【七年级数学】初一数学上册培优训练题1(新人教版含答案)

合集下载

人教版七年级数学上册第一章 有理数培优综合训练(含答案)

人教版七年级数学上册第一章 有理数培优综合训练(含答案)

人教版七年级数学上册第一章 有理数培优综合训练(含答案)一、单选题1.在115,0,3,0.5,, 3.245+-+-中,正数的个数是( ) A .3B .4C .5D .62.如果把向东走3km 记作+3km ,那么﹣2km 表示的实际意义是( ) A .向东走2kmB .向西走2kmC .向南走2kmD .向北走2km3.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的就是负的;④一个分数不是正的,就是负的. A .1B .2C .3D .44.有理数m ,n 在数轴上对应点的位置如图所示,则m ,﹣m ,n ,﹣n ,0的大小关系是( )A .n <﹣n <0<﹣m <mB .n <﹣m <0<﹣n <mC .n <﹣m <0<m <﹣nD .n <0<﹣m <m <﹣n5.若8a =,5b =,且a b >,则+a b 的值是( ) A .13或3B .13C .3D .-13或-36.如图,数轴表示的是5个城市的国际标准时间(单位:时),如果北京的时间是2020年1月9日上午9时,下列说法正确的是( )A .伦敦的时间是2020年1月9日凌晨1时B .纽约的时间是2020年1月9日晚上20时C .多伦多的时间是2020年1月8日晚上19时D .汉城的时间是2020年1月9日上午8时7.对任意四个有理数a,b,c,d 定义新运算:a bad bc c d =-,则1243的值为( ) A .-2B .-4C .5D .-58.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-9.字母a 表示一个有理数,不论a 取任意有理数,下列式子的值总是正数的是( ) A .2020a +B .0.1a +C .2aD .()22020a +10.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA OB OC +=,则下列结论中①0abc <;②()0a b c -->;③a c b -=;④1a cb a b c++=.其中错误的个数有( )A .1个B .2个C .3个D .4个二、填空题11.如果50m 表示向东走50m ,那么60m -表示________; 12.-(+5)表示________的相反数,即-(+5(=________( -(-5)表示________的相反数,即-(-5(=________(13.a b c 、、在数轴上的位置如图所示,化简a c a b c b --++-=__________.14.今年“五一”期间,某市旅游营收达31.75亿元,数值31.75亿用科学记数法可表示为________.三、解答题15.把下列各数填在相应的括号里: 5-,10,273-,0,1123, 2.15-,0.01,66+,16-.正数:{}; 整数:{}; 负数:{};正分数:{}.16.计算(1)()()()()8 1.20.6 2.4-+-+-+-(2)()9190.59.7522⎛⎫⎛⎫-++-+⎪ ⎪⎝⎭⎝⎭(3)()31252544⎛⎫⨯+-⨯- ⎪⎝⎭(4)()12112234⎛⎫--+⨯- ⎪⎝⎭(5)()()147922949-÷+⨯-17.某商贩每日要到小龙虾基地购进500千克小龙虾,下表是该商贩记录的本周小龙虾购进价格(单位:元)浮动情况:注:正号表示价格比前一天上涨,负号表示价格比前一天下降.已知小龙虾上周末的进价为每千克23元,这周四的进价为每千克24元.(1)m=______.(2)这周购进小龙虾的最高价是每千克多少元?最低价是每千克多少元?(3)若该商贩周五将购进的小龙虾以每千克25元全部售出,且出售时小龙虾有4%的损耗,那么该商贩在本周星期五的收益情况如何?18.在纸面上有一数轴如图所示.尝试:折叠纸面,使表示1的点与表示1-的点重合,则表示3-的点与表示_________的点重合.发现:折叠纸面,使表示1-的点与表示3的点重合,则表示5的点与表示____________的点重合.应用:若数轴上A 、B 两点之间的距离为11(A 在B 左侧),且经过折叠后,表示1-的点与表示3的点重合,点A 与点B 重合,分别求A 、B 两点表示的数答案 1.A 2.B 3.B 4.C 5.A 6.A 7.D 8.D 9.B 10.B11.向西走60m .12.5 -5 -5 5 13.2b 14.3.175×10915.110,12,0.01,66,3⎧⎫+⎨⎬⎩⎭,{}5,10,0,66,16,-+-,25,7, 2.15,16,3⎧⎫----⎨⎬⎩⎭,112,0.01,3⎧⎫⎨⎬⎩⎭16.(1)12.2-;(2)4.25;(3)25;(4)11;(5)48- 17.(1)1.5;(2)25,21;(3)1500.18.尝试:3;发现:3-;应用:点A 表示的数为92-,点B 表示的数为132。

人教版七年级上册数学第1-2章培优习题 含答案

人教版七年级上册数学第1-2章培优习题   含答案

人教版七年级上册数学第1-2章培优习题一.选择题1.下列四个判断中,不.正确的是()A.0既不是正数也不是负数B.零是绝对值最小的有理数C.0的相反数是0D.0的倒数是02.如果|a|=a,那么a是()A.0B.非负数C.正数D.0和13.台风“杜鹃”给某省造成的经济损失达16.9亿元,近似数16.9亿精确到()A.十分位B.千万位C.亿位D.十亿位4.已知两个有理数a,b,如果ab<0,且a+b<0,那么()A.a>0,b>0B.a<0,b>0C.a,b异号D.a,b异号,且负数的绝对值较大5.近似数2.70所表示的准确数a的取值范围是()A.2.695≤a<2.705B.2.65≤a<2.75C.2.695<a≤2.705D.2.65<a≤2.756.若|a|=5,|b|=1,且a﹣b<0,则a+b的值等于()A.4或6B.4或﹣6C.﹣6或6D.﹣6或﹣4二.填空题7.已知多项式3x4y a﹣6x2y+1是六次三项式,则a=.8.若x,y互为倒数,m,n互为相反数,则=.9.若a、b互为相反数,c、d互为倒数,m为最大负整数,则a+b+cd+m2019=.10.若关于x,y的单项式4xy b+4与cx a y4的和仍为单项式,且它的系数为﹣2,则a+b+c =.11.三个连续的奇数,n为最小的一个,则这三个数的和为.12.若(a﹣2)2+|b﹣3|=0,那么a﹣b=.13.已知一组数为:1,,,,…按此规律用代数式表示第n个数为.14.下列算式:21=2,22=4,23=8,24=16,25=32,26=64,…通过观察,用你所发现的规律,22013写出的个位数字是.15.拉面是这样做的:一根拉一次变成2根,再拉一次变成4根,照这样做下去,那么拉上7次后,师傅手中的拉面有根.16.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有个小圆•(用含n的代数式表示)17.观察下列球的排列规律(其中●是实心球,〇是空心球):●〇〇●●〇〇〇〇〇●〇〇●●〇〇〇〇〇●〇〇●●〇〇〇〇〇●…从第1个球起到第2009个球止,共有实心球个.三.解答题18.已知a、b、c在数轴上的位置如图:(1)abc0,a+b0,a﹣b0(请用“>”,“<”填空).(2)化简|a﹣c|﹣|a+b|﹣|c﹣b|.19.如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C区是边长为c m的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=40,c=10,求整个长方形运动场的面积.20.观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣)…请解答下列问题:(1)用含有n(n为正整数)的式子表示第n个等式;(2)求a1+a2+a3+a4+…+a100的值.21.如图,A、B分别为数轴上的两点,A点对应的数为﹣5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A 点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.参考答案一.选择题1.解:A.0既不是正数也不是负数,正确;B.零是绝对值最小的有理数,正确;C.0的相反数是0,正确;D.0没有倒数,D不正确.故选:D.2.解:∵|a|=a,∴a≥0,故a是非负数.故选:B.3.解:近似数16.9亿精确到千万位.故选:B.4.解:两个有理数的积是负数,说明两数异号,和也是负数,说明负数的绝对值大于正数的绝对值.故选:D.5.解:近似数2.70所表示的准确值a的取值范围是2.695≤a<2.705.故选:A.6.解:∵|a|=5,|b|=1,且a﹣b<0,∴a=﹣5,b=1,此时a+b=﹣4;a=﹣5,b=﹣1,此时a+b=﹣6,故选:D.二.填空题7.解:∵多项式3x4y a﹣6x2y+1是六次三项式,∴4+a=6,解得:a=2,故答案为:2.8.解:根据题意得:xy=1,m+n=0,则原式=﹣.故答案为:﹣.9.解:∵a、b互为相反数,c、d互为倒数,m为最大负整数,∴a+b=0,cd=1,m=﹣1,∴a+b+cd+m2019=0+1+(﹣1)=0故答案为:0.10.解:∵关于x,y的单项式4xy b+4与cx a y4的和仍为单项式,且它的系数为﹣2,∴a=1,b+4=4,4+c=﹣2,解得:a=1,b=0,c=﹣6,∴a+b+c=1+0﹣6=﹣5.故答案为:﹣5.11.解:根据题意得:n+(n+2)+(n+4)=n+n+2+n+4=3n+6.故答案为;3n+612.解:由题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,所以,a﹣b=2﹣3=﹣1.故答案为:﹣1.13.解:第n个数就应该是.故答案为:.14.解:∵2013÷4=503…1,且第1个循环上的数字是2,∴22013的个位数字为2.故答案为:2.15.解:∵拉1次面条根数为21,拉2次面条根数为22,∴拉n次面条根数为2n,∴拉上7次后,师傅手中的拉面有27=128根.故答案为:128.16.解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1).故答案为:4+n(n+1),17.解:共有实心球3×200+3=603个.故答案为:603.三.解答题18.解:(1)根据图示,可得:c<b<0<a,a>﹣b,∴abc>0,a+b>0,a﹣b>0.(2)∵c<b<0<a,a>﹣b,∴a﹣c>0,a+b>0,c﹣b<0,∴|a﹣c|﹣|a+b|﹣|c﹣b|=a﹣c﹣a﹣b+c﹣b=﹣2b故答案为:>、>、>.19.解:(1)2[(a+c)+(a﹣c)]=2(a+c+a﹣c)=4a(m)(2)2[(a+a+c)+(a+a﹣c)]=2(a+a+c+a+a﹣c)=8a(m)(3)当a=40,c=10时,∴长=2a+c=90(m),宽=2a﹣c=70(m),所以面积=90×70=6300(m2)20.解:(1)由已知等式知,连续奇数乘积的倒数等于各自倒数差的一半,∴第n个等式为=(﹣);(2)原式=×(1﹣)+×(﹣)+×(﹣)+…+(﹣)=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=.21.解:(1)设运动时间为x秒,4x+6x=55﹣(﹣5),解得:x=6,因此C点对应的数为﹣5+4×6=19,(2)设运动时间为y秒,6y﹣4y=55﹣(﹣5),解得:y=30,点D对应的数为﹣5﹣4×30=﹣125,(3)①相遇前PQ=20时,设运动时间为a秒,4a+6a=55﹣(﹣5)﹣20,解得:a=4,因此Q点对应的数为﹣5+4×4=11,②相遇后PQ=20时,设运动时间为b秒,4b+6b=55﹣(﹣5)+20,解得:b=8,因此C点对应的数为﹣5+4×8=27,故Q点对应的数为11或27.。

