八年级数学上册,第二单元测试卷

合集下载

初二上数学第二单元试卷

初二上数学第二单元试卷

1. 已知数列{an}的通项公式为an=3n-2,则第10项a10的值为()A. 27B. 28C. 29D. 302. 若方程2x-3=5的解为x=4,则方程2x+3=5的解为()A. x=1B. x=2C. x=3D. x=43. 已知等差数列{an}的前三项分别为a1=1,a2=4,a3=7,则该数列的公差d为()A. 1B. 2C. 3D. 44. 已知等比数列{an}的前三项分别为a1=2,a2=6,a3=18,则该数列的公比q为()A. 1B. 2C. 3D. 65. 已知函数f(x)=2x+1,若f(2)=5,则f(-1)的值为()A. 1B. 3C. 5D. 76. 已知直线l的方程为y=2x+3,则直线l的斜率为()A. 2B. -2C. 1D. -17. 已知点A(2,3)关于y轴的对称点为B,则点B的坐标为()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)8. 已知三角形ABC的三个内角分别为∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 120°C. 135°D. 150°9. 已知圆的半径r=5,则圆的面积S为()A. 25πB. 50πC. 100πD. 125π10. 已知平行四边形ABCD的对角线AC和BD相交于点O,若AC=10,BD=8,则平行四边形ABCD的面积S为()A. 40B. 48C. 50D. 8011. 若等差数列{an}的首项a1=3,公差d=2,则第n项an=______。

12. 若等比数列{an}的首项a1=2,公比q=3,则第n项an=______。

13. 若函数f(x)=x^2+2x+1,则f(-1)=______。

14. 已知点P(3,4)到直线y=2x+1的距离为______。

15. 已知圆的半径r=3,则圆的周长L=______。

八年级上册数学单元测试卷-第2章 图形的轴对称-青岛版(含答案)

八年级上册数学单元测试卷-第2章 图形的轴对称-青岛版(含答案)

八年级上册数学单元测试卷-第2章图形的轴对称-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BAC等于()A.15°B.20°C.30°D.45°2、如图,等腰中,垂直平分,交于点,交于点,点是线段上的一动点,若的面积是,,则的周长最小值是()A. B. C. D.3、如图.在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°4、如图,在□ABCD中,AC平分∠DAB,AB = 3,则□ABCD的周长为()A.6B.9C.12D.155、如图,△ABC中,DE是AC的垂直平分线,AE= 5cm,△ABD的周长为16cm,则△ABC的周长为()A.21cmB.26cmC.28cmD.31cm6、某校计划修建一座既是中心对称图形,又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.正三角形B.正五边形C.等腰梯形D.菱形7、下列说法:(1)线段的对称轴有两条;(2)角是轴对称图形,对称轴是它的角平分线;(3)两个全等的等边三角形一定成轴对称;(4)两个图形关于某条直线对称,则这两个图形一定分别位于这条直线两侧;(5)到直线L距离相等的点关于L对称.其中说法不正确的有,()A.3个B.2个C.1个D.4个8、如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D.CD=3,则BC的长为()A.6B.9C.6D.39、如图,∠MON=30°,点在射线ON上,点在射线OM上,...均为等边三角形,依此类推,若的边长为( )A.2016B.4032C.D.10、已知△ABC的两条高线AD,BE所在的直线交于点H,若BH = AC,则∠ABC的度数为()A.60°B.45°C.60°或120°D.45°或135°11、如图,在△ABC中,∠C=90°,BC=8cm,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为()A.3cmB.4cmC. cmD.5cm12、如果矩形的一条对角线长为,两条对角线的一个交角为,则矩形的较短边长为()A. B. C. D.13、如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABC沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是A.0个B.1个C.2个D.3个14、下列图形中,不是轴对称图形的是()A.线段MNB.等边三角形ABCC.钝角∠ADBD.直角三角形15、如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是________.17、如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为________度.18、已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是________.19、如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则弧BF的长为________(结果保留π)20、如图,在正方形ABCD的外侧,作等边,连接BE、CE,的度数是________.21、在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=________.22、如图,AC是正五边形ABCDE的一条对角线,则∠ACB=________.23、如图,在矩形中,,,点为的中点,将沿折叠,使点落在矩形内点处,连接,则的长为________.24、圆内接正六边形的边长为10cm,则它的边心距等于________cm.25、一个等腰三角形的两边长为2和4,则此三角形的周长为________.三、解答题(共5题,共计25分)26、如图在△ABC中,∠BAC=90°,AB=AC,AE是过点A的直线,CD⊥AE,BE⊥AE,若BE=2,CD=6,求DE的长度.27、求证:两条平行线被第三条直线所截的同位角的平分线平行.28、图1是围墙的一部分,上部分是由不锈钢管焊成的等腰三角形栅栏如图2,请你根据图2所标注的尺寸,求焊成一个等腰三角形栅栏外框BCD至少需要不锈钢管多少米(焊接部分忽略不计).29、如图,在等边△ABC中,P为BC上一点,D为AC上一点,∠APD=60°,若BP=3,CD=2,求△ABC的边长.30、如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、C5、B6、D7、D8、B9、D11、A12、A13、C14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。

八年级上数学试卷二单元

八年级上数学试卷二单元

一、选择题(每题3分,共30分)1. 下列各组数中,成等差数列的是()A. 2, 5, 8, 11B. 3, 6, 9, 12C. 1, 3, 7, 11D. 4, 8, 12, 162. 若等差数列{an}中,a1=3,d=2,则a10=()A. 23B. 25C. 27D. 293. 若等比数列{bn}中,b1=8,q=2,则b4=()A. 16B. 32C. 64D. 1284. 在直角坐标系中,点A(2,3),B(-1,4),C(3,-2)构成一个三角形,则该三角形的面积是()A. 2B. 3C. 4D. 55. 在直角坐标系中,点P(x,y)的坐标满足方程x^2 + y^2 = 25,则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 若直线y=kx+b与圆x^2 + y^2 = 4相切,则k和b的关系是()A. k^2 + b^2 = 4B. k^2 + b^2 = 16C. k^2 + b^2 = 1D. k^2 + b^2 = 257. 在△ABC中,∠A=60°,∠B=45°,则∠C=()A. 75°B. 105°C. 120°D. 135°8. 若直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB=()A. 5B. 6C. 7D. 89. 若一元二次方程x^2 - 5x + 6 = 0的两个根为a和b,则a+b=()A. 5B. 6C. 10D. 1210. 若函数f(x) = 2x + 1的图象向上平移3个单位后,得到的函数图象的解析式是()A. y = 2x + 4B. y = 2x - 2C. y = 2x + 1D. y = 2x - 1二、填空题(每题5分,共25分)11. 若等差数列{an}中,a1=5,d=3,则an=________。

