北师大版初一数学上册有理数
北师大版七年级数学上册有理数课件

.
解:-0.03克表示乒乓球的质量低于标准质量0.03克.
(3)某大米包装袋上标注着“净含量:10kg±150g”, 这里的
“10kg±150g”表示什么?
解:每袋大米的标准质量应为10kg,但实际每袋大米可能有
150g的误差,即最多超出标准质量150g,最少少于标准质量
巩固练习
变式训练
在0, 2,
-7,−
A.1个
,3.14,− ,-3,
B.2个
C.3个
+0.75中, 负数共有 (D
D.4个
探究新知
知识点 3
“0”的意义
瓦罐没有东西了——有了0
海平面记为“0”,高于海平面都记为“正”,
低于海平面都记为“负”.
探究新知
结论:(1)0既不是正数,也不是负数,0是正数与负数的分界点.
为负的,用负数来表示.
探究新知
1.形如8,2.6,150 ,…这样的数叫做正数.
> 0 (用“<”“>”“=”填空).
正数 _
2.在正数前面加上“-”号的数叫做负数,形如-8,-2.6, -150,…
负数 <
_ 0(用“<”“>”“=”填空).
探究新知
素养考点
正数、负数的概念
例 下列给出的各数,哪些是正数?哪些是负数?
答对
答错
不回答
某班举行知识竞赛,评分标准是答对一题加1分,答错一题扣1分,
不回答得0分;每个队的基本分均为0分.两个代表队答题情况下
表:
答题情况
第一队
第二队
探究新知
如果答对题所得的分用正数表示,那么你能用正负数表
2.1.2 认识有理数 课件 北师大版数学七年级上册

所以抽查的螺母都在误差范围内,都合乎要求.
(2)绝对值越接近0,误差越小,质量越好, 所以检查结果为-0.002的螺母质量最好, 检查结果为-0.018的螺母质量最差.
【综合拓展类作业】
5.已知 | a
|=3,|b|=1,且 a<b,
解:因为|a
|=3,|b|=1,
所以a=±3,b=±1.
又因为a<b, 所以a=-3.
所以a
=-3,b=1或a=-3,b=-1.
求 a ,b的值。
05 课堂小结
数轴上表示互为相反数的 相反数 两个点位于原点的两侧,
且与原点距离相等.
(1)-2,6;
(2)0,-1.8;
(1) ,-4.
解:(1)因为正数大于负数,所以-2<6;
(2)因为负数小于0,所以0>-1.8; (3)因为两个负数,绝对值大的反而小,
而|
ห้องสมุดไป่ตู้
, |-4|=4, 4,所
。
04 课堂练习
【知识技能类作业】必做题:
1.下列说法正确的是( D ) A.10 是10的相反数 C.0没有相反数
+0.010,-0.018,+0.006,-0.002,+0.015.
(1)指出哪些螺母是合乎要求的(即在误差范围内); (2)指出合乎要求的螺母中哪个质量最好,哪个质量最差.
06 作业布置
【综合拓展类作业】
解:(1)因为|+0.010|=0.010<0.02, |-0.018|=0.018<0.02,
2024北师大数学七年级上册

2024北师大数学七年级上册一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:2, -3,0,0.5(可化为(1)/(2)),-(3)/(4)等都是有理数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数一一对应。
右边的数总比左边的数大。
- 例如:在数轴上表示 -2和3, -2在原点左边2个单位长度处,3在原点右边3个单位长度处。
3. 相反数与绝对值。
- 相反数:只有符号不同的两个数互为相反数。
0的相反数是0。
例如:3和 -3互为相反数。
- 绝对值:一个数在数轴上所对应的点与原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
例如:| -5| = 5,| 4| = 4。
4. 有理数的运算。
- 加法:- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,(-2)+(-3)= - 5。
- 异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+(-2)=1,-5 + 3=-2。
- 减法:减去一个数等于加上这个数的相反数。
例如:5 - 3 = 5+(-3)=2。
- 乘法:- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,(-2)×(-3)=6,3×(-4)= - 12。
- 任何数与0相乘都得0。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
例如:6÷3 =6×(1)/(3)=2,(-8)÷(-2)=(-8)×(-(1)/(2)) = 4。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n中,a 叫做底数,n叫做指数。
例如:2^3 = 2×2×2 = 8,(-3)^2=(-3)×(-3)=9。
有理数的乘方 北师大版数学七年级上册