人教版七年级上册数学期末培优练习题(一)(含答案)

人教版七年级上册数学期末培优练习题(一)(含答案)

人教版七年级上册数学期末培优练习题(一)一.选择题1.下列各式中结果为负数的是()A.﹣(﹣2)B.(﹣2)2C.﹣|﹣2| D.|﹣2|2.下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4 D.a3+a2=a53.下列四个式子中,是一元一次方程的是()A.3x+2y=6 B.2x+1=3x C.x2﹣2x﹣3=1 D.4.下列结论正确的是()A.a比﹣a大B.不是单项式C.﹣3ab2和b2a是同类项D.2是方程2x+1=4的解5.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱6.解方程1﹣=,去分母,去括号得()A.1﹣2x+2=x B.1﹣2x﹣2=x C.4﹣2x+2=x D.4﹣2x﹣2=x 7.近似数3.250×105是精确到()A.千分位B.千位C.百位D.十位8.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个9.如图,数轴上A、B两点对应的数分别为a、b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b<0 D.|a|<|b|二.填空题10.比较大小:﹣3(填“>”,“<”,“=”).11.已知x=1是方程3x﹣m=x+2n的一个解,则整式m+2n+2020的值为.12.57.2°=度分.13.新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为.14.如图,O为模拟钟面圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON同时出发,绕点O按顺时针方向转动,OA运动速度为每秒12°,OB运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t秒,当t=秒时,∠AOB =60°.三.解答题15.解方程:(1)5x﹣4=2(2x﹣3)(2)﹣=116.计算:(1)(﹣4)2﹣9÷+(﹣2)×(﹣1)+(﹣);(2)﹣12010﹣(1﹣0.5)2××|2﹣22|;(3)2(a2﹣ab)﹣2a2+3ab;(4)(﹣x2+2xy﹣y2)﹣2(xy﹣3x2)+3(2y2﹣xy).17.先化简,再求值:3m2﹣[5m﹣2(m﹣3)+4m2],其中,m=﹣4.18.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.19.如图所示A,O,B在同一条直线上,OD是∠AOC的平分线,OE是∠BOC的平分线.(1)如果∠AOC=64°45′,求∠BOC的度数;(2)如果∠AOD=36°,求∠COE的度数;(3)当射线OC绕着点O旋转时(不与OA,OB重合),∠DOE的大小是否会改变?为什么?20.今年假期某校对操场进行了维修改造,如图是操场的一角.在长为a米,宽为b米的长方形场地中间,并排着两个大小相同的篮球场,这两个篮球场之间以及篮球场与长方形场地边沿的距离都为c米.(1)直接写出一个篮球场的长和宽;(用含字母a,b,c的代数式表示)(2)用含字母a,b,c的代数式表示这两个篮球场占地面积的和,并求出当a=42,b =36,c=4时,这两个篮球场占地面积的和.21.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:(1)求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?参考答案一.选择题1.解:A、﹣(﹣2)=2,错误;B、(﹣2)2=4,错误;C、﹣|﹣2|=﹣2,正确;D、|﹣2|=2,错误;故选:C.2.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.3.解:A、该方程中含有2个未知数,不是一元一次方程,故本选项错误;B、由原方程得到x﹣1=0,符合一元一次方程的定义,故本选项正确;C、该方程的最高次数是2,不是一元一次方程,故本选项错误;D、该方程中分母含有未知数,不是一元一次方程,故本选项错误;故选:B.4.解:A.当a为负数时,a<﹣a,故本选项不合题意;B.是单项式,故本选项不合题意;C.﹣3ab2和b2a是同类项,故本选项符合题意;D.2不是方程2x+1=4的解,方程2x+1=4的解为,故本选项不合题意.故选:C.5.解:由图可得,该展开图是由三棱柱得到的,故选:C.6.解:解方程1﹣=,去分母,去括号得4﹣2(x+1)=x,即4﹣2x﹣2=x.故选:D.7.解:近似数3.250×105精确到百位.故选:B.8.解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.9.解:由数轴得,a<0,b>0,且|a|>|b|,∴a+b<0,故A错误;ab<0,故B错误;a﹣b<0,故C正确;|a|>|b|,故D错误,故选:C.二.填空题(共5小题)10.解:﹣3,故答案为:>.11.解:将x=1代入方程得:3﹣m=1+2n,即m+2n=2,则原式=2+2020=2022.故答案为:2022.12.解:∵0.2×60′=12′,∴57.2°=57°12′,故答案为:57,12.13.解:∵a☆b=ab+a﹣b,2☆x=x☆2,∴2x+2﹣x=2x+x﹣2,整理,可得:2x=4,解得x=2.故答案为:2.14.解:根据题意知OA旋转的角度为12t°,OB旋转的角度为4t°,①OA与OB重合前,12t+60=180+4t,解得:t=15;②OA与OB重合后,4t+60+180=12t,解得:t=30;综上,当t=15或30时,∠AOB=60°;故答案为:15或30.三.解答题(共7小题)15.解:(1)去括号得:5x﹣4=4x﹣6,移项合并得:x=﹣2;(2)去分母得:5x﹣15﹣8x﹣2=10,移项合并得:﹣3x=27,解得:x=﹣9.16.解:(1)原式=16﹣9×+2﹣=16﹣12+2﹣=5;(2)原式=﹣1﹣××2=﹣1﹣=﹣1;(3)原式=2a2﹣2ab﹣2a2+3ab=ab;(4)原式=﹣x2+2xy﹣y2﹣2xy+6x2+6y2﹣3xy =5x2﹣3xy+5y2.17.解:原式=3m2﹣(5m﹣2m+6+4m2)=3m2﹣5m+2m﹣6﹣4m2=﹣m2﹣3m﹣6,当m=﹣4时,原式=﹣(﹣4)2﹣3×(﹣4)﹣6=﹣16+12﹣6=﹣10.18.解:19.解:(1)∵A,O,B在同一条直线上,∴∠AOB=180°,∵∠AOC=64°45′,∴∠BOC=180°﹣∠AOC=115°15′;(2)∵OD是∠AOC的平分线,OE是∠BOC的平分线,∴∠COD=,∠COE=BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=90°,∵∠COD=∠AOD=36°,∴∠COE=90°﹣∠COD=54°;(3)不改变,理由:∵OD是∠AOC的平分线,OE是∠BOC的平分线,∴∠COD=,∠COE=BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=90°.20.(1)一个篮球场的长和宽分别为:(b﹣2c),(a﹣3c);(2)这两个篮球场的占地面积为(b﹣2c)(a﹣3c)(平方米);当a=42,b=36,c=4时,(42﹣4×3)×(36﹣2×4)=840(平方米).21.解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,由题意得:10(x+1)×0.85=10x﹣17.解得:x=17;答:小明原计划购买文具袋17个;(2)设小明可购买钢笔y支,则购买签字笔(50﹣y)支,由题意得:[8y+6(50﹣y)]×80%=272,解得:y=20,则:50﹣y=30.答:小明购买了钢笔20支,签字笔30支.。