12. 若等比数列{bn}中,b1=2,q=3,则b5=________。

八年级数学上册,第二单元测试卷

八年级数学上册,第二单元测试卷

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前麻阳新希望八年级数学上册第二单元测试卷试卷副标题考试范围:第二单元;考试时间:120分钟;命题人:数学教研组题号 一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I 卷的文字说明评卷人 得 分一.选择题(共10小题,10*4=40)1.如图,直线AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于( )A .30°B .40°C .60°D .70°2.三条线段a=5,b=3,c 的值为整数,由a 、b 、c 为边可组成三角形( ) A .1个 B .3个 C .5个 D .无数个3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C .带③去D .①②③都带去4.如下图所示,D 为BC 上一点,且AB=AC=BD ,则图中∠1与∠2的关系是( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠1﹣∠2=180°5.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( ) A .45° B .135° C .45°或67.5° D .45°或135°6.如图,已知DE ∥BC ,AB=AC ,∠1=125°,则∠C 的度数是( )A .55°B .45°C .35°D .65°7.如图,△ABC 中,AB +BC=10,AC 的垂直平分线分别交AB 、AC 于点D 和E ,则△BCD 的周长是( )A .6B .8C .10D .无法确定8.如图,△ABC 中,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .EF=6,BE=4,则CF 的长为( )A .6B .4C .2D .59.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果∠A=50°,那么∠1+∠2的大小为( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________……○…………内…………○…………装…………○…………订…………○…………线…………○…………A .130°B .180°C .230°D .260°10.如图,△ABC 中,∠A=60°,BD ,CD 分别是∠ABC ,∠ACB 的平分线,则∠BDC 的度数是( )A .100°B .110°C .120°D .130°……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人 得 分二.填空题(共10小题,10*4=40)11.△ABC 中,已知∠A=100°,∠B=60°,则∠C= . 12.如图,七星形中∠A +∠B +∠C +∠D +∠E +∠F +∠G= .13.一个等腰三角形的两边长分别为3和7,这个三角形的周长是 . 14.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是 秒.15.如图,在△ABC 中,AB=AC ,点E 在CA 延长线上,EP ⊥BC 于点P ,交AB 于点F ,若AF=2,BF=3,则CE 的长度为 .16.如图,在△ABC 中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD= .……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________……○…………内…………○…………装…………○…………订…………○…………线…………○…………17.命题“若a=b ,则a 2=b 2”的逆命题是 .18.如图,在△ABC 中,∠B=40°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC= .19.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .20.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E= 度.评卷人 得 分三.解答题(共6小题,共70分)21.如图,已知AB ∥DE ,AB=DE ,BE=CF ,求证:AC ∥DF .(10分)22.如图,已知点B ,E ,C ,F 在一条直线上,AB=DF ,AC=DE ,∠A=∠D .(10分)……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证:AC ∥DE ;(2)若BF=13,EC=5,求BC 的长.23.如图,在等边△ABC 中,点D ,E 分別在边BC ,AC 上,DE ∥AB ,过点E 作EF 丄DE ,交BC 的延长线于点F .(12分) (1)求∠F 的度数;(2)若CD=2,求DF 、EF 的长.24.如图,已知:在△AFD 和△CEB 中,点A 、E 、F 、C 在同一直线上,AE=CF ,∠B=∠D ,AD ∥BC .求证:AD=BC .(12分)25.如图,△ABC 中,AB=AC ,点D 在AB 上,点E 在AC 的延长线上,且BD=CE ,DE 交BC 于F ,求证:DF=EF .(12分)26.如图,点C 是线段AB 上除点A 、B 外的任意一点,分别以AC 、BC 为边在线段AB 的同旁作等边△ACD 和等边△BCE ,连接AE 交DC 于M ,连接BD……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________……○…………内…………○…………装…………○…………订…………○…………线…………○…………交CE 于N ,连接MN .(14分)(1)求证:AE=BD ;(2)求证:MN ∥AB .2017年11月19日初中数学的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.2.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个 B.3个 C.5个 D.无数个【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的范围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:根据三角形的三边关系知c的取值范围是:2<c<8,又c的值为整数,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选:C.【点评】此题主要考查了三角形的三边关系,解本题的关键是确定出c的值.3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.4.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【分析】由已知AB=AC=BD,结合图形,根据等腰三角形的性质、内角与外角的关系及三角形内角和定理解答.【解答】解:∵AB=AC=BD,∴∠1=∠BAD,∠C=∠B,∠1是△ADC的外角,∴∠1=∠2+∠C,∵∠B=180°﹣2∠1,∴∠1=∠2+180°﹣2∠1即3∠1﹣∠2=180°.故选:D.【点评】主要考查了等腰三角形的性质及三角形的外角、内角和等知识;(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.5.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为()A.45°B.135°C.45°或67.5°D.45°或135°【分析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为45°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为135°.【解答】解:①如图,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=45°,∴∠A=45°,即顶角的度数为45°.②如图,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=45°,∴∠BAD=45°,∴∠BAC=135°.故选D.【点评】本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.6.如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是()A.55°B.45°C.35°D.65°【分析】首先根据∠1=125°,求出∠ADE的度数;然后根据DE∥BC,AB=AC,可得AD=AE,∠C=∠AED,求出∠AED的度数,即可判断出∠C的度数是多少.【解答】解:∵∠1=125°,∴∠ADE=180°﹣125°=55°,∵DE∥BC,AB=AC,∴AD=AE,∠C=∠AED,∴∠AED=∠ADE=55°,又∵∠C=∠AED,∴∠C=55°.故选:A.【点评】(1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(2)此题还考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:两条平行线之间的距离处处相等.7.如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是()A.6 B.8 C.10 D.无法确定【分析】垂直平分线可确定两条边相等,然后再利用线段之间的转化进行求解.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,△BCD的周长=BC+BD+DC=BC+BD+AD=10故选C.【点评】本题主要考查垂直平分线性质和等腰三角形的知识点,熟练掌握等腰三角形的性质.8.如图,△ABC中,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.EF=6,BE=4,则CF的长为()A.6 B.4 C.2 D.5【分析】如图,证明BE=OE,此为解题的关键性结论;证明CF=OF,即可解决问题.【解答】解:如图,∵BO平分∠ABC,∴∠ABO=∠CBO;∵EO∥BC,∴∠EOB=∠OBC,∴∠EOB=∠EBO,∴BE=OE;同理可证CF=OF;∵EF=6,BE=4,∴OF=EF﹣OE=EF﹣BE=2,∴CF=OF=2,故选C.【点评】该题以三角形为载体,以考查等腰三角形的判定及其性质、平行线的性质等几何知识点为核心构造而成;牢固掌握等腰三角形的判定及其性质是解题的关键.9.如图,在△ABC中,点D、E分别在边AB、AC上,如果∠A=50°,那么∠1+∠2的大小为()A.130°B.180°C.230° D.260°【分析】根据三角形的外角性质可得∠1=∠A+∠ADE,∠2=∠A+∠AED,再根据已知和三角形内角和等于180°即可求解.【解答】解:∵∠1=∠A+∠ADE,∠2=∠A+∠AED,∴∠1+∠2=∠A+∠ADE+∠A+∠AED=∠A+(∠ADE+∠A+∠AED)=50°+180°=230°.故选:C.【点评】考查了三角形的外角性质和三角形内角和定理:三角形内角和等于180°.10.如图,△ABC中,∠A=60°,BD,CD分别是∠ABC,∠ACB的平分线,则∠BDC的度数是()A.100°B.110°C.120° D.130°【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质求出∠DBC+∠DCB的度数,进而可得出结论.【解答】解:∵△ABC中,∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°.∵BD,CD分别是∠ABC,∠ACB的平分线,∴∠DBC+∠DCB=(∠ABC+∠ACB)=×120°=60°,∴∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣60°=120°.故选C.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.二.填空题(共10小题)11.△ABC中,已知∠A=100°,∠B=60°,则∠C=20°.【分析】由三角形的内角和定理可得到∠A+∠B+∠C=180°,再把∠A、∠B 代入计算即可.【解答】解:由三角形的内角和定理可得到∠A+∠B+∠C=180°,∵∠A=100°,∠B=60°,∴∠C=180°﹣100°﹣60°=20°,故答案为:20°.【点评】本题主要考查三角形内角和定理,掌握三角形的三个内角和为180°是解题的关键.12.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和解答即可.【解答】解:由三角形的外角性质得,∠1=∠B+∠F+∠C+∠G,∠2=∠A+∠D,由三角形的内角和定理得,∠1+∠2+∠E=180°,所以,∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.故答案为:180°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.13.一个等腰三角形的两边长分别为3和7,这个三角形的周长是17.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.14.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm 速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是4秒.【分析】设运动的时间为x,则AP=20﹣3x,当APQ是等腰三角形时,AP=AQ,则20﹣3x=2x,解得x即可.【解答】解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.【点评】此题主要考查了等腰三角形的性质,此题涉及到动点,有一定的拔高难度,属于中档题.15.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为7.【分析】根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠D=∠BFP,再根据对顶角相等得出∠E=∠AFE,最后根据等角对等边即可得出答案.【解答】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.【点评】本题考查了等腰三角形的判定和性质,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.16.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD=8.【分析】根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.【解答】解:∵∠DBC=60°,∠C=90°,∴∠BDC=90°﹣60°=30°,∴BD=2BC=2×4=8,∵∠C=90°,∠A=15°,∴∠ABC=90°﹣15°=75°,∴∠ABD=∠ABC﹣∠DBC=75°﹣60°=15°,∴∠ABD=∠A,∴AD=BD=8.故答案为:8.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质熟记解题的关键.17.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.18.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.19.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC 于点D,则∠A的度数是50°.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.20.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.【点评】本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.三.解答题(共6小题)21.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边角边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵AB∥DE,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.【点评】本题主要考查了全等三角形的性质与判定,同时也考查了平行线的判定,解题的关键是证明△ABC≌△DEF,此题有一点的综合性,难度不大.22.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E 作EF丄DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4,∴EF DE=2.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,熟记30度的锐角所对的直角边等于斜边的一半是解题的关键.24.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.【分析】根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE 即可.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.25.如图,△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF.【分析】首先过点D作DM∥AC交BC于M,易证得△DMF≌△ECF,继而证得DF=EF.【解答】证明:过点D作DM∥AC交BC于M,∴∠DMB=∠ACB,∠FDM=∠E,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DMB,∴BD=MD,∵BD=CE,∴MD=CE,在△DMF和△ECF中,,∴△DMF≌△ECF(AAS),∴DF=EF.【点评】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.26.如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD 交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.【分析】(1))先由△ACD和△BCE是等边三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根据SAS定理可知△ACE≌△DCB,由全等三角形的性质即可得出结论;(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根据∠ACD=∠ECB=60°,A、C、B三点共线可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM ≌△DCN,故MC=NC,再根据∠MCN=60°可知△MCN为等边三角形,故∠NMC=∠DCN=60°故可得出结论.【解答】证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵,∴△ACM≌△DCN(ASA),∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.【点评】本题考查的是等边三角形的判定与性质及全等三角形的判定与性质,根据题意判断出△ACE≌△DCB,△ACM≌△DCN是解答此题的关键.。