知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
地球半径约为 6 400 000 m.
生活中常常会遇到比100万还大的数,比如:
光在真空中的传播速度约为 300 000 000米/秒
有使这些大数易 写易读的方法吗?
这些大数书写起来非 常不便,也容易写错.
知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想.
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折1次: 21层 对折2次: 22层
220×0.1=104 857.6(mm) =104.857 6 m
对折3次: 23层
104.857 6 ÷3≈35
… …
对折20次: 220层 这张纸对折20次后大约有35层楼高.
知识点1 底数是2的幂
对折1次
对折2次
对折3次 ……
对折20次
21层
22层
23层 …… 220层
22 ×0.1=0.4(mm) 220×0.1=104 857.6(mm)
北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

知2-讲
1.生活中到处都存在相反意义的量. 2.在相反意义的量中,我们把其中一个意义的量规定为正,
那么另一个量就是负. 要点精析: (1)相反意义的量是指意义相反的两个量,相反意义
的量是成对出现的. (2)判断相反意义的量的标准:①两个同类量;②意义相反. (3)具有相反意义的量的正负性是相对的,且是可以互换的.
(来自《典中点》)
知识点 3 有理数及其分类
知3-讲
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一 定不是有理数.
知3-讲
2. 整数和分数:正整数、0、负整数统称为整数. 正分数、负分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数; (2)负整数:既是负数,又是整数的数; (3)正分数:既是正数,又是分数的数; (4)负分数:既是负数,又是分数的数; (5)非负整数:正整数和0; (6)非正整数:0和负整数.
(3)判断一个数是正、负数的方法:①不为零;②含 “+”“-”的情况 (无“+” “-”视同含“+”),两 者必须同时看.
知1-讲
2. 数的特征及种类: (1)数有带符号(+、-)的数和不带符号的数两 种呈现形式; (2)数包括正数、0、负数三种情况. 拓展:符号“+” “-”的含义: (1)作为运算符号是加减号; (2)作为数的性质是正负号.
解题关键点 看符号
特征 数(0除外)前面带“+”
或无符号 数(0除外)前面带
“-”的数
结论 正数 负数
(来自《点拨》)
知1-练
1 (中考·广州)四个数-3.14,0,1,2中为负数
的是( A )
北师大版初一数学知识点归纳

北师大版初一数学知识点归纳一、有理数1. 有理数的概念整数和分数统称为有理数。
整数包括正整数、0、负整数,分数包括正分数和负分数。
比如2是正整数,-3是负整数,1/2是正分数,-3/4是负分数。
有理数还可以分为正有理数、0、负有理数。
正有理数包括正整数和正分数,负有理数包括负整数和负分数。
2. 有理数的数轴表示规定了原点、正方向和单位长度的直线叫做数轴。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 -a的点在原点的左边,与原点的距离是a个单位长度。
例如,在数轴上表示3的点在原点右边3个单位长度处,而表示 -2的点在原点左边2个单位长度处。
3. 有理数的大小比较正数大于0,0大于负数,正数大于负数。
两个负数,绝对值大的反而小。
比如,3>0,0> -2,3> -2;又比如 -3 = 3, -2 = 2,因为3>2,所以 -2> -3。
二、整式的加减1. 整式的概念单项式和多项式统称为整式。
单项式是数或字母的乘积,单独的一个数或一个字母也是单项式。
比如3x是单项式, -5也是单项式。
多项式是几个单项式的和,比如2x + 3y是多项式,它是由单项式2x和3y组成的。
2. 整式的加减运算整式加减的实质就是合并同类项。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
例如,在3x + 2y - 5x + 4y中,3x和 -5x是同类项,2y和4y是同类项。
合并同类项后得到(3x - 5x)+(2y + 4y)= -2x + 6y。
三、一元一次方程1. 一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
一般形式是ax + b = 0(a≠0)。
比如2x + 3 = 0是一元一次方程,其中a = 2,b = 3。
2. 一元一次方程的解法解一元一次方程的一般步骤是:去分母(如果有分母的话)、去括号、移项、合并同类项、系数化为1。
七年级数学上册《有理数及其运算》知识点归纳北师大版

七年级数学上册《有理数及其运算》知识点归纳北师大版1.有理数:有理数=整数+分数整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略).l0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,大凡规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3.相反数:(1)只有符号例外的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)大凡地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4.绝对值:(1)几何定义:大凡地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6.有理数的四则运算:⑴加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法则:①两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
北师大版初一数学上册知识点