部编数学七年级上册专题有理数单元测试(培优提升卷)2023年7上册同步培优(解析版)【人教版】含答案

部编数学七年级上册专题有理数单元测试(培优提升卷)2023年7上册同步培优(解析版)【人教版】含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.19第1章有理数单元测试(培优提升卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021•荣昌区校级模拟)下列各数中,最小的数是( )A.﹣4B.﹣3C.0D.1【分析】根据有理数的大小比较解答即可.【解析】根据有理数比较大小法则:正数大于零,零大于负数,两个负数绝对值大的反而小,∴0、1不符合题意,∵|﹣4|>|﹣3|,∴﹣4<﹣3.故选:A.2.(2022•连山区一模)下列四个数中,最大的负整数是( )A.﹣1.5B.﹣3C.0D.﹣2【分析】根据题中要求是负整数,﹣1.5,0不符合题意;根据两个负数比较大小,绝对值大的反而小即可得出答案.【解析】题中要求是负整数,﹣1.5,0不符合题意;∵2<3,∴﹣2>﹣3,∴最大的负整数是﹣2,故选:D.3.(2022•聊城)实数a的绝对值是54,a的值是( )A.54B.―54C.±45D.±54【分析】根据绝对值的意义直接进行解答【解析】∵|a|=5 4,∴a=±5 4.故选:D.4.(2020秋•津南区期中)有理数a,b在数轴上的位置如图所示,则下列式子中正确的个数是( )①a+b>0;②a﹣b<0;③|a|﹣|b|>0;④﹣a>﹣b.A.2B.3C.4D.1【分析】先根据数轴得出a<0,b>0,且|a|>|b|,再根据有理数的加减法则逐一判断即可.【解析】由数轴知a<0,b>0,且|a|>|b|,①a+b<0,此结论错误;②a﹣b<0,此结论正确;③|a|﹣|b|>0,此结论正确;④﹣a>﹣b,此结论正确;故选:B.5.(2021秋•蔡甸区期中)已知|a|=2,(b+1)2=25,且a<b,则a+b的值是( )A.﹣2或﹣8B.﹣8或6C.2或6D.2或﹣8【分析】根据绝对值和有理数的乘方求出a,b的值,根据a<b分两种情况分别计算即可.【解析】∵|a|=2,(b+1)2=25,∴a=±2,b+1=±5,∴b=4或﹣6,∵a<b,∴当a=2,b=4时,a+b=6;当a=﹣2,b=4时,a+b=2;故选:C.6.(2021秋•栖霞市期末)在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是( )甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷32=36×23―12×23=16丁:(﹣3)2÷13×3=9÷1=9A.甲B.乙C.丙D.丁【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】甲:9﹣32÷8=9﹣9÷8=778,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷32=36×23―12×23=16,做对了;丁:(﹣3)2÷13×3=9÷13×3=81,原来没有做对.故选:C.7.(2021秋•姑苏区校级期末)如果实数﹣1<a<0,那么a,﹣a,a2,1a自小到大顺序排列正确的是( )A.a<﹣a<a2<1aB.﹣a<a<a2<1aC.1a<a<a2<﹣a D.1a<a2<a<﹣a【分析】用特殊值法比较大小即可.【解析】若a=―1 2,﹣a=1 2,a2=1 4,1a=―2,∵﹣2<―12<14<12,∴1a<a<a2<﹣a,故选:C.8.(2018秋•市北区期中)下面关于有理数的说法正确的是( )A.整数和分数统称为有理数B.﹣a一定是负数C.绝对值相等的两个数互为相反数D.两个有理数的和与积均为负数,那么这两个数绝对值较大的数是正数,另一个是负数【分析】利用有理数的加法,乘法法则,相反数,相反数,以及绝对值的性质判断即可.【解析】A、整数和分数统称为有理数,符合题意;B、﹣a不一定是负数,不符合题意;C、绝对值相等的两个数互为相反数或相等,不符合题意;D、两个有理数的和与积均为负数,那么这两个数绝对值较大的数是负数,另一个是正数,不符合题意,故选:A.9.(2021秋•安居区期末)若a与b互为相反数,c与d互为倒数,m的绝对值为2,则|m|﹣c×d+a bm的值为( )A.1B.﹣2C.1或﹣3D.32或52【分析】根据a与b互为相反数,c与d互为倒数,m的绝对值为2,可以求得所求式子的值,本题得以解决.【解析】∵a与b互为相反数,c与d互为倒数,m的绝对值为2,∴a+b=0,cd=1,|m|=2,∴|m|﹣c×d+a b m=2﹣1+0 m=2﹣1+0=1,故选:A.10.(2019秋•滦南县期中)如图,点A在数轴上表示的数是﹣16,点B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?( )A.2秒B.4秒C.2秒或4秒D.2秒或6秒【分析】设当AB=8时,运动时间为t秒,根据题意列方程即可得到结论.【解析】设当AB=8时,运动时间为t秒,由题意得6t+2t+8=8﹣(﹣16)或6t+2t=8﹣(﹣16)+8,解得:t=2或t=4.故选:C.二.填空题(共8小题)11.(2021秋•建华区期末)国家统计局2021年5月11日公布第七次全国人口普查数据结果:2020年全国人口共141178万人,约占世界总人口18%,仍然是世界第一人口大国,我国人口10年来继续保持低速增长态势.数据141178万人用科学记数法可表示为 1.41178×109 人.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解析】141178万人=1411780000人=1.41178×109人.故答案为:1.41178×109.12.(2021秋•巴彦县期末)计算:﹣(23)2+19= ―13 .【分析】先算乘方,再算加法即可.【解析】﹣(23)2+19=―49+19=―1 3.故答案为:―1 3.13.(2020秋•郫都区校级月考)若|x﹣3|+|y+2|=0,则x= 3 ,y= ﹣2 .【分析】根据非负数的性质列出算式,求出x、y的值即可.【解析】根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,答案为:3,﹣2.14.(2022•蒲城县一模)请写出一个比﹣4.5大的负整数是 ﹣4(答案不唯一) .(写出一个即可)【分析】两个负数,绝对值大的数反而小,所以写出一个符合条件的负整数即可.【解析】∵两个负数绝对值大的数反而小,∴|﹣4.5|>|﹣4|,∴﹣4>﹣4.5.故答案为:﹣4(答案不唯一).15.(2021秋•普陀区校级月考)三个有理数a、b、c之积是负数,其和也是负数;当x=|a| a+|b|b+|c|c时,则x+1= ±2. .【分析】根据a,b,c的积是负数,它们的和是负数,可分a,b,c有两数是正数,一数是负数;或三数是负数的情况进行讨论.【解析】∵a,b,c的积是负数,它们的和是负数,∴a,b,c有两个数是正数,一个数是负数;或三个数均是负数.①当a,b,c有两个数是正数,一个数是负数时,设a,b是正数,c是负数,∴x=1+1﹣1=1,∴x+1=1+1=2,②当三个数均是负数时,x =﹣1﹣1﹣1=﹣3,∴x +1=﹣3+1=﹣2,综上,x +1=±2,故答案为:±2.16.(2021秋•黔东南州期中)在(﹣2)3,﹣(+5),﹣(﹣3),(﹣1)2020,﹣|6|中,负数有 3 个.【分析】根据有理数的乘方、相反数、绝对值、负数的定义解决此题.【解析】∵(﹣2)3=﹣8<0,﹣(+5)=﹣5<0,﹣(﹣3)=3>0,(﹣1)2020=1>0,﹣|6|=﹣6<0,∴负数有(﹣2)3,﹣(+5),﹣|6|,共3个.故答案为:3.17.(2018秋•兴化市校级期中)下列说法:①若a b =―1,则a 、b 互为相反数;②若a +b <0,且ba>0,则|a +2b |=﹣a ﹣2b ;③一个数的立方是它本身,则这个数为0或1;④若a +b +c <0,ab >0,c >0,则|﹣a |=﹣a ,其中正确的是 ①②④ .【分析】根据相反数、绝对值、乘方、有理数的加法法则、有理数的乘法法则解决此题.【解析】①若ab =―1,则a +b =0.根据相反数的定义,符号相反、绝对值相等的两个数互为相反数,那么①正确.②若a +b <0,且ba>0,则a <0,b <0,即a +2b <0,故|a +2b |=﹣a ﹣2b ,那么②正确.③根据乘方的定义,﹣1、0、1的立方均等于本身,那么③不正确.④根据有理数的乘方、加法法则,由a +b +c <0,ab >0,c >0,得a <0,b <0,故|﹣a |=﹣a ,那么④正确.