x =()f x 在(),-∞+∞内________.A 处处可导B 恰有一个不可导点C 恰有两个不可导点D 至少有三个不可导点2.若()()f x f x =--,且在()0,+∞内()()0,0,f x f x '''>>则在(),0-∞内必有 A ()()0,0f x f x '''<< B ()()0,0f x f x '''<> C ()()0,0f x f x '''>< D ()()0,0f x f x '''>>3.设2,0,(),0,x f x x g x x >=≤⎩其中()g x 是有界函数,则()f x 在0x =处________. A 极限不存在 B 极限存在,但不连续 C 连续,但不可导 D 可导 4.设函数()f x 可导,()()()1F x f x sin x =+,则()0f 0=是()F x 在0x =处可导的________.A 充分必要条件B 充分条件,但非必要条件C 必要条件,但非充分条件D 既非充分条件,又非必要条件 5.()()000limx x f x f x x x →--存在的充要条件是( )A ()00f x =B ()f x 在0x 点连续C ()00f x '=D ()f x 在0x 处可导 6.设函数()f x 在点x a =处可导,则函数()f x 在点x a =处不可导的充分条件是______.A ()0f a =且()0f a '=B ()0f a =且()0f a '≠C ()>0f a 且()0f a '>D ()<0f a 且()0f a '< 7.设函数()f x 连续,且()00f '>,则存在0δ>,使得_______. A ()f x 在()0,δ内单调增加 B ()f x 在()0,δ-内单调减少C 对任意的x ∈()0,δ,有()f x ()0f >D 对任意的x ∈()0,δ-,有()f x ()0f > 8.设()f x '在[]a,b 上连续,且()>0f a ',()<0f b ',则下列结论错误的是_______.A 至少存在一点()0x a,b ∈,使得()()0f x f a >B 至少存在一点()0x a,b ∈,使得()()0f x f b >C 至少存在一点()0x a,b ∈,使得()0=0f x 'D 至少存在一点()0x a,b ∈,使得()0=0f x 二. 填空题1.设函数()=y f x 由方程2ln +4xy x =y 所确定,则曲线()=y f x 在点()1,1处的切线方程是_____________. 2.函数()1sin ,xy x =+则x dyπ==_____________.3.设3(),(1),tx f t y f e π=-⎧⎨=-⎩其中f 可导,且()00f '≠,则t 0dy dx ==______________.4.已知函数()y y x =由方程2610y e xy x ++=-确定,则()0y ''=______________. 5.设)(x f 为可导函数,且满足条件()()11lim12x f f x x→--=-,则曲线()y f x =在点()()11,f 处的切线斜率为_____________.6.设函数()f x 有任意阶导数,且()()2f x f x '=,则()()n f x =_____________. 7.设sin 2,x y =则dydx=_____________. 8.22,()d yy f f x dx=已知具有二阶导数,则=_____________.三、计算题与证明题1.求函数()()ln 1+2f x x x =在0x =处的n 阶导数()()(n)0n 3f ≥.2.设函数()f x 在0x =可导,且()()0000f f '≠≠,,若()()()20af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.3.已知()f x 是周期为5的连续函数,它在0x =的某邻域内满足关系式()()()1sin 31-sin 8,f x f x x x α-=++其中()x α是0x →时是比x 高阶的无穷小,且()f x 在1x =处可导,求曲线()y f x =在点()()6,6f 处的切线方程. 4.设()()0101,f f '==-,求下列极限:(1)()222lim 21x x xf x →--- (2)()021lim x x f x x→-5.设函数()y y x =由方程()f y yxee =确定的,其中f 具有二阶导数且()1,f x '≠求22d y dx.6. 设函数()f x 在x a =可导,且()0f a ≠,求()1lim xx f a x f a →∞⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦. 7. 设()222x y f f ⎡⎤=⎣⎦求dydx.四.证明题1. 设()(),f x g x 的定义域为(),-∞+∞,且它们在点0x 可导,证明:()()()00,,,,f x x x h xg x x x ≤⎧⎪=⎨>⎪⎩在点0x 可导的充要条件是:()()()()0000,.f x g x f x g x ''==2. 