北师大版初一数学上册知识点北师大版初一数学上册学问点1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;π不是有理数;(2)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;(2)肯定值可表示为:肯定值的问题常常分类商量;(3)a|是重要的非负数,即|a|≥0;留意:|a|?|b|=|a?b|, 5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.北师大版初一数学上册学问点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要转变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式全部解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但肯定要留意不等式性质3的应用;留意:在数轴上表示不等式的解集时,要留意空圈和实点.北师大版初一数学上册学问点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数教案
教学目标:
知识与技能:1、使学生了解数是为了满足生产和生活的需要而产生、发展起来的;
2、会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数.培养学生的观察、想象、归纳与概括的能力。
过程与方法:3、探索负数概念的形成过程,使学生建立正数与负数的数感.
情感态度价值观:体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学重点:
会判断正数、负数,运用正负数表示相反意义的量,理解0•表示量的意义.
教学难点:
负数的引入.
教学过程:
一.新课引入:
1.我们已经学过那些数?它们是怎样产生和发展起来的?
我们知道,为了表示物体的个体或事物的顺序,产生了数1,2,3……;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生、发展起来的.
2.让学生说出自己搜集到的生活中有关用负数表示的量.
3.在日常生活中,常会遇到下面的一些量,能用学过的数表示吗?
例1 汽车向东行驶3千米和向西行驶2千米.
例2 温度是零上10℃和零下5℃.
例3 收入500元和支出237元.
例4 水位升高1.2米和下降0.7米.
例5 买进100辆自行车和卖出20辆自行车.
二.新课讲解:
1.相反意义的量
学生分组讨论:上面这些例子中出现的各对量,有什么共同特点?
这里出现的每一对量,虽然有着不同的具体内容,但有着一个共同特点:它们都是具有相反意义的量.向东和向西、零上和零下、收入和支出、升高和下降、买进和买出都具有相反的意义.
让学生再举出几个日常生活中的具有相反意义的量.
2.正数与负数
只用原来所学过的数很难区分具有相反意义的量.例如,零上5℃用5表示,那么零下5℃再用同一个数5来表示就不够了.
在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“-”(读作“负”)号来表示.就拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用-5℃来表示.
在例1中,如果规定向东为正,那么向西为负.汽车向东行驶3千米记作3千米,向西行驶2千米记作-2千米.
在例3中,如果规定收入为正,收入500元计作500元,那么支出237元应记作-237元.
在例4中,如果水位升高1.2米记作1.2米,那么下降0.7米计作-0.7米.
为了表示具有相反意义的量,上面我们引进了-5、-2、-237、-0.7,象这样的数是一种新数,叫做负数( negative number).过去学过的那些数(零除外),如10、3、500、1.2等,叫做正数(positive number).正数前面有时也可以放上一个“+”(读作“正”)号,如5可以写成+5,+5和5是一样的.
注意:零既不是正数,也不是负数.
例6 任意写出5个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{ …},负数集合:{ …}.
例7 “一个数,如果不是正数,必定就是负数.”这句话对不对?为什么?
例8 A地海拔高度是70m,B地海拔高度是30m,C地海拔高度是-10m,D 地海拔高度是-30m.哪个地方最高?哪个地方最低?最高的地方比最低的地方高多少?
分析根据题意,海拔高度是高于海平面为正,低于海平面的为负,所以-10m 是低于海平面10米,-30m是低于海平面30米.画出示意图即可求解.
解由图知,A地最高,D地最低.
所以,A地与D地的高度差为70+30=100(m).
所以,最高的地方比最低的地方高100米.
通过师生交流,引导学生概括出如下结论:由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数. 0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.
1.举出几个具有相反意义的量,并用正数或负数来表示.
2.在中国地形图上,珠穆朗玛峰和吐鲁番盆地处都标有表明它们高度的数(单位:米),如图所示,这个数通常称为海拔高度,它是相对于海平面来说的.请说出图中所示的数8848和-155表示的实际意义.海平面的高度用什么数表示?
3.把下列各数分别填在相应的大括号里(数与数之间用逗号分开)
正数集合:{ …} 负数集合:{ …}
三、课堂小结:
用正数和负数可以简明地表示两种具有相反意义的量。
小学里所学的除0以外的数,即大于0的数叫做正数;在正数前面加上“-”号的数,叫做负数。
要注意零既不是正数也不是负数。