综上:正确的有①②④.故答案为:①②④.18.(2022春•房县期末)我们知道:相同加数的和用乘法表示,相同因数的积用乘方表示.类比拓展:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,我们把n 个a (a ≠0)相除记作an ,读作“a 的圈n 次方”.根据所学概念,求(﹣4)③的值是 ―14 .【分析】根据新定义内容列出算式,然后将除法转化为乘法,再根据乘法和乘方的运算法则进行化简计算.【解析】(﹣4)③=(﹣4)÷(﹣4)÷(﹣4)=﹣4×14×14=―14.故答案为:―14.三.解答题(共6小题)19.(2021秋•云梦县校级月考)把下列各数分别填入相应的集合:+6,0,﹣8,π,﹣4.8,﹣7,227,0.6,―58.整数集合{ +6,0,﹣8,﹣7 };分数集合{ ﹣4.8,227,0.6,―58 };正有理数集合{ +6,227,0.6 };负有理数集合{ ﹣8,﹣4.8,﹣7,―58 };非负有理数集合{ +6,0,227,0.6 };自然数集合{ +6,0 }.【分析】根据有理数的分类进行填空即可.【解析】整数集合{+6,0,﹣8,﹣7};分数集合{﹣4.8,227,0.6,―58};正有理数集合{+6,227,0.6};负有理数集合{﹣8,﹣4.8,﹣7,―58};非负有理数集合{+6,0,227,0.6};自然数集合{+6,0}.故答案为:+6,0,﹣8,﹣7;﹣4.8,227,0.6,―58;+6,227,0.6;﹣8,﹣4.8,﹣7,―58;+6,0,227,0.6;+6,0.20.(2022春•龙凤区期末)计算:(1)(―12―59+23)÷118;(2)﹣14﹣(―13)2×(﹣3)3﹣(﹣1)2.【分析】(1)将除法变为乘法,再根据乘法分配律简便计算;(2)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解析】(1)(―12―59+23)÷118=(―12―59+23)×18=―12×18―59×18+23×18=﹣9﹣10+12=﹣7;(2)﹣14﹣(―13)2×(﹣3)3﹣(﹣1)2=﹣1―19×(﹣27)﹣1=﹣1+3﹣1=1.21.(2021秋•赵县月考)某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.月份七月份八月份九月份十月份十一月份十二月份甲厂﹣0.2﹣0.4+0.50+1.2+1.3乙厂+1.0﹣0.7﹣1.5+1.8﹣1.80(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲、乙两个工厂平均每月盈利或亏损多少亿元?【分析】(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,由此可得出结果.(2)将甲乙两场每个月的盈利相加即可得出结果.【解析】(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,∴可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元;乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元.∴甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元22.(2018秋•钟楼区校级月考)阅读理解:小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x取值范围是 ﹣1≤x≤2 ,最小值是 3 ”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:①当式子|x﹣2|+|x﹣4|+|x﹣6|取最小值时,相应x= 4 ,最小值是 4 .②已知y=|2x+8|﹣|4x+2|,求相应的x的取值范围及y的最大值,写出解答过程.【分析】阅读理解:根据线段上的点与线段的端点的距离最小,可得答案;(1)根据线段上的点与线段的端点的距离最小,可得答案;(2)根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案.【解析】阅读理解:当式子|x+1|+|x﹣2|取最小值时,相应的x取值范围是﹣1≤x≤2,最小值是3,故答案为﹣1≤x≤2,3;(1)当式子|x﹣2|+|x﹣4|+|x﹣6|取最小值时,相应的x=4,最小值是4;故答案为4,4;(2)当x≥―12时y=﹣2x+6,当x=―12时,y最大=7;当﹣4≤x≤―12时,y=6x+10,当x=―12时,y最大=7;当x≤﹣4,时y=2x﹣6,当x=﹣4时,y最大=﹣14,所以x=―12时,y有最大值y=7.23.(2021秋•如皋市期末)定义:数轴上有A,B两点,若点A到原点的距离为点B到原点的距离的两倍,则称点A为点B的2倍原距点.已知点A,M,N在数轴上表示的数分别为4,m,n.(1)若点A是点M的2倍原距点,①当点M在数轴正半轴上时,则m= 2 ;②当点M在数轴负半轴上,且为线段AN的中点时,判断点N是否是点A的2倍原距点,并说明理由;(2)若点M,N分别从数轴上表示数10,6的点出发向数轴负半轴运动,点M每秒运动速度为2个单位长度,点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时,点A恰好也是点N的2倍原距点,请直接写出a所有可能的值.【分析】(1)①点A到原点的距离为4,根据定义可知点M到原点距离为2,点M在数轴正半轴,进而可求出m.②m<0,则m=﹣2,4﹣(﹣2)=﹣2﹣n得出n的值,再根据定义来判断.(2)设t秒时,点M为点A的2倍原距点,点A恰好也是点N的2倍原距点;由|10﹣2t|=2×4求出t的值,将t代入4=2×|6﹣at|,求出a的所有可能值即可.【解析】(1)①4|m|=2,∴m=±2.∵m>0,∴m=2.故答案为:2.②∵m<0,∴m=﹣2.∵点M为线段AN的中点,∴4﹣(﹣2)=﹣2﹣n,解得n=﹣8.∴ON=8,ON=2OA,故N点是点A的2倍原距点.(2)设t秒时,点M为点A的2倍原距点,点A恰好也是点N的2倍原距点.∴|10―2t|=2×4①4=2×|6―at|②,解①得:t1=9,t2=1.将t1=9代入②得:4=2×|6﹣9t|,解得:a1=89,a2=49;将t2=1代入②得:4=2×|6﹣a|,解得:a3=4,a4=8.故a所有的可能值为:4,8,49,89.24.(2020秋•诸暨市期中)阅读下列材料:|x|=x,x>00,x=0―x,x<0,即当x<0时,x|x|=xx=―1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求a|a|+b|b|的值;(2)已知a,b,c是有理数,当abc≠0时,求a|a|+b|b|+c|c|的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求b c|a|+a c|b|+a b|c|的值.【分析】(1)对a、b进行讨论,即a、b同正,a、b同负,a、b异号,根据绝对值的意义计算a|a|+b|b|得到结果;(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算a|a|+b|b|+c|c|得结果;(3)根据a,b,c是有理数,a+b+c=0,把求b c|a|+a c|b|+a b|c|转化为求a|a|+b|b|+c|c|的值,根据abc<0得结果.【解析】(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,a|a|+b|b|=―1﹣1=﹣2;②a>0,b>0,a|a|+b|b|=1+1=2;③a,b异号,a|a|+b|b|=0.故a|a|+b|b|的值为±2或0.(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,a|a|+b|b|+c|c|=―1﹣1﹣1=﹣3;②a>0,b>0,c>0,a|a|+b|b|+c|c|=1+1+1=3;③a,b,c两负一正,a|a|+b|b|+c|c|=―1﹣1+1=﹣1;④a,b,c两正一负,a|a|+b|b|+c|c|=―1+1+1=1.故a|a|+b|b|+c|c|的值为±1,或±3.(3)已知a,b,c是有理数,a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以b c|a|+a c|b|+a b|c|=a|a|+b|b|+c|c|=﹣[a|a|+b|b|+c|c|]=﹣1.。