浙教版八年级上册数学第二章-测试卷及答案

浙教版八年级上册数学第二章-测试卷及答案

浙教版八年级上册数学第二章-测试卷及答案浙教版八年级上册数学第二章测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()。

A。

低碳B。

节水C。

节能D。

绿色食品2.如图,在△ABC 中,AB = AC,∠A = 36°,BD 是 AC 边上的高,则∠DBC 的度数是()。

A。

18°B。

24°C。

30°D。

36°3.在直角三角形 ABC 中,∠C = 90°,AC = 9,BC = 12,则点 C 到 AB 的距离是()。

A。

5B。

25C。

4D。

34.如图,已知∠C = ∠D = 90°,添加一个条件,可使用“HL”判定 Rt △ABC ≌ Rt △ABD,以下给出的条件合适的是()。

A。

AC = ADB。

BC = ADC。

∠ABC = ∠ABDD。

∠BAC = ∠BAD5.已知一个等腰三角形的两个内角度数之比为 1:4,则这个等腰三角形顶角的度数为()。

A。

20°B。

120°C。

20°或 120°D。

36°6.在△ABC 中,AB² = (a + b)²,AC² = (a - b)²,BC² = 4ab,且 a。

b。

0,则下列结论中正确的是()。

A。

∠A = 90°B。

∠B = 90°C。

∠C = 90°D。

△ABC 不一定是直角三角形7.直角三角形两条直角边长分别是 5 和 12,则第三条边上的中线长是()。

A。

5B。

6C。

6.5D。

88.如图,在△ABC 中,AD,CE 分别是△ABC 的中线和角平分线,若 AB = AC,∠CAD = 20°,则∠ACE 的度数是()。

A。

20°B。

35°C。

鲁教版八年级数学上册第二章达标检测卷附答案

鲁教版八年级数学上册第二章达标检测卷附答案

鲁教版八年级数学上册第二章达标检测卷一、选择题(本大题共12道小题,每小题3分,满分36分)1.下列代数式属于分式的是( )A.a 2b cB.xy πC.m +n 21D.322.无论x 取何值,下列分式总有意义的是( )A.x -1x 2B.22x +3C.1x 2+2D.3x -13.下列分式中,属于最简分式的是( )A.63xB.x 2+y 2x +y C.x -1x 2-1 D.1-x x -14.分式a a 2-1和1a 2-a的最简公分母是( ) A .(a 2-1)(a 2-a ) B .(a 2-a ) C .a (a 2-1) D .a (a 2-1)(a -1)5.如果分式|x |-3x +3的值为0,那么x 的值为( ) A .-3 B .3 C .-3或3 D .3或06.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A.x +1y -1B.2x y 2C.x x -yD.2x -1x +y7.中国首列商用磁浮列车的平均速度为a km/h ,计划提速20 km/h ,已知从甲地到乙地的路程为360 km ,那么提速后从甲地到乙地节约的时间为( )A.7 200a (a +20) hB. 3 600a (a +20) hC. 3 600a (a -20) hD.7 200a (a -20)h 8.计算⎝ ⎛⎭⎪⎫-a b 2÷⎝ ⎛⎭⎪⎫2a 25b 2·a 5b的结果为( ) A.125b 4a 3 B.54ab C .-125b 4a 3 D .-54ab9.若关于x 的方程m x +1-2x =0的解为正数,则m 的取值范围是( ) A .m <2 B .m <2且m ≠0 C .m >2 D .m >2且m ≠410.若关于x的方程3x+axx+1=2-3x+1有增根为-1,则2a-3的值为()A.2 B.3 C.4 D.611.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空.据了解学生还需3倍于售出数量的这种计算器,于是又用2 580元购进所需计算器.由于量大每个进价比上次优惠1元,但该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.56012.已知关于x的分式方程2x+3x-2=k(x-2)(x+3)+2的解满足-4<x<-1,且k为整数,则符合条件的所有k值的乘积为()A.正数B.负数C.零D.无法确定二、填空题(本大题共6道小题,每小题3分,满分18分)13.若m为实数,分式x(x+2)x2+m不是最简分式,则m=________.14.若分式x2x-1□xx-1的运算结果为x,则在“□”中添加的运算符号为________.(请从“+、-、×、÷”中选择填写)15.若x2+3x=-1,则x-1x+1=________.16.方程32-x=x-3x-2的解为________.17.若关于x的分式方程3-2xx-3+2-nx3-x=-1无解,则常数n的值是________.18.某自来水公司水费计算办法如下:若每户每月用水不超过5 m3,则每立方米收费1.5元;若每户每月用水超过5 m3,则超出部分每立方米收取较高的费用.1月份,张家用水量是李家用水量的23,张家当月水费是17.5元,李家当月水费是27.5元,则超出5 m3的部分每立方米收费________元.三、解答题(本大题共7道小题,满分66分)19.(8分)计算:(1)x -1x +2÷x 2-2x +1x 2-4+1x -1; (2)12x -1x +y ·⎝ ⎛⎭⎪⎫x +y 2x -x -y .20.(8分)先化简a 2+2a +1a +2÷⎝ ⎛⎭⎪⎫a -2+3a +2,然后从-2,-1,1,2四个数中选择一个合适的数作为a 的值代入求值.21.(10分)解方程:(1)x +1x -1+4x 2-1=1; (2)x -2x +2-16x 2-4=1.22.(8分)若关于x 的方程x +1x 2-x -13x =1+k 3x -3有增根,求k 的值.23.(10分)已知关于x 的方程x +3x -3+ax 3-x=1有正整数解,且关于y 的不等式组⎩⎨⎧2y -55<2,a -y -1≤0至少有两个奇数解,求满足条件的整数a 的值.24.(10分)如图,A 玉米试验田是半径为R m 的圆去掉宽为1 m 的出水沟后剩下的部分,B 玉米试验田是半径为R m 的圆中间去掉半径为1 m 的圆后剩下的部分,两块试验田的玉米都收了450 kg.(1)哪块试验田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?25.(12分)爱民药店库存一批N95和普通医用两种类型口罩,N95口罩的进价是普通医用口罩进价的5倍,药店把N95口罩和普通医用口罩在进价基础上分别加价40%、50%作为零售价.某人在爱民药店用84元购买一种口罩,发现买普通医用口罩的数量恰好比买N95口罩的数量的4倍还多4个.(1)求两种口罩的进价分别是多少元.(2)该药店再去厂家进货时发现,由于原材料上涨,N95口罩进价上涨了20%,普通医用口罩进价上涨了30%.爱民药店购进这两种口罩共1 500个,在零售时,N95口罩保持原售价不变,而普通医用口罩在原售价基础上上调20%,该药店要想在这批口罩全部售出后的利润不少于2 000元(不考虑其他因素),则这次至少购进N95口罩多少个?答案一、1.A 2.C 3.B 4.C 5.B 6.C7.A 8.B9.C 【点拨】解方程m x +1-2x =0,去分母,得mx -2(x +1)=0,整理,得(m -2)x =2.∵方程有解,∴x =2m -2.∵分式方程的解为正数,∴2m -2>0,解得m >2.而x ≠-1且x ≠0,则2m -2≠-1,2m -2≠0,解得m ≠0,m ≠2,综上可知:m 的取值范围是m >2.故选C.10.B 【点拨】方程两边都乘x (x +1),得3(x +1)+ax 2=2x (x +1)-3x ,∵原方程有增根为-1,∴当x =-1时,a =3,故2a -3=3.故选B.11.B 【点拨】设第一次购进计算器x 个,则第二次购进计算器3x 个,根据题意得:880x =2 5803x +1,解得x =20,经检验x =20是原方程的解,则这笔生意该店共盈利:[50×(20+20×3-4)+4×50×90%]-(880+2 580)=520(元).