设()[]f x C a,b ∈,()()f a f b 0,==且()()0,0.f a f b +-''<<证明:()f x 在(),a b 内必有一个零点.高等数学导数与微分综合测试题(3)答案一、选择题1.C 2.C 3.D 4.A 5. C 6.B 7.C 8.D 二、填空题1. -0x y = 2.dx π- 3.3 4.-2 5.-2 6. ()1!n n fx + 7.1ln 2sin 22sin x x⋅⋅ 8.321144f f x x -'''⋅-三、计算题与证明题1.解:由莱布尼兹公式及()()()()()111!ln 1+1k k kk x x ---=⎡⎤⎣⎦+(k 为正整数),得 ()()()()()()()()()()()n-13111!-12!-13!-1111n-2n-(n)2n n-n-2-n -n -n -fx x+2nx +n n +x +x +x =,所以()()()()()13()1!0113!2n n n n fn n n n ---=---=-.2.解:由于()()()0lim 200h af h bf h f →+-=,所以()()-=100a+b f ,由于()≠00f ,故-=10a+b .又因()()()()()()()001lim lim 0==h h af h +bf 2h -f 0af h +-a f 2h -f 0h h→→()()()()000lim lim ((+=0)+20)h h a f h -f 2h f 2h f =af f h h →→⎡⎤⎣⎦''--, 由此得2,1a b ==-.3.解:()()()0lim 1sin 31sin lim 8,x x f x f x x a x →→--=+⎡⎤⎡⎤⎣⎦⎣⎦+得()()131f f 0-=,故 ()10f =。
导数与微分测试题

由于 f ( x + 5) = f (5) , 所以 f (6) = f (1) = 0 , f ′(6) = f ′(1) = 2 .
故所求切线方程为 y = 2( x − 6) .
测 验题
(第一、二章 ) 第一、
每题3分 一、填空题 (每题 分,共12分) 每题 分
f (1 + sin x ) − 3 f (1 − sin x ) 即 lim x →0 sin x
f (1 − sin x ) − f (1) f (1 + sin x ) − f (1) = lim +3 x →0 sin x − sin x
= f ′(1) + 3 f ′(1) = 4 f ′(1) = 8 .
二、设曲线 y = x n 在点 (1,1) 处的切线与 x 轴的交点 为 (ξ n ,0), 求 lim f (ξ n ).
n→ ∞
1 c 满足关系式: 三、设 f ( x ) 满足关系式:af ( x ) + bf ( ) = (| a |≠| b |) . x x 求 f ′( x ) . x −1 ( x + 1)2 ; | x |≤ 1 四、设 f ( x ) = 4 | x |> 1 | x | −1 .
易知 , f ( x ) 在 | x |= 1 处连续 . 在 x = −1 处 , f ( x ) − f ( −1) − x −1 = −1 , ′ (−1) = lim− f− − = lim− x → −1 x → −1 x − ( −1) x +1
f +′ (−1) = lim f ( x ) − f ( −1) − x → −1+ x − ( −1)
完整版)导数测试题(含答案)

完整版)导数测试题(含答案)1.已知函数y=f(x)=x^2+1,则在x=2,Δx=0.1时,Δy的值为0.41.2.函数f(x)=2x^2-1在区间(1,1+Δx)上的平均变化率为4+4Δx。
3.设f′(x)存在,则曲线y=f(x)在点(x,f(x))处的切线与x 轴相交但不垂直。
4.曲线y=-1/x在点(1,-1)处的切线方程为y=x-2.5.在曲线y=x^2上,且在该点处的切线倾斜角为π/4的点为(2,4)。
6.已知函数f(x)=1/x,则f′(-3)=-1/9.7.函数f(x)=(x-3)ex的单调递增区间是(2,∞)。
8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的充要条件。
9.函数f(x)在开区间(a,b)内的极小值点有2个。
10.函数f(x)=-x^2+4x+7,在x∈[3,5]上的最大值和最小值分别是f(3)和f(5)。
11.函数f(x)=x^3-3x^2-9x+k在区间[-4,4]上的最小值为-71.12.速度为零的时刻是0,1,4秒末。
13.已知函数 $y=f(x)=ax^2+2x$,且 $f'(1)=4$,则 $a=3$。
14.已知函数 $y=ax^2+b$ 在点 $(1,3)$ 处的切线斜率为 $2$,则 $b=a+1$。
15.函数 $y=x e^x$ 的最小值为 $-1/e$。
16.有一长为 $16$ m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 $64$ $m^2$。