人教版七年级数学上册:第1章《有理数》计算强化培优训练卷【含答案】

人教版七年级数学上册:第1章《有理数》计算强化培优训练卷【含答案】

人教版七年级数学上册:第1章《有理数》计算强化培优训练卷一.有理数的加减法1.计算:﹣1﹣3=( )A.2B.﹣2C.4D.﹣42.计算|﹣3|﹣(﹣2)的最后结果是( )A.1B.﹣1C.5D.﹣53.某地区一天三次测量气温如下,早上是﹣6℃,中午上升了7℃,半夜下降了9℃,则半夜的气温是( )A.4℃B.﹣8℃C.10℃D.﹣22℃4.下列运算中正确的个数有( )(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(﹣)﹣(+)=﹣.A.1个B.2个C.3个D.4个5.式子(﹣3)﹣(﹣1)+(﹣2)﹣(+5)省略括号后可以写成 ,读作 或 .6.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y= .7.计算:(1)﹣3+(﹣7)﹣(+15)﹣(﹣5);(2)1.5+2﹣10﹣4.75.8.计算:(1)(﹣6)+8+(﹣4);(2)23﹣17+(﹣16);(3)1+(﹣2)+2+(﹣1);(4)(+)+(﹣)+(+1)+(﹣).二.有理数的乘除法9.若a•b•c=0,则这三个有理数中( )A.至少有一个为零B.三个都是零C.只有一个为零D.不可能有两个以上为零10.计算:3×(﹣2)=( )A.1B.﹣1C.6D.﹣611.已知43×47=2021,则(﹣43)的值为( )A.2021B.﹣2021C.D.﹣12.已知|a|=2,b2=25,且ab>0,则a﹣b的值为( )A.7B.﹣3C.3D.3或﹣313.﹣1的倒数是 ,﹣8的倒数是 ,的倒数是 ,的倒数是 ,﹣1的倒数是 , 的倒数是﹣2.14.(﹣)÷(﹣2)×(﹣6)= .15.用“>”,“<”或“=”号填空:若a<c<0<b,则abc 0;若a<b<c<0,则abc 0.16.计算:(1)(﹣3)×;(2)(﹣1)÷(﹣2).17.计算:(1)(﹣)×(﹣)×(﹣);(2)(﹣5)×(﹣)××0×(﹣325).18.下面是佳佳同学的一道题的解题过程:2÷(﹣)×(﹣3)=[2÷(﹣)+2]×(﹣3),①=2×(﹣3)×(﹣3)+2×4×(﹣3),②=18﹣24,③=6,④(1)佳佳同学开始出现错误的步骤是 ;(2)请给出正确的解题过程.三.有理数的乘方19.(﹣1)2021等于( )A.1B.﹣2021C.2021D.﹣120.下列计算正确的是( )A.﹣(﹣3)2=9B.C.﹣32=9D.(﹣3)3=﹣921.在(﹣10)8中,﹣10是( )A.底数B.指数C.幂D.乘方22.下列各组数中,互为相反数的一组是( )A.﹣(﹣3)和|﹣3|B.(﹣3)3和﹣33C.﹣|3|和﹣3D.(﹣3)2和﹣3223.对于(﹣2)3,指数是 ,底数是 ,(﹣2)3= ;对于﹣42,指数是 ,底数是 ,幂是 .24.若a、b为整数,且|a﹣2|+(b+3)2020=1,则b a= .四.有理数的混合运算25.下列计算错误的是( )A.﹣3÷(﹣)=9B.()+(﹣)=C.﹣(﹣2)3=8D.|﹣2﹣(﹣3)|=526.计算:(﹣3)3×()的结果为( )A.B.2C.D.1027.若a、b互为相反数,c、d互为倒数,m+1的绝对值为5,则式子|m|﹣cd+的值为( )A.3B.3或5C.3或﹣5D.428.计算:23+(﹣3)×(﹣2)2的结果为 .29.计算:﹣(﹣3)2×+|2﹣4|= .30.已知m、n互为相反数,p、q互为倒数,x的绝对值为2,则代数式+2020pq+x2的值是 .31.计算:﹣32÷(﹣1)2+|﹣3+2|.32.计算:﹣32﹣28÷(﹣7)×(﹣)2.33.计算:.34.计算:.答案一.有理数的加减法1.解:﹣1﹣3=﹣1+(﹣3)=﹣4.故选:D.2.解:|﹣3|﹣(﹣2)=3+2=5.故选:C.3.解:﹣6+7﹣9=﹣8(°C).故选:B.4.解:(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(﹣)﹣(+)=.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.5.解:将式子(﹣3)﹣(﹣1)+(﹣2)﹣(+5)写成省略括号的和的形式是﹣3+1﹣2﹣5,可以读作负3正1负2与﹣5的和或负3加1减2减5.故﹣3+1﹣2﹣5;负3正1负2与﹣5的和;负3加1减2减5.6.解:∵|x|=2,y2=9,∴x=±2,y=±3,∵|x﹣y|=y﹣x,∴x﹣y<0,∴x﹣y=﹣2﹣3=﹣5,或x﹣y=2﹣3=﹣1,所以x﹣y=﹣5或﹣1.故﹣5或﹣1.7.解:(1)原式=﹣3﹣7﹣15+5=﹣25+5=﹣20;(2)原式===.8.解:(1)(﹣6)+8+(﹣4)=(﹣6﹣4)+8=﹣10+8=﹣2;(2)23﹣17+(﹣16)=23+(﹣17﹣16)=23﹣33=﹣10;(3)1+(﹣2)+2+(﹣1)=(1+2)+(﹣1﹣2)=4﹣4=0;(4)(+)+(﹣)+(+1)+(﹣)=(++1)+(﹣﹣)=2﹣1=1.二.有理数的乘除法9.解:若a•b•c=0,则这三个有理数中至少有一个为零,故选:A.10.解:3×(﹣2)=﹣6.故选:D.11.解:∵43×47=2021,∴(﹣43)=﹣43×47=﹣2021,故选:B.12.解:因为|a|=2,所以a=±2,因为b2=25,所以b=±5,又因为ab>0,所以a、b同号,所以a=2,b=5,或a=﹣2,b=﹣5,当a=2,b=5时,a﹣b=2﹣5=﹣3,当a=﹣2,b=﹣5时,a﹣b=﹣2﹣(﹣5)=3,因此a﹣b的值为3或﹣3,故选:D.13.解:由乘积为1的两个数互为倒数得,∵﹣1×(﹣1)=1,∴﹣1的倒数是﹣1;∵﹣8×(﹣)=1,∴﹣8的倒数是﹣;∵﹣×(﹣7)=1,∴﹣的倒数是﹣7;∵×=1,∴的倒数是;∵﹣1×(﹣)=1,∴﹣1的倒数是﹣;∵﹣×(﹣2)=1,∴﹣2的倒数是﹣,故﹣1,﹣,﹣7,,﹣,﹣.14.解:原式=×()×(﹣6)=×(﹣6)=﹣1,故﹣1.15.解:若a<c<0<b,则abc>0;若a<b<c<0,则abc<0,故>,<.16.解:(1)(﹣3)×=﹣×=﹣2;(2)(﹣1)÷(﹣2)=(﹣)÷(﹣)=.17.解:(1)(﹣)×(﹣)×(﹣)=﹣××=﹣;(2)(﹣5)×(﹣)××0×(﹣325)=0.18.解:(1)佳佳同学开始出现错误的步骤是①.故①.(2)2÷(﹣)×(﹣3)==2×(﹣12)×(﹣3)=72.三.有理数的乘方19.解:(﹣1)2021=﹣1,故选:D.20.解:A.﹣(﹣3)2=﹣9,故此选项不符合题意;B.,故此选项符合题意;C.﹣32=﹣9,故此选项不符合题意;D.(﹣3)3=﹣27,故此选项不符合题意.故选:B.21.解:(﹣10)8中表示8个(﹣10)相乘,其中(﹣10)是底数,8是指数,故选:A.22.解:A,因为﹣(﹣3)=3,|﹣3|=3,3与3不是相反数,所以A选项不符合题意;B,因为(﹣3)3=﹣27,﹣33=﹣27,﹣27与﹣27不是相反数,所以B选项不符合题意;C,因为﹣|3|=﹣3,﹣3与﹣3不是相反数,所以C选项不符合题意;D,因为(﹣3)2=9,﹣32=﹣9,9与﹣9互为相反数,所以D选项符合题意.故选:D.23.解:根据乘方的定义,得(﹣2)3的底数是﹣2,指数是3,(﹣2)3=﹣2×(﹣2)×(﹣2)=﹣8.同理,﹣42的底数是4,指数是2,幂是﹣16.故3,﹣2,﹣8,2,4,﹣16.24.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.四.有理数的混合运算25.解:﹣3÷(﹣)=3×3=9,故选项A正确;()+(﹣)==,故选项B正确;﹣(﹣2)3=﹣(﹣8)=8,故选项C正确;|﹣2﹣(﹣3)|=|﹣2+3|=1,故选项D错误;故选:D.26.解:(﹣3)3×()=(﹣27)×()=(﹣27)×﹣(﹣27)×+(﹣27)×=(﹣9)+15+(﹣4)=2,故选:B.27.解:∵a,b互为相反数,c,d互为倒数,m+1的绝对值为5,∴a+b=0,cd=1,|m+1|=5,∴m=﹣6或4,则原式=6﹣1+0=5或4﹣1+0=3.故选:B.28.解:23+(﹣3)×(﹣2)2=8+(﹣3)×4=8﹣12=﹣4.故﹣4.29.解:﹣(﹣3)2×+|2﹣4|=﹣9×+2=﹣3+2=﹣1.故﹣1.30.解:∵m、n互为相反数,p、q互为倒数,x的绝对值为2,∴m+n=0,pq=1,x=2或﹣2,则原式=+2020×1+4=2024.故2024.31.解:原式=﹣9÷1+|﹣1|=﹣9+1=﹣8.32.解:原式=﹣9+28×=﹣9+1=﹣8.33.解:原式===.34.解:原式=﹣9÷(4﹣1)+(﹣)×24=﹣9÷3+(×24﹣×24)=﹣3+(16﹣6)=﹣3+10=7.。