故选B.12.A 【点拨】解2x +3x -2=k (x -2)(x +3)+2,得x =k 7-3. ∵-4<x <-1,(x -2)(x +3)≠0,∴-4<k 7-3<-1,k 7⎝ ⎛⎭⎪⎫k 7-5≠0, 解得-7<k <14且k ≠0.又∵k 为整数,∴k =-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,7,8,9,10,11,12,13.∴符合条件的所有k 值的乘积为正数.故选A.二、13.0或-414.-或÷ 15.-2 16.x =017.1或53 【点拨】两边都乘x -3,得3-2x +nx -2=-x +3,解得x =2n -1.当n =1时,整式方程无解,分式方程无解;∵当x =3时分母为0,方程无解,即2n -1=3,∴n =53时方程无解.故答案为1或53. 18.2 【点拨】设超出5 m 3的部分每立方米收费a 元,由题意得17.5-1.5×5a +5=⎝ ⎛⎭⎪⎫27.5-1.5×5a +5×23, 解得a =2.经检验a =2是原方程的根.三、19.解:(1)x -1x +2÷x 2-2x +1x 2-4+1x -1=x -1x +2·x 2-4x 2-2x +1+1x -1=x -1x +2·(x +2)(x -2)(x -1)2+1x -1=x -2x -1+1x -1=x -2+1x -1=x -1x -1=1; (2)12x -1x +y ·⎝ ⎛⎭⎪⎫x +y 2x -x -y =12x -1x +y ·⎣⎢⎡⎦⎥⎤x +y 2x -(x +y ) =12x -12x +1=1.20.解:a 2+2a +1a +2÷⎝ ⎛⎭⎪⎫a -2+3a +2 =(a +1)2a +2÷a 2-4+3a +2=(a +1)2a +2÷a 2-1a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1. 当a =-2或1或-1时,分式无意义,故a 只能取2.当a =2时,原式=2+12-1=3. 21.解:(1)原方程为x +1x -1+4(x +1)(x -1)=1.方程两边都乘(x +1)(x -1),得(x +1)2+4=(x +1)(x -1).解得x =-3.检验:当x =-3时,(x +1)(x -1)≠0,∴x =-3是原方程的解.∴原方程的解是x =-3.(2)方程两边都乘(x +2)(x -2),得x 2-4x +4-16=x 2-4.解得x =-2.当x =-2时,(x +2)(x -2)=0,∴x =-2不是原方程的根,即分式方程无解.22.解:原方程化为x +1x (x -1)-13x =1+k 3(x -1). 方程两边都乘3x (x -1),得3x +3-x +1=x +kx .由分式方程有增根,得3x (x -1)=0.解得x =0或x =1.把x =0代入整式方程,得4=0,矛盾,舍去;把x =1代入整式方程,得k =5.∴k 的值是5.23.解:根据题意解不等式组⎩⎪⎨⎪⎧2y -55<2,a -y -1≤0,得a -1≤y <152.∵关于y 的不等式组至少有两个奇数解,∴a -1≤5,解得a ≤6.由x +3x -3+ax 3-x=1,解得x =6a . ∵x -3≠0,∴6a ≠3,即a ≠2.∵方程有正整数解,且a 为整数,∴a =1,3,6.24.解:(1)A 玉米试验田的面积是π(R -1)2 m 2,单位面积产量是450π(R -1)2kg/m 2;B 玉米试验田的面积是π(R 2-12)m 2,单位面积产量是450π(R 2-12) kg/m 2. ∵(R 2-12)-(R -1)2=2(R -1)>0,∴0<(R -1)2<R 2-12.∴450π(R 2-12)<450π(R -1)2. ∴A 玉米试验田的单位面积产量高.(2)∵450π(R -1)2÷450π(R 2-12) =450π(R -1)2×π(R +1)(R -1)450 =R +1R -1, ∴高的单位面积产量是低的单位面积产量的R +1R -1倍. 25.解:(1)设普通医用口罩的进价为x 元,则N95口罩的进价为5x 元,由题意,得84(1+50%)x =4×84(1+40%)×5x+4,解得x =2. 经检验,x =2是原方程的解,且符合题意,∴5x =10.∴普通医用口罩的进价为2元,N95口罩的进价为10元.(2)设这次购进N95口罩m 个,则购进普通医用口罩(1 500-m )个,由题意,得[10×(1+40%)-10×(1+20%)]m +[2×(1+50%)×(1+20%)-2×(1+30%)](1 500-m )≥2 000,解得m ≥500.∴这次至少购进N95口罩500个.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x 2x -1+11-x 的结果是( ) A .x +1 B.1x +1 C .x -1 D.x x -18.如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,所表示的数与5-11最接近的点是( )A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -30 10.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32 B.32 C .-2 D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( )A .1B .2C .3D .4(第11题) (第12题) 12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( )A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a+1a B.aa-1C.aa+1D.a-1a14.以下命题的逆命题为真命题的是() A.对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F ,∴△ABC ≌△EFD (ASA).∴AC =DE =7.∴AD =AE -DE =10-7=3.7.A 8.D 9.C 10.A 11.B 12.B13.A 【点拨】∵△÷a 2-1a =1a -1, ∴△=1a -1·a 2-1a=a +1a . 14.B 15.D 16.A二、17.ASA 18.26.83;0.026 8319.12030+x =6030-x;10 【点拨】根据题意可得12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解,所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x .移项、合并同类项,得x =7.经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6.去括号,得2-4x -3-6x =-6,移项、合并同类项,得-10x =-5.解得x =12.经检验,x =12是原方程的增根,∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0.解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2.(1)x +y =6+(-2)=4,∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0, ∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的.23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO .在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA).(2)∵△ABO ≌△DCO ,∴BO =CO .∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC .在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。