17.(1) $y'=6x+\cos x$;(2) $y'=\dfrac{1}{(1+x)^2}$;(3)$y'=\dfrac{1}{x}-e^x$。
18.(1) 解方程 $x^2+4=x+10$ 得 $x=3$ 或 $x=-2$,故交点为 $(3,13)$ 或 $(-2,0)$;(2) 在交点 $(3,13)$ 处,抛物线的斜率为 $6$,故该点处的切线方程为 $y=6x-5$。
导数与函数倒数测试题

导数与函数倒数测试题1. 某函数 f(x) 在区间 [-2, 3] 上连续且可导,已知 f(-2) = 4,f(3) = 1。
求函数 f(x) 在区间 [-2, 3] 上的所有驻点和极值点。
解析:首先,我们要求函数的导数,并找到所有可能的导数值为零的点,即驻点。
然后,通过判断驻点的二阶导数符号来确定驻点是极大值点还是极小值点。
因为题目中已经说明函数连续可导,所以我们可以使用导数的定义进行计算。
导数的定义是:f'(x) = limit[(Δx -> 0) (f(x+Δx) - f(x))/Δx]对于给定的函数 f(x),我们可以使用有限差分法来计算导数。
在区间 [-2, 3] 上,我们将Δx 设置为一个较小的值(如0.01),计算每个点的导数值。
如果某个点的导数值接近于零,我们可以认为它是一个驻点。
下面是使用有限差分法计算函数 f(x) 在区间 [-2, 3] 上的导数值的代码示例(假设使用 Python 编程语言):```pythondef finite_difference(f, x, delta):return (f(x + delta) - f(x)) / deltadef f(x):# 输入函数 f(x) 的定义return ...delta = 0.01x = -2.0while x <= 3.0:# 计算每个点的导数值derivative = finite_difference(f, x, delta)if abs(derivative) < 0.001:# 导数值接近于零,认为是一个驻点print("驻点:", x)x += delta```通过运行以上代码,我们可以得到函数 f(x) 在区间 [-2, 3] 上的所有驻点。
接下来,我们要判断每个驻点是极大值点还是极小值点。
根据驻点x,我们可以计算二阶导数 f''(x) 的值。
【高二】导数的概念综合测试题(含答案)

【高二】导数的概念综合测试题(含答案)选修2-21.1第2课时导数的概念我1.函数在某一点的导数是( )a、此时函数值增量与自变量增量之比b.一个函数c、是常数,不是变量d.函数在这一点到它附近一点之间的平均变化率[答:]C[解析] 由定义,f′(x0)是当δx无限趋近于0时,δyδx无限趋近的常数,故应选c.2.如果粒子a按照s=3t2定律移动,则t0=3时的瞬时速度为()a.6 b.18c、 54d、 81[答案] b[分析]∵ s(T)=3t2,t0=3,∴δs=s(t0+δt)-s(t0)=3(3+δt)2-3?32=18δt+3(δt)2∴ δsδt=18+3δt。
当δt→0时,δsδt→18,故应选b.3.y=x2在x=1处的导数为()a.2x b.2c、 2+δxd.1[答案] b[分析]∵ f(x)=X2,x=1,∴δy=f(1+δx)2-f(1)=(1+δx)2-1=2?δx+(δx)2∴ δyδx=2+δx当δx→0时,δyδx→2‡f′(1)=2,因此应选择B4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的瞬时速度为( )a、 37b、 38c.39 d.40[答:]d[解析] ∵δsδt=4(5+δt)2-3-4×52+3δt=40+4δt,∴s′(5)=limδt→0δsδt=limδt→0(40+4δt)=40。
因此,D5.已知函数y=f(x),那么下列说法错误的是( )a、δy=f(x0+δx)-f(x0)称为函数值的增量b.δyδx=f(x0+δx)-f(x0)δx叫做函数在x0到x0+δx之间的平均变化率c、 F(x)在x0处的导数写成y′d.f(x)在x0处的导数记为f′(x0)[答:]C[解析] 由导数的定义可知c错误.故应选c.(X.XF=0)的导数可以表示为(X.XY′)的函数a.f′(x0)=f(x0+δx)-f(x0)b、f′(x0)=limδx→0[f(x0+δx)-f(x0)]c.f′(x0)=f(x0+δx)-f(x0)δxd、f′(x0)=limδx→0f(x0+δx)-f(x0)δx[答案] d【分析】从导数的定义,我们知道D是正确的。
导数测试