2021最新人教版 七年级数学上册 第1章 有理数 综合培优训练(含答案)

2021最新人教版 七年级数学上册 第1章 有理数 综合培优训练(含答案)

人教版 七年级数学 第1章 有理数 综合培优训练一、选择题(本大题共12道小题)1. 有理数-13的相反数为( )A .-3B .-13 C.13 D .32. 下列说法错误的是( )A .-2是负有理数B .0不是整数C.125是正有理数 D .-0.35是负分数3. 下列四个数中,最大的数是( )A. -2B. 13C. 0D. 64. 下列两数互为倒数的是( )A. 4和-4B. -3和13C. -2和-12D. 0和05. 计算-2×3×(-4)的结果是( )A .24B .12C .-12D .-246. 计算-3-(-2)的结果是( )A .-1B .1C .5D .-57. 如图,数轴上有A ,B ,C ,D 四个点,其中绝对值最小的数对应的点是()A.点A B.点B C.点C D.点D8. 在跳远测验中,合格的标准是4.00 m,王非跳了4.12 m,记作+0.12 m,何叶跳了3.95 m,记作( )A.+0.05 m B.-0.05 mC.+3.95 m D.-3.95 m9. 质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是( )A.-3 B.-1 C.2 D.410. 下列说法错误的是( )A.一个数同0相乘,得0B.一个数同1相乘,仍得这个数C.一个数同-1相乘,得这个数的相反数D.一个数同它的相反数相乘,积为负11. 若a,b互为倒数,则-4ab的值为( )A.-4 B.-1 C.1 D.012. 若a=-2×32,b=(-2×3)2,c=-(2×3)2,则下列大小关系正确的是()A.a>b>cB.b>c>aC.b>a>cD.c>a>b二、填空题(本大题共12道小题)13. 如果节约用水30吨,记为+30吨,那么浪费水20吨,记为________吨.14. (1)-5.4的相反数是________;(2)-(-8)的相反数是________;(3)若a =-a ,则a =________.15. 绝对值小于3的所有整数的和为______,绝对值不大于2020的所有整数的和为______.16. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________.17. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.18. 一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为4个单位长度,则这个数为________.19. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米.20. 如图所示,数轴上点A 表示的数为a ,点B 表示的数为b ,则a -b =________.21. 将下列各数填在相应的横线上:-15,-0.02,67,-171,4,-213,1.3,0,3.14,π. 正数:_______________________________________________________________________;负数:______________________________________________________________________.22. 如果实验室标准温度为10 ℃,高于标准温度的记为正,那么+5 ℃表示实验室内的温度为__________℃;-5 ℃表示实验室内的温度为________℃.23. 你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折……如此反复下去,对折8次,能拉出________根面条.24. 定义学习观察一列数:1,2,4,8,…,我们发现,从这一列数的第二项起,每一项与它前面一项的比都是2.一般地,如果一列数从第二项起,每一项与它前面一项的比都等于一个常数,那么我们就把这样的一列数叫做等比数列,这个常数叫做等比数列的公比.(1)等比数列5,-15,45,…的第四项为______;(2)一个等比数列的第二项是10,第三项是-20,则它的第一项是________,第四项是________.三、解答题(本大题共6道小题)25. 某次数学期末考试,成绩80分以上为优秀,老师以80分为基准,将某一小组五名同学的成绩(单位:分)简记为+12,-5,0,+7,-2.这里的正数、负数分别表示什么意义?这五名同学的实际成绩分别为多少?26. 观察与分类如图,已知有A,B,C三个数集,每个数集中所含的数都在各自的大括号内,请把这些数填入图中相应的部分.A.{-5,2.7,-9,7,2.1};B.{-8.1,2.1,-5,9.2,-17 };C.{2.1,-8.1,10,7}.27. 计算:(1)1.2×(-145)×(-2.5)×(-37); (2)-157×⎝ ⎛⎭⎪⎫-34×56×⎪⎪⎪⎪⎪⎪-512; (3)(-112)×(-113)×(-114)×(-115)×(-116)×(-117).28. 分类讨论在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积.29. 在学习了有理数的乘法后,老师给同学们出了这样一道题目:“计算492425×(-5),看谁算得又快又对.”有两名同学的解法如下:小明:原式=-124925×5=-12495=-24945; 小军:原式=(49+2425)×(-5)=49×(-5)+2425×(-5)=-24945.(1)对于以上两种解法,你认为谁的解法较好?(2)思考上面的解法,你认为还有更好的解法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:191516×(-8);(4)简便地计算出57×5556+27×2728的值.30. 规律探究已知:1-12×2=(1-12)×(1+12)=12×32,1-13×3=(1-13)×(1+13)=23×43,1-14×4=(1-14)×(1+14)=34×54,…(1)猜想:1-12020×2020=________________=______________;(2)计算:(1-12×2)×(1-13×3)×(1-14×4)×…×(1-12020×2020).人教版七年级数学第1章有理数综合培优训练-答案一、选择题(本大题共12道小题)1. 【答案】C2. 【答案】B3. 【答案】D【解析】四个数中选择最大的数可直接在正数中选,比较13<6,故最大的数为6.4. 【答案】C【解析】因为-2×(-12)=1,故选C.5. 【答案】A6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】B10. 【答案】D11. 【答案】A12. 【答案】C[解析] 因为a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,所以b>a>c.二、填空题(本大题共12道小题)13. 【答案】-2014. 【答案】(1)5.4 (2)-8 (3)015. 【答案】0 0 [解析] 绝对值小于3的整数有±2,±1,0,其和为2+(-2)+1+(-1)+0=0.绝对值不大于2020的整数有±2020,±2019,±2018,…,±1,0,其和为0.16. 【答案】(1)-3 (2)3 (3)3 (4)-3 (5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.17. 【答案】(1)> (2)=(3)<18. 【答案】2或-2 [解析] 由题意知这个数到原点的距离为2,所以这个数为2或-2.19. 【答案】420. 【答案】-3 [解析] 由图可知a=-4,b=-1,所以a-b=-4-(-1)=-4+1=-3.21. 【答案】67,4,1.3,3.14,π-15,-0.02,-171,-21322. 【答案】15 523. 【答案】25624. 【答案】35[答案] (1)-135 (2)-5 40[解析] (1)公比为-3,故第四项为45×(-3);(2)公比为-20÷10=-2,由第二项除以-2求得第一项为10÷(-2)=-5,由第三项乘-2求得第四项为-20×(-2)=40.三、解答题(本大题共6道小题)25. 【答案】解:这里的正数表示实际成绩比基准高,负数表示实际成绩比基准低,所以“+12”表示比80分高12分,“-5”表示比80分低5分,“0”表示80分,“+7”表示比80分高7分,“-2”表示比80分低2分.所以这五名同学的实际成绩分别为92分,75分,80分,87分,78分.26. 【答案】43解:通过观察,发现A,B,C三个数集都含有2.1,A,B数集都含有-5,A,C数集都含有7,B,C数集都含有-8.1.如图所示:27. 【答案】[解析] 几个不为0的有理数相乘,积的符号由负因数的个数决定.解:(1)原式=-65×95×52×37=-8135.(2)原式=-127×(-34)×56×512=127×34×56×512=2556.(3)原式=32×43×54×65×76×87=4.28. 【答案】解:由题意易知a=3或a=-3,b=5或b=-5.若点A与点B位于原点同侧,则a,b的符号相同,所以ab=3×5=15或ab=(-3)×(-5)=15;若点A与点B位于原点异侧,则a,b的符号相反,所以ab=3×(-5)=-15或ab=(-3)×5=-15.综上所述,a与b的乘积为15或-15.29. 【答案】解:(1)小军的解法较好.(2)还有更好的解法.492425×(-5)=(50-125)×(-5)=50×(-5)-125×(-5)=-250+15=-24945.(3)191516×(-8)=(20-116)×(-8)=20×(-8)-116×(-8)=-160+12=-15912.(4)57×5556+27×2728=(56+1)×5556+(28-1)×2728=56×5556+5556+28×2728-1×2728=55+27+5556-2728=82+1 56=821 56 .30. 【答案】解:(1)(1-12020)×(1+12020)20192020×20212020(2)原式=(12×32)×(23×43)×(34×54)×…×(20192020×20212020)=12×20212020=20214040.。