人教版八年级数学上册第二单元测试卷

人教版八年级数学上册第二单元测试卷

⼈教版⼋年级数学上册第⼆单元测试卷 想要提⾼数学的成绩,除了上课认真听讲,更重要的是多做基础单元测试题⽬。

下⾯由店铺为你整理的⼈教版⼋年级数学上册第⼆单元测试卷,希望对⼤家有帮助! ⼈教版⼋年级数学上册第⼆单元测试卷 ⼀、选择题 1.正三⾓形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的⾯积是( ) A. B. C. D. 2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆⼼,CB为半径的圆恰好经过AB的中点D,则AC= ( )A.5B.C.D.6 3.将⼀副直⾓三⾓尺如图放置,若∠AOD=20°,则∠BOC的⼤⼩为( )A.140°B.160°C.170°D.150° 4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为( )A.6B.6C.9D.3 5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂⾜,连接CD.若BD=1,则AC的长是( )A.2B.2C.4D.4 6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂⾜为D,CE平分∠ACB.若BE=2,则AE的长为( ) A. B.1 C. D.2 7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为( )A.0.5kmB.0.6kmC.0.9kmD.1.2km 8.如图,⼀个矩形纸⽚,剪去部分后得到⼀个三⾓形,则图中∠1+∠2的度数是( )A.30°B.60°C.90°D.120° 9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂⾜为D,CD=1,则AB的长为( )A.2B.C.D. 10.在⼀个直⾓三⾓形中,有⼀个锐⾓等于60°,则另⼀个锐⾓的度数是( )A.120°B.90°C.60°D.30° 11.将四根长度相等的细⽊条⾸尾相接,⽤钉⼦钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( ) A. B.2 C. D.2 12.将⼀个有45°⾓的三⾓板的直⾓顶点放在⼀张宽为3cm的纸带边沿上.另⼀个顶点在纸带的另⼀边沿上,测得三⾓板的⼀边与纸带的⼀边所在的直线成30°⾓,如图,则三⾓板的最⼤边的长为( )A.3cmB.6cmC. cmD. cm 13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于( )A. cmB.2cmC.3cmD.4cm 14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )A.3B.4C.5D.6 15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上⼀点,连接DE,则下列说法错误的是( )A.∠CAD=30°B.AD=BDC.BD=2CDD.CD=ED ⼆、填空题 16.由于⽊质⾐架没有柔性,在挂置⾐服的时候不太⽅便操作.⼩敏设计了⼀种⾐架,在使⽤时能轻易收拢,然后套进⾐服后松开即可.如图1,⾐架杆OA=OB=18cm,若⾐架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 cm. 17.在△ABC中,∠B=30°,AB=12,AC=6,则BC= . 18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= . 19.如图,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= . 20.在矩形ABCD中,对⾓线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= . 第2章特殊三⾓形 ⼈教版⼋年级数学上册第⼆单元测试卷参考答案与试题解析 ⼀、选择题(共15⼩题) 1.正三⾓形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的⾯积是( ) A. B. C. D. 【考点】等边三⾓形的判定与性质. 【专题】压轴题. 【分析】依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的⼩正三⾓形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D= ;同理求出S△CC1B1=S△BB1A1= ;最后由S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果. 【解答】解:依题意画出图形,如下图所⽰: 过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三⾓形. ⼜AC1=AC﹣CC1=3﹣1=2,AD=1, ∴点D为AC1的中点, ∴S△AA1C1=2S△AA1D=2× ×12= ; 同理可求得S△CC1B1=S△BB1A1= , ∴S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1= ×32﹣3× = . 故选B. 【点评】本题考查等边三⾓形的判定与性质,难度不⼤.本题⼊⼝较宽,解题⽅法多种多样,同学们可以尝试不同的解题⽅法. 2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆⼼,CB为半径的圆恰好经过AB的中点D,则AC= ( )A.5B.C.D.6 【考点】等边三⾓形的判定与性质;含30度⾓的直⾓三⾓形;勾股定理. 【专题】计算题;压轴题. 【分析】连结CD,直⾓三⾓形斜边上的中线性质得到CD=DA=DB,利⽤半径相等得到CD=CB=DB,可判断△CDB为等边三⾓形,则∠B=60°,所以∠A=30°,然后根据含30度的直⾓三⾓形三边的关系先计算出BC,再计算AC. 【解答】解:连结CD,如图, ∵∠C=90°,D为AB的中点, ∴CD=DA=DB, ⽽CD=CB, ∴CD=CB=DB, ∴△CDB为等边三⾓形, ∴∠B=60°, ∴∠A=30°, ∴BC= AB= ×10=5, ∴AC= BC=5 . 故选C. 【点评】本题考查了等边三⾓形的判定与性质:三边都相等的三⾓形为等边三⾓形;等边三⾓形的三个内⾓都等于60°.也考查了直⾓三⾓形斜边上的中线性质以及含30度的直⾓三⾓形三边的关系. 3.将⼀副直⾓三⾓尺如图放置,若∠AOD=20°,则∠BOC的⼤⼩为( )A.140°B.160°C.170°D.150° 【考点】直⾓三⾓形的性质. 【分析】利⽤直⾓三⾓形的性质以及互余的关系,进⽽得出∠COA的度数,即可得出答案. 【解答】解:∵将⼀副直⾓三⾓尺如图放置,∠AOD=20°, ∴∠COA=90°﹣20°=70°, ∴∠BOC=90°+70°=160°. 故选:B. 