导数及其应用测试一、选择题(本大题共12小题,每小题5分,共60分)1.(2007·海南、宁夏文,10)曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为 ( ) A .49e 2B .2e2C .e2D .2e 22.(2008·福建文,11)如果函数y =f (x )的图象如图所示,那么导函数y =)(x f '的图象可能是 ( )3.设f (x )=x 2(2-x ),则f (x )的单调增区间是( )A .(0,)34 B .(+∞,34)C.(-∞,0)D.(-∞,0)∪(34,+∞)4.(2008· 广东文,9)设a ∈R,若函数y =e x +ax ,x ∈R 有大于零的极值点,则 ( )A .a <-1B .a >-1C .a <-e1 D .a >-e15.已知函数y =f (x )=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p 、q 的值分别为 ( )A .6,9B .9,6C .4,2D .8,66.已知x ≥0,y ≥0,x +3y =9,则x 2y的最大值为( ) A .36 B .18 C .25 D.42 7.下列关于函数f (x )=(2x -x 2)e x的判断正确的是( )①f (x )>0的解集是{x |0<x <2}; ②f (-2)是极小值,f (2)是极大值; ③f (x )没有最小值,也没有最大值.A .①③B .①②③C .②D .①②8.函数f (x )的图象如图所示,下列数值排序正确的是 ( )A .0<)2('f <)3('f <f (3)-f (2)B .0<)3('f <f (3)-f (2) <)2('fC .0<f (3)<)2('f <f (3)-f (2)D .0<f (3)-f (2)<)2('f <)3('f 9.设f (x )=x 3+x ,则x x f d )(22-⎰的值等于( )A .0B .8C .x x f d )(20⎰ D .xx f d )(20-⎰10.函数f (x )=x 3-ax 2-bx +a 2,在x =1时有极值10,则a 、b 的值为 ( )A .a =3,b =-3,或a =-4,b =11B .a =-4,b =11C .a =3,b =-3D .以上都不正确 11.设f (x )=22e x x+-,g (x )=xxe ,对任意x 1,x 2∈(0,+∞),若有kx f )(1≤1)(2+k x g 恒成立,则A .(0,1)B .(0,+∞)C .[1,+∞)D .[1e 212-,+∞) 12.定义在R 上的可导函数f (x ),已知y =e )(x f '的图象如图所示,则y =f (x )的增区间是( )A .(-∞,1)B .(-∞,2)C .(0,1)D .(1,2)二、填空题 (本大题共4小题,每小题4分,共16分)13.在弹性限度内,弹簧所受的压缩力F 与缩短的距离l 按胡克定律F =kl 计算.今有一弹簧原长90 cm ,每压缩1 cm 需0.049 N 的压缩力,若把这根弹簧从80 cm 压缩至60 cm (在弹性限度内),则外力克服弹簧的弹力做了多少功 .14.如图所示,曲线y =x 2-1及x 轴围成图形的面积S 为 . 15.若函数f (x )=142+x x在区间(m ,2m +1)上是单调递增函数,则实数m 的取值范围是 .16.已知函数f (x )的导函数为)(x f ',且满足f (x )=3x 2+2x )2('f ,则)5('f = .三、解答题 (本大题共6小题,共74分) 17.(12分)已知函数f (x )=x 3-21x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围.18.(12分)设p :f (x )=(x 2-4)(x -a )在(-∞,-2)和(2,+∞)上是单调增函数;q :不等式x0⎰(2t -2)d t >a 的解集为R .如果p 与q 有且只有一个正确,求a 的取值范围.19.(12分)一列火车在平直的铁轨上匀速行驶,由于遇到紧急情况,火车以速度v(t)=5-t+t155(单位:m/s)紧急刹车至停止.求:(1)从开始紧急刹车至火车完全停止所经过的时间;(2)紧急刹车后火车运行的路程比正常运行的路程少了多少米?20.(12分)已知A(-1,2)为抛物线C:y=2x2上的点,直线l1过点A且与抛物线C相切,直线l2:x=a(a<-1)交抛物线C于点B,交直线l1于点D.(1)求直线l1的方程; (2)求△ABD的面积S1;(3)求由抛物线C及直线l1和直线l2所围成的图形面积S2.1x2上一点,直线l过点P并与抛物21.(12分)如图所示,P是抛物线C:y=2线C在点P的切线垂直,l与抛物线C相交于另一点Q,当点P在抛物线C上移动时,求线段PQ的中点M的轨迹方程,并求点M到x轴的最短距离.22.(14分)已知函数f(x)=(1+x)2-a ln(1+x)2在(-2,-1)上是增函数,在(-∞,-2)上为减函数.(1)求f(x)的表达式;1-1, e-1]时,不等式f(x)<m恒成立,求实数m的值; (2)若当x [e(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根.若存在,求实数b的取值范围.。
全国卷数学导数专题测试