新版人教版七年级数学上册培优

新版人教版七年级数学上册培优

第1讲与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作()A.-18%B.-8%C.+2%D.+8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为() A.-5吨B.+5吨C.-3吨D.+3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-,π,0.033.3这四个数中有理数的个数()A.1个B.2个C.3个D.4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.15,-,100.l ,-3001中,负分数为,整数为,正整数.02.(河北秦皇岛)请把下列各数填入图中适当位置15,-,,-,0.1.-5.32,123,2.333【例3】(宁夏)有一列数为-1,,-,.-,,…,找规律到第2007个数是.【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-.【变式题组】01.(湖北宜宾)数学解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是.02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l+的相反数是-3,则m的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题=-4,m=-8【变式题组】01.(四川宜宾)-5的相反数是()A.5B.C.-5D.-02.已知a与b互为相反数,c与d互为倒数,则a+b+cd=______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A、B、C内的三个数依次为()A.-1,2,0B.0,-2,1C.-2,0,1D.2,1,0【例5】(湖北)a、b为有理数,且a>0,b<0,|b|>a,则a,b、-a,-b的大小顺序是()A.b<-a<a<-bB.–a<b<a<-bC.–b<a<-a<bD.–a<a<-b<b 【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a、b,依相反数的意义标出-b,-a,故选A.【变式题组】01.推理①若a=b,则|a|=|b|;②若|a|=|b|,则a=b;③若a≠b,则|a|≠|b|;④若|a|≠|b|,则a≠b,其中正确的个数为()A.4个B.3个C.2个D.1个02.a、b、c三个数在数轴上的位置如图,则++=.03.a、b、c为不等于O的有理散,则++的值可能是____.【例6】(江西课改)已知|a-4|+|b-8|=0,则的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a的绝对值都是非负数,即|a|≥0.所以|a-4|≥0,|b-8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a-4|≥0,|b-8|≥0,又|a-4|+|b-8|=0,∴|a-4|=0,|b-8|=0即a-4=0,b-8=0,a=4,b=8.故==【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a>b>c,求a+b+C.02.(毕节)若|m-3|+|n+2|=0,则m+2n的值为()A.-4B.-1C.0D.403.已知|a|=8,|b|=2,且|a-b|=b-a,求a和b的值【例7】(第l8届迎春杯)已知(m+n)2+|m|=m,且|2m-n-2|=0.求mn的值.【解法指导】本例关键是通过分析(m+n)2+|m|的符号,挖掘出m的符号特征,从而把问题转化为(m+n)2=0,|2m-n-2|=0,找到解题途径.解:∵(m+n)2≥0,|m|≥O∴(m+n)2+|m|≥0,而(m+n)2+|m|=m∴m≥0,∴(m+n)2+m=m,即(m+n)2=0∴m+n=O①又∵|2m-n-2|=0∴2m-n-2=0②由①②得m=,n=-,∴mn=-【变式题组】01.已知(a+b)2+|b+5|=b+5且|2a-b–l|=0,求a-B.02.(第16届迎春杯)已知y=|x-a|+|x+19|+|x-a-96|,如果19<a<96.a≤x≤96,求y的最大值.演练巩固·反馈提高01.观察下列有规律的数,,,,,…根据其规律可知第9个数是() A.B.C.D.02.(芜湖)-6的绝对值是()A.6B.-6C.D.-03.在-,π,8..0.3四个数中,有理数的个数为()A.1个B.2个C.3个D.4个04.若一个数的相反数为a+b,则这个数是()A.a-bB.b-aC.–a+bD.–a-b05.数轴上表示互为相反数的两点之间距离是6,这两个数是() A.0和6B.0和-6C.3和-3D.0和306.若-a不是负数,则a()A.是正数B.不是负数C.是负数D.不是正数07.下列结论中,正确的是()①若a=b,则|a|=|b|②若a=-b,则|a|=|b|③若|a|=|b|,则a=-b④若|a|=|b|,则a=bA.①②B.③④C.①④D.②③08.有理数a、b在数轴上的对应点的位置如图所示,则a、b,-a,|b|的大小关系正确的是()A.|b|>a>-a>bB.|b|>b>a>-aC.a>|b|>b>-aD.a>|b|>-a>b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x+2|+|y+2|=0,则xy=____.11.a、b、c三个数在数轴上的位置如图,求+++12.若三个不相等的有理数可以表示为1、a、a+b也可以表示成0、b、的形式,试求a、b的值.13.已知|a|=4,|b|=5,|c|=6,且a>b>c,求a+b-C.14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a -b|当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,,数轴上表示1和-3的两点之间的距离是;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是,如果|AB|=2,那么x=;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为1999的线段,则此线段在这条数轴上最多能盖住的整数点的个数是()A.1998B.1999C.2000D.200102.(第l8届希望杯邀请赛试题)在数轴上和有理数a、b、c对应的点的位置如图所示,有下列四个结论:①abc<0;②|a-b|+|b-c|=|a-c|;③(a-b)(b -c)(c-a)>0;④|a|<1-bc.其中正确的结论有()A.4个B.3个C.2个D.1个03.如果a、b、c是非零有理数,且a+b+c=0.那么+++的所有可能的值为()A.-1B.1或-1C.2或-2D.0或-204.已知|m|=-m,化简|m-l|-|m-2|所得结果()A.-1B.1C.2m-3D.3-2m05.如果0<p<15,那么代数式|x-p|+|x-15|+|x-p-15|在p≤x≤15的最小值()A.30B.0C.15D.一个与p有关的代数式06.|x+1|+|x-2|+|x-3|的最小值为.07.若a>0,b<0,使|x-a|+|x-b|=a-b成立的x取值范围.08.(武汉市选拔赛试题)非零整数m、n满足|m|+|n|-5=0所有这样的整数组(m,n)共有组09.若非零有理数m、n、p满足++=1.则=.10.(19届希望杯试题)试求|x-1|+|x-2|+|x-3|+…+|x-1997|的最小值. 11.已知(|x+l|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+l|)=36,求x+2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C .【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A .8℃B .-8℃C .6℃D .2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m ,吐鲁番海拔高度为-155m ,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算111112233420082009++++⨯⨯⨯⨯L 【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-L =111111112233420082009-+-+-++-L =112009-=20082009 【变式题组】01.计算1+(-2)+3+(-4)+…+99+(-100) 02.如图,把一个面积为1的正方形等分成两个面积为12面积为的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个规律计18的长方形,如此进行下去,试利用图形揭示的算11111111248163264128256+++++++=__________. 【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是()A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴|a |>|b |将a 、b 、-a 、-a >b>-b >a【变式题组】01.若m >0,n <0,且|m |>|n |,则m +n ________0.(填>、<号)02.若m <0,n >0,且|m |>|n |,则m +n ________0.(填>、<号)03.已知a <0,b >0,c <0,且|c |>|b |>|a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511 ()()()()(1) 32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+2 5+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=12252【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+1 2004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C .比是正数D .可能是正数,也可能是负数02.如果|a |=3,|b |=2,那么|a +b |为()A . 5B .1C .1或5D .±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A . 1B .0C .-1D .-304.两个有理数的和是正数,下面说法中正确的是()A .两数一定都是正数B .两数都不为0C .至少有一个为负数D .至少有一个为正数05.下列等式一定成立的是()A .|x |-x =0B .-x -x =0C .|x |+|-x |=0D .|x |-|x |=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A .-4℃B .4℃C .-3℃D .-5℃07.若a <0,则|a -(-a )|等于()A .-aB .0C .2aD .-2a08.设x 是不等于0的有理数,则||||2x x x值为() A .0或1 B .0或2 C .0或-1 D .0或-209.(济南)2+(-2)的值为__________ 10.用含绝对值的式子表示下列各式:⑴若a <0,b >0,则b -a =__________,a -b =__________ ⑵若a >b >0,则|a -b |=__________ ⑶若a <b <0,则a -b =__________ 11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712 ⑷33.1-10.7-(-22.9)-|-2310| 12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A 地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5 ⑴问收工时距离A 地多远?