【点评】此题主要考查了直⾓三⾓形的性质,得出∠COA的度数是解题关键. 4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为( )A.6B.6C.9D.3 【考点】含30度⾓的直⾓三⾓形;线段垂直平分线的性质. 【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的⾓平分线,由⾓平分线的性质得DE=CD=3,再根据直⾓三⾓形30°⾓所对的直⾓边等于斜边的⼀半可得BD=2DE,得结果. 【解答】解:∵DE是AB的垂直平分线, ∴AD=BD, ∴∠DAE=∠B=30°, ∴∠ADC=60°, ∴∠CAD=30°, ∴AD为∠BAC的⾓平分线, ∵∠C=90°,DE⊥AB, ∴DE=CD=3, ∵∠B=30°, ∴BD=2DE=6, ∴BC=9, 故选C. 【点评】本题主要考查了垂直平分线的性质,⾓平分线上的点到⾓的两边距离相等的性质,直⾓三⾓形30°⾓所对的直⾓边等于斜边的⼀半的性质,熟记各性质是解题的关键. 5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂⾜,连接CD.若BD=1,则AC的长是( )A.2B.2C.4D.4 【考点】含30度⾓的直⾓三⾓形;线段垂直平分线的性质;勾股定理. 【分析】求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°⾓的直⾓三⾓形性质求出AC即可. 【解答】解:∵在Rt△ABC中,∠B=90°,∠A=30°, ∴∠ACB=60°, ∵DE垂直平分斜边AC, ∴AD=CD, ∴∠ACD=∠A=30°, ∴∠DCB=60°﹣30°=30°, 在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1, ∴CD=2BD=2, 由勾股定理得:BC= = , 在Rt△ABC中,∠B=90°,∠A=30°,BC= , ∴AC=2BC=2 , 故选A. 【点评】本题考查了三⾓形内⾓和定理,等腰三⾓形的性质,勾股定理,含30度⾓的直⾓三⾓形性质的应⽤,解此题的关键是求出BC的长,注意:在直⾓三⾓形中,如果有⼀个⾓等于30°,那么它所对的直⾓边等于斜边的⼀半. 6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂⾜为D,CE平分∠ACB.若BE=2,则AE的长为( ) A. B.1 C. D.2 【考点】含30度⾓的直⾓三⾓形;⾓平分线的性质;线段垂直平分线的性质. 【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由⾓平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利⽤三⾓形内⾓和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°⾓所对的直⾓边等于斜边的⼀半得出AE= CE=1. 【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2, ∴BE=CE=2, ∴∠B=∠DCE=30°, ∵CE平分∠ACB, ∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°, ∴∠A=180°﹣∠B﹣∠ACB=90°. 在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2, ∴AE= CE=1. 故选B. 【点评】本题考查的是含30度⾓的直⾓三⾓形的性质,线段垂直平分线的性质,等腰三⾓形的性质,⾓平分线定义,三⾓形内⾓和定理,求出∠A=90°是解答此题的关键. 7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为( )A.0.5kmB.0.6kmC.0.9kmD.1.2km 【考点】直⾓三⾓形斜边上的中线. 【专题】应⽤题. 【分析】根据直⾓三⾓形斜边上的中线等于斜边的⼀半,可得MC=AM=1.2km. 【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点, ∴MC= AB=AM=1.2km. 故选D. 【点评】本题考查了直⾓三⾓形斜边上的中线的性质:在直⾓三⾓形中,斜边上的中线等于斜边的⼀半.理解题意,将实际问题转化为数学问题是解题的关键. 8.如图,⼀个矩形纸⽚,剪去部分后得到⼀个三⾓形,则图中∠1+∠2的度数是( )A.30°B.60°C.90°D.120° 【考点】直⾓三⾓形的性质. 【专题】常规题型. 【分析】根据直⾓三⾓形两锐⾓互余解答. 【解答】解:由题意得,剩下的三⾓形是直⾓三⾓形, 所以,∠1+∠2=90°. 故选:C. 【点评】本题考查了直⾓三⾓形两锐⾓互余的性质,熟记性质是解题的关键. 9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂⾜为D,CD=1,则AB的长为( )A.2B.C.D. 【考点】含30度⾓的直⾓三⾓形;勾股定理;等腰直⾓三⾓形. 【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继⽽可得出AB. 【解答】解:在Rt△ACD中,∠A=45°,CD=1, 则AD=CD=1, 在Rt△CDB中,∠B=30°,CD=1, 则BD= , 故AB=AD+BD= +1. 故选D. 【点评】本题考查了等腰直⾓三⾓形及含30°⾓的直⾓三⾓形的性质,要求我们熟练掌握这两种特殊直⾓三⾓形的性质. 10.(2014•海南)在⼀个直⾓三⾓形中,有⼀个锐⾓等于60°,则另⼀个锐⾓的度数是( )A.120°B.90°C.60°D.30° 【考点】直⾓三⾓形的性质. 【分析】根据直⾓三⾓形两锐⾓互余列式计算即可得解. 【解答】解:∵直⾓三⾓形中,⼀个锐⾓等于60°, ∴另⼀个锐⾓的度数=90°﹣60°=30°. 故选:D. 【点评】本题考查了直⾓三⾓形两锐⾓互余的性质,熟记性质是解题的关键. 11.将四根长度相等的细⽊条⾸尾相接,⽤钉⼦钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( ) A. B.2 C. D.2 【考点】等边三⾓形的判定与性质;勾股定理的应⽤;正⽅形的性质. 【分析】图1中根据勾股定理即可求得正⽅形的边长,图2根据有⼀个⾓是60°的等腰三⾓形是等边三⾓形即可求得. 【解答】解:如图1, ∵AB=BC=CD=DA,∠B=90°, ∴四边形ABCD是正⽅形, 连接AC,则AB2+BC2=AC2, ∴AB=BC= = = , 如图2,∠B=60°,连接AC, ∴△ABC为等边三⾓形, ∴AC=AB=BC= . 【点评】本题考查了正⽅形的性质,勾股定理以及等边三⾓形的判定和性质,利⽤勾股定理得出正⽅形的边长是关键. 12.将⼀个有45°⾓的三⾓板的直⾓顶点放在⼀张宽为3cm的纸带边沿上.另⼀个顶点在纸带的另⼀边沿上,测得三⾓板的⼀边与纸带的⼀边所在的直线成30°⾓,如图,则三⾓板的最⼤边的长为( )A.3cmB.6cmC. cmD. cm 【考点】含30度⾓的直⾓三⾓形;等腰直⾓三⾓形. 