导数 专题测试(限时120min )一、单选题1.函数()2ln 1f x x x =-+的单调递减区间为( )A .(0,2)B .(0,)eC .1,e ⎛⎫+∞ ⎪⎝⎭D .(2,)+∞2.函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<3.函数9()(2)2f x x x x =++的最小值为( ) A .174 B .4 C .6 D .724.函数()sin f x x x =的导函数()f x '在区间[]π,π-上的图象大致为( )A .B .C .D .5.已知函数()f x =2a ≤是()f x a ≥恒成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分不必要条件6.函数()||3e x x xf =的部分图象大致为( ) A . B .C .D .7.已知函数()()221sin 1x x f x x ++=+,其中()f x '为函数()f x 的导数,则()()()()2020202020192019f f f f ''+-+--=( )A .0B .2C .2019D .20208.设函数()f x 在R 上可导,其导函数为()f x ',且函数()2y x =-()f x '的图像如图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值()2f 和极小值()1fB .函数()f x 有极大值()2f -和极小值()1fC .函数()f x 有极大值()2f 和极小值()2f -D .函数()f x 有极大值()2f -和极小值()2f9.已知函数()2ln ,013,22x x e x f x x x e e e ⎧<≤⎪⎪=⎨⎪-+>⎪⎩,若,a b c <<且()()()f a f b f c ==,则ln ln b a c a b ⋅的取值范围是( ) A .(),3e e B .()3,e e -- C .()1,3e D .()3,1e --10.设函数2()()()f x x x a x =--∈R ,当3a >时,不等式()22(sin 1)sin f k f k θθ---≥-对任意的[1,0]k ∈-恒成立,则θ的可能取值是( )A .3π-B .43πC .2π-D .56π 11.若函数()y f x =的图象上存在两个不同的点,A B ,使得曲线()y f x =在这两点处的切线重合,称函数()y f x =为“自重合”函数.下列函数中是“自重合”函数的为( )A .ln y x x =+B .e 1x y =+C .3y x =D .cos y x x =-12.在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( )A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .391,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .3294,4e 3e ⎡⎫⎪⎢⎣⎭二、填空题13.若函数f (x )=x 3+mx 2+x +1在R 上无极值点,则实数m 的取值范围是_____.14.已知曲线C :()3f x x ax a =-+,若过曲线C 外一点1,0A 引曲线C 的两条切线,它们的倾斜角互补,则实数a 的值为______.15.定义在()0+∞,上的函数()f x 满足:0x ∀>有()()0f x xf x '+>成立且()12f =,则不等式()2f x x <的解集为__________.16.数列{}n a 中,112a =,()()()*111n n n na a n n na +=∈++N ,若不等式()24110n n a n nλ++-≥恒成立,则实数λ的取值范围为__________.三、解答题17.求下列函数的导数.(1)22y x x -=+;(2)32x x x y e e =-+;(3)2ln 1x y x =+;(4)2sin cos 22x x y x =-. 18.在“①()f x 在1x =处取得极小值2,①()f x 在1x =-处取得极大值6,①()f x 的极大值为6,极小值为2”这三个条件中任选一个,补充在下面的问题中,并解答.问题:已知函数()33f x x ax b =-+(0a >),且______,求()f x 的单调区间.19.已知函数3211()326m f x x x x =+-+. (1)当1m =时,求曲线()f x 上在点(1,(1))f 处的切线方程;(2)这下面三个条件中任选一个补充在下面的问题中,并加以解答.若()f x ___________,求实数m 的取值范围.①在区间(,1)m m +上是单调减函数;①在1,22⎛⎫ ⎪⎝⎭上存在减区间;①在区间(,)m +∞上存在极小值. 20.已知函数()211cos 4f x a x x ⎛⎫=-+ ⎪⎝⎭. (1)当2a =时,求曲线()y f x =在点()(),f ππ处的切线方程;(2)当1a ≥时,证明:对任意[]0,2x ∈,()0f x ≤.。
第三章.导数及其应用测试卷(含详细答案)

单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案
1-5 BABDD 6-10 ADDDD
11.
31
12.0 13.
4a =± 14. 472 15. -2 16. 解:1)32
'2f a x
=+
,由()(0,1]f x 在上恒递增,(0,1],'0x f ∴∈≥时成立,即3
1
a x ≥-
在(0,1]x ∈上恒成立。
1a ∴≥- 2)由1)知1a ≥-时,()(0,1]f x 在上递增,故max ()(1)21f x f a ==- 当1a <-时,由
32'20f a x =+
=,得01x =<<而
所以,当
,'0x f ∈>时,当,'0x f ∈<时
故
max ()f x f ==-17. 解:(1)f '(x )=2x , ∴k =2t ,切线PQ 的方程为 y -t 2=2t (x -t ),即2tx -y -t 2=0. (2)由(1)可求得P (
2
t
,0),Q (6,12t -t 2), ∴g (t )=S △QAP =21(6-21t )(12t -t 2)=41t 3-6t 2+36t (0<t <6),g ′(t )=4
3
t 2-12t +36.
令g ′(t )<0,得4<t <12.
考虑到0<t <6,∴4<t <6,即g (t )的单调减区间为(4,6). ∴m 的最小值为4.
18. 解:已知f (x )=ax 5-bx 3+c ,
所以f '(x )=5ax 4-3bx 2=x 2(5ax 2-3b ). 根据题意f '(x )=0应有根x =±1,
故5a =3b .
所以f '(x )=5ax 2(x 2-1).
极小值
由上表可见⎩
⎨⎧+-==++-=-=.)1(0,
)1(4c b a f c b a f
①+②得c =2, ①-②得b =a +2.
又5a =3b ,所以a =3,b =5,c =2.
当
时,汽车从甲地到乙地行驶了小时(.
当速度为千米小时,汽车从甲地到乙地行驶了设耗油量为升,依题意得)・,
令,得.
当时,,是减函数当时,
0,
是增函数∴当时,取到极小值
.
因为
在上只有一个极值,所以它是最小值20. (I ))1)(2
(36)2(33)(2
--
=++-='x a
x a x a ax x f ………………2分 ,2>a 12<∴a ∴当a x 2<或1>x 时,0)(>'x f ;当12
<<x a 时,0)(<'x f
)(x f ∴在)2,(a -∞,(1,)∞+内单调递增,在)1,2
(a
内单调递减…………4分
①
②
故)(x f 的极小值为2
)1(a
f -
= ……………………………………5分 (II )①若,0=a 则2)1(3)(--=x x f )(x f ∴的图象与x 轴只有一个交点。
……6分
②若,0<a 则
12<a
,∴当12><x a x 或时,0)(<'x f ,
当12<<x a 时,0)(>'x f )(x f ∴的极大值为02)1(>-=a
f
)(x f 的极小值为0)2
(<a f )(x f ∴的图象与x 轴有三个公共点。
③若20<<a ,则12
>a .
∴当a x x 21><或时,0)(>'x f ,当12
<<x a
时,0)(<'x f
)(x f ∴的图象与x 轴只有一个交点
④若2=a ,则0)1(6)(2≥-='x x f )(x f ∴的图象与x 轴只有一个交点 ⑤当2>a ,由(I )知)(x f 的极大值为04
3
)431(
4)2
(2<---=a a f 综上所述,若,0≥a )(x f 的图象与x 轴只有一个公共点; 若0<a ,)(x f ∴的图象与x 轴有三个公共点。
21解:(1)已知函数)(x f =b x ax +2,2
22/
)
()2()()(b x x ax b x a x f +-+=∴(………………2分) 又函数)(x f 在1=x 处取得极值2,⎩⎨⎧==∴2)1(0)1(/f f ,即⎪⎩⎪
⎨⎧=+=-+210
2)1(b
a a
b a ⎩⎨
⎧==⇒14b a 1
4)(2
+=
∴x x
x f (………………………5分)
(2) 由10)1()
2(4)1(4)(2
22/
±=⇒=+-+=x x x x x x f
所以1
)(2
+=
x x f 的单调增区间为]1,1[-, (………………………8分)
若)12,(+m m 为函数)(x f 的单调增区间,则有⎪⎩
⎪
⎨⎧>+≤+-≥m m m m 121121
解得01≤<-m
即]0,1(-∈m 时,)12,(+m m 为函数)(x f 的单调增区间。
(………………………10分)
(3) 14)(2+=x x x f ∴2
22/)
1()2(4)1(4)(+-+=x x x x x f 直线l 的斜率为]1
1)
1(2[
4)
1(8)1(4)(2
2
2
02
2
02
200/
+-
+=+-+=
=x x x x x x f k (…………12分)
令
]1,0(,1
12
0∈=+t t x ,则直线l 的斜率]1,0(),2(42∈-=t t t k ,
]4,2
1
[-∈∴k 。
(……………………14分)。