【分析】过另⼀个顶点C作垂线CD如图,可得直⾓三⾓形,根据直⾓三⾓形中30°⾓所对的边等于斜边的⼀半,可求出有45°⾓的三⾓板的直⾓边,再由等腰直⾓三⾓形求出最⼤边. 【解答】解:过点C作CD⊥AD,∴CD=3, 在直⾓三⾓形ADC中, ∵∠CAD=30°, ∴AC=2CD=2×3=6, ⼜∵三⾓板是有45°⾓的三⾓板, ∴AB=AC=6, ∴BC2=AB2+AC2=62+62=72, ∴BC=6 , 故选:D. 【点评】此题考查的知识点是含30°⾓的直⾓三⾓形及等腰直⾓三⾓形问题,关键是先求得直⾓边,再由勾股定理求出最⼤边. 13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于( )A. cmB.2cmC.3cmD.4cm 【考点】含30度⾓的直⾓三⾓形. 【专题】常规题型. 【分析】根据在直⾓三⾓形中,30度所对的直⾓边等于斜边的⼀半得出AE=2ED,求出ED,再根据⾓平分线到两边的距离相等得出ED=CE,即可得出CE的值. 【解答】解:∵ED⊥AB,∠A=30°, ∴AE=2ED, ∵AE=6cm, ∴ED=3cm, ∵∠ACB=90°,BE平分∠ABC, ∴ED=CE, ∴CE=3cm; 故选:C. 【点评】此题考查了含30°⾓的直⾓三⾓形,⽤到的知识点是在直⾓三⾓形中,30度所对的直⾓边等于斜边的⼀半和⾓平分线的基本性质,关键是求出ED=CE. 14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )A.3B.4C.5D.6 【考点】含30度⾓的直⾓三⾓形;等腰三⾓形的性质. 【专题】计算题. 【分析】过P作PD⊥OB,交OB于点D,在直⾓三⾓形POD中,利⽤锐⾓三⾓函数定义求出OD的长,再由PM=PN,利⽤三线合⼀得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长. 【解答】解:过P作PD⊥OB,交OB于点D, 在Rt△OPD中,cos60°= = ,OP=12, ∴OD=6, ∵PM=PN,PD⊥MN,MN=2, ∴MD=ND= MN=1, ∴OM=OD﹣MD=6﹣1=5. 故选:C. 【点评】此题考查了含30度直⾓三⾓形的性质,等腰三⾓形的性质,熟练掌握直⾓三⾓形的性质是解本题的关键. 15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上⼀点,连接DE,则下列说法错误的是( )A.∠CAD=30°B.AD=BDC.BD=2CDD.CD=ED 【考点】含30度⾓的直⾓三⾓形;⾓平分线的性质;等腰三⾓形的判定与性质. 【专题】⼏何图形问题. 【分析】根据三⾓形内⾓和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可. 【解答】解:∵在△ABC中,∠C=90°,∠B=30°, ∴∠CAB=60°, ∵AD平分∠CAB, ∴∠CAD=∠BAD=30°, ∴∠CAD=∠BAD=∠B, ∴AD=BD,AD=2CD, ∴BD=2CD, 根据已知不能推出CD=DE, 即只有D错误,选项A、B、C的答案都正确; 故选:D. 【点评】本题考查了三⾓形的内⾓和定理,等腰三⾓形的判定,含30度⾓的直⾓三⾓形的性质的应⽤,注意:在直⾓三⾓形中,如果有⼀个⾓等于30°,那么它所对的直⾓边等于斜边的⼀半. ⼆、填空题 16.由于⽊质⾐架没有柔性,在挂置⾐服的时候不太⽅便操作.⼩敏设计了⼀种⾐架,在使⽤时能轻易收拢,然后套进⾐服后松开即可.如图1,⾐架杆OA=OB=18cm,若⾐架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 18 cm. 【考点】等边三⾓形的判定与性质. 【专题】应⽤题. 【分析】根据有⼀个⾓是60°的等腰三⾓形的等边三⾓形进⾏解答即可. 【解答】解:∵OA=OB,∠AOB=60°, ∴△AOB是等边三⾓形, ∴AB=OA=OB=18cm, 故答案为:18 【点评】此题考查等边三⾓形问题,关键是根据有⼀个⾓是60°的等腰三⾓形的等边三⾓形进⾏分析. 17.在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6 . 【考点】含30度⾓的直⾓三⾓形;勾股定理. 【分析】由∠B=30°,AB=12,AC=6,利⽤30°所对的直⾓边等于斜边的⼀半易得△ABC是直⾓三⾓形,利⽤勾股定理求出BC的长. 【解答】解:∵∠B=30°,AB=12,AC=6, ∴△ABC是直⾓三⾓形, ∴BC= = =6 , 故答案为:6 .° 【点评】此题考查了含30°直⾓三⾓形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键. 18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= 2 . 【考点】含30度⾓的直⾓三⾓形;⾓平分线的性质. 【分析】根据⾓平分线性质求出∠BAD的度数,根据含30度⾓的直⾓三⾓形性质求出AD即可得BD. 【解答】解:∵∠C=90°,∠B=30°, ∴∠CAB=60°, AD平分∠CAB, ∴∠BAD=30°, ∴BD=AD=2CD=2, 故答案为2. 【点评】本题考查了对含30度⾓的直⾓三⾓形的性质和⾓平分线性质的应⽤,求出AD的长是解此题的关键. 19.如图,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= 8 . 【考点】含30度⾓的直⾓三⾓形;正⽅形的性质. 【分析】先由正⽅形的性质可得∠BAC=45°,AB∥DC,∠ADC=90°,由∠CAE=15°,根据平⾏线的性质及⾓的和差得出∠E=∠BAE=∠BAC﹣∠CAE=30°.然后在Rt△ADE中,根据30°⾓所对的直⾓边等于斜边的⼀半即可得到AE=2AD=8. 【解答】解:∵正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O, ∴∠BAC=45°,AB∥DC,∠ADC=90°, ∵∠CAE=15°, ∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°. ∵在Rt△ADE中,∠ADE=90°,∠E=30°, ∴AE=2AD=8. 故答案为8. 【点评】本题考查了含30度⾓的直⾓三⾓形的性质:在直⾓三⾓形中,30°⾓所对的直⾓边等于斜边的⼀半.也考查了正⽅形的性质,平⾏线的性质.求出∠E=30°是解题的关键. 20.在矩形ABCD中,对⾓线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 . 【考点】含30度⾓的直⾓三⾓形;矩形的性质. 【分析】根据矩形的性质,可以得到△AOB是等边三⾓形,则可以求得OA的长,进⽽求得AB的长. 【解答】解:∵四边形ABCD是矩形, ∴OA=OB ⼜∵∠AOB=60° ∴△AOB是等边三⾓形. ∴AB=OA= AC=5, 故答案是:5.。

八年级数学上册第二章单元测试卷试题

八年级数学上册第二章单元测试卷试题

八年级数学第二章单元测试卷时间:2022.4.12 单位: ……*** 创编者: 十乙州班级 姓名一、填空题:〔每空1分,一共23分〕 1、7的相反数是 ;-33的绝对值是 。

2、9的平方根是 ; 的立方根是-2;25的算术平方根是______。

3、假如x 的一个平方根是1931.918,那么另一个平方根是______ __.4、用不等号填空: ①―2 -1.414; ②722 π 5、Rt △ABC 中,∠C =90°:①假设a =40 ,b =9 ,那么c = ;②假设c =25 ,b =15 ,那么a = 。

6、化简,直接写出以下各式的值:① |1-3|= ;② 364-= 。

7、假设2-x +| y -5|=0,那么x = ;y = ;y x = 。

个有效数字,用科学记数法表示为 〔保存两个有效数字〕.9、如图:△ABC 中,BD ⊥AC ,AB =9,BC =40, CA =41,那么△ABC 的面积等于 ;BD = 。

10、①写出一个比1大,比2小的无理数 ;②写出所有大于0小于1+5的整数 。

11、有一个长为12 c m,宽为4 c m,高为3 c m 的长方体铁盒,在其内部要放一根笔直的铁丝,那么铁丝最长到达 BA CD_______________c m 。 12、如图,在△ABC 中,∠C=90°,CD ⊥AB,垂足为D,AD=1,BD=4,那么CD= .二、选择题:〔每一小题3分,一共24分〕13、一个正方形的面积等于8cm 2,那么对角线的长是…………〔 〕A 、4cmB 、5cmC 、6cmD 、7cm14、如图:阴影局部是一个正方形,那么该正方形的面积是………〔 A 、1cm 2 B 、3cm 2 C 、6cm 2 D 、9cm 215、a 2=25, |b|=3,那么a +b 的值是……………………………〔 〕A 、-2B 、±8C 、±2D 、±2或者±816、一个数的平方根等于它的立方根,这个数是……………………〔 〕A 、0和1B 、1C 、0D 、0和±117、假如a <0,那么a 的立方根是………………………………………〔 〕 A 、-3a B 、3a C 、± 3a - D 、3a - 18、假设一个三角形的三边长的平方分别为32,42,x 2,那么此三角形是直角三角形的x 的值是…………………………………………………………………………〔 〕A 、4B 、5C 、7D 、5或者719、以下计算中,正确的有………… …………………………… 〔 〕① 283±= ② 2)2(33=- ③ 25)25(2±=-± ④ 525±= A . 0个 B . 1个 C . 2个 D . 3个20、以下结论中:①假设x 2=y 2,那么x =y ;②假设x >y ,那么x >y ;③假设3x =3y ,那么x =y ;④假设x 3=y 3,那么x =y ,其中正确的有… 〔 〕A 、1个B 、2个C 、3个D 、4个三、求以下各式中x 的值:〔每一小题4分,一共12分〕21、27)2(3)3(1)3)(2(0502)1(232=-=-=-x x x四、作图题:〔 4分〕22、画图:以下图是单位长度是1的网格. (1) 在图1中画出边长都是无理数的三角形ABC ;(2) 在图2中画出以格点为顶点,面积为5的正方形.五、化简:〔写出计算过程,23-25每一小题4分,一共12分〕 23、-364-+(-1)3-49 24、233221-+-+-25、,,a b c 实数在数轴上的对应点如下图,化简22()a c a b c +-+-六、解答题:〔一共25分〕26、HY 道路交通管理条例〞规定:小汽车在城上的行驶速度不得超过70千米/时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

______________________________________________________________________________________________________________绝密★启用前麻阳新希望八年级数学上册第二单元测试卷试卷副标题考试范围:第二单元;考试时间:120分钟;命题人:数学教研组题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,10*4=40)1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°2.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去4.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()-可编辑修改-试卷第2页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠1﹣∠2=180°5.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( ) A .45° B .135° C .45°或67.5° D .45°或135°6.如图,已知DE ∥BC ,AB=AC ,∠1=125°,则∠C 的度数是( )A .55°B .45°C .35°D .65°7.如图,△ABC 中,AB+BC=10,AC 的垂直平分线分别交AB 、AC 于点D 和E ,则△BCD 的周长是( )A .6B .8C .10D .无法确定8.如图,△ABC 中,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .EF=6,BE=4,则CF 的长为( )A .6B .4C .2D .59.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果∠A=50°,那么∠1+∠2的大小为( )______________________________________________________________________________________________________________A.130°B.180°C.230°D.260°10.如图,△ABC中,∠A=60°,BD,CD分别是∠ABC,∠ACB的平分线,则∠BDC的度数是()A.100°B.110°C.120°D.130°-可编辑修改-试卷第4页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人 得 分二.填空题(共10小题,10*4=40)11.△ABC 中,已知∠A=100°,∠B=60°,则∠C= . 12.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .13.一个等腰三角形的两边长分别为3和7,这个三角形的周长是 . 14.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是 秒.15.如图,在△ABC 中,AB=AC ,点E 在CA 延长线上,EP ⊥BC 于点P ,交AB 于点F ,若AF=2,BF=3,则CE 的长度为 .16.如图,在△ABC 中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD= .______________________________________________________________________________________________________________17.命题“若a=b,则a2=b2”的逆命题是.18.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .19.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.20.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.评卷人得分三.解答题(共6小题,共70分)21.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.(10分)22.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(10分)-可编辑修改-试卷第6页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证:AC ∥DE ;(2)若BF=13,EC=5,求BC 的长.23.如图,在等边△ABC 中,点D ,E 分別在边BC ,AC 上,DE ∥AB ,过点E 作EF 丄DE ,交BC 的延长线于点F .(12分) (1)求∠F 的度数;(2)若CD=2,求DF 、EF 的长.24.如图,已知:在△AFD 和△CEB 中,点A 、E 、F 、C 在同一直线上,AE=CF ,∠B=∠D ,AD ∥BC .求证:AD=BC .(12分)25.如图,△ABC 中,AB=AC ,点D 在AB 上,点E 在AC 的延长线上,且BD=CE ,DE 交BC 于F ,求证:DF=EF .(12分)26.如图,点C 是线段AB 上除点A 、B 外的任意一点,分别以AC 、BC 为边在线段AB 的同旁作等边△ACD 和等边△BCE ,连接AE 交DC 于M ,连接BD 交______________________________________________________________________________________________________________ CE于N,连接MN.(14分)(1)求证:AE=BD;(2)求证:MN∥AB.-可编辑修改-试卷第8页,总8页______________________________________________________________________________________________________________2017年11月19日初中数学的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.2.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的范围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:根据三角形的三边关系知c的取值范围是:2<c<8,又c的值为整数,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.-可编辑修改-本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

故选:C.【点评】此题主要考查了三角形的三边关系,解本题的关键是确定出c的值.3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.4.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【分析】由已知AB=AC=BD,结合图形,根据等腰三角形的性质、内角与外角的关系及三角形内角和定理解答.【解答】解:∵AB=AC=BD,∴∠1=∠BAD,∠C=∠B,∠1是△ADC的外角,∴∠1=∠2+∠C,2。

相关文档
最新文档