⑵若每千米耗油0.2千克,问从A 地出发到收工时共耗油多少千克? 14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少? 15.独特的埃及分数:埃及同中国一样,也是世界着名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-L L 等于()A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d等于()A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是()A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c大小关系是()A .a <b <cB .b <c <aC .c <b <aD .a <c <b534333231305.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯L 的值得整数部分为() A .1 B .2 C .3 D .406.(-2)2004+3×(-2)2003的值为()A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m |=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+…+(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b )2+|b +5|=b +5,且|2a -b -1|=0,求aB . 13.计算(11998-1)(11997-1)(11996-1)…(11001-1)(11000-1)14.请你从下表归纳出13+23+33+43+…+n 3计算出13+23+33+43+…+1003的值.第03讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713()()(1)()5697-⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=-⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯=⑷250000⨯=⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么()A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是()A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a +b <0,0b a>,则下列结论成立的是()A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >004.(广州)下列命题正确的是()A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷=⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=-⑷0(7)0÷-= 【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a ba b+=,则ab ab =___________.【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩;当ab <0,0a ba b+=,∴ab <0,从而ab ab =-1. 【变式题组】01.若k 是有理数,则(|k|+k )÷k 的结果是()A .正数B .0C .负数D .非负数02.若A .b 都是非零有理数,那么aba b a b ab++的值是多少? 03.如果0x y x y+=,试比较xy-与xy 的大小.【例5】已知223(2),1x y =-=- ⑴求2008xy的值;⑵求32008x y的值.【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=-⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】01.(北京)若2(2)0m n m -+-=,则n m 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n n x y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为()A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为()A .1.03×105B .0.103×105C .10.3×104D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是()A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩【例7】(上海竞赛)【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ =49222+1++⋅⋅⋅+1442443个=99 【变式题组】A .31003B .31004C .1334D .1100002.(第10届希望杯试题)已知111111111.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为()A .1个B .2个C .3个D .1个或3个02.两个有理数的和是负数,积也是负数,那么这两个数()A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数03.已知abc >0,a >0,ac <0,则下列结论正确的是()A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >004.若|ab |=ab ,则()A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m+-+的值为()A .-3B .1C .±3D .-3或106.若a >1a,则a 的取值范围()A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a+b =0;②a-b =0;③ab<0;④1ab=-,其中能判断a 、b 互为相反数的个数是()A .1个B .2个C .3个D .4个08.若ab≠0,则a ba b+的取值不可能为() A .0B .1C .2D .-209.1110(2)(2)-+-的值为()A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是()A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________. 13.如果2x yx y +=,试比较x y-与xy 的大小. 14.若a 、b 、c 为有理数且1a b c a b c ++=-,求abcabc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y------中负数的个数是() A .1个B .2个C .3个D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是()A .1B .3C .7D .503.已知23450ab c d e <,下列判断正确的是()A .abcde <0B .ab 2cd 4e <0C .ab 2cde <0D .abcd 4e <004.若有理数x 、y 使得,,,x x y x y xy y+-这四个数中的三个数相等,则|y |-|x |的值是()A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是()A .0B .1C .7D .906.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是()A .2B .1C .0D .-107.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是()A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.已知a 、b 、c 都不等于0,且a b c abca b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315-第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且证明:⑴11,;22m n A B m n++==⑵126A B -=,求m 、n 的值. 第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念. 2.掌握多项式及多项式的项、常数项及次数等概念. 3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x 的商; ⑶是,它的系数为π,次数为2; ⑷是,它的系数为32-,次数为3. 【变式题组】01.判断下列代数式是否是单项式 02.说出下列单项式的系数与次数【例2】如果与都是关于x 、y 的六次单项式,且系数相等,求m 、n 的值. 【解法指导】单项式的次数要弄清针对什么字母而言,是针对x 或y 或x 、y 等是有区别的,该题是针对x 与y 而言的,因此单项式的次数指x 、y 的指数之和,与字母m 无关,此时将m 看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴(2)02.指出下列多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2B.-2C.±2D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28B.-28C.32D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4B.12C.15D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1.当x=3时,y=1,2,3,z=3,2,1.当x=4时,y=1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式B.的次数为5C.单项式系数为0D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+aB.10a+bC.a+bD.100a+b03.若多项式的值为1,则多项式的值是()A.2B.17C.-7D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m元后,又降低20%,那么该电脑的现售价为()A.B.C.D.05.若多项式是关于x的一次多项式,则k的值是()A.0B.1C.0或1D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a -b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2007B.2C.D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①②③④A.①②③B.①②④C.①③④D.②④03.已知,那么在代数式中,对任意的a、b,对应的代数式的值最大的是()A.B.C.D.04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n米长的铁丝,则m与n 大小关系()A.m>nB.m<nC.m=nD.不能确定05.(广安)已知_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a元,租期超过3天,从第4天开始每天另加收b元,如果租看1本书7天归还,那么租金为____________元.07.已知=_____________.08.有理数a、b、c在数轴上的位置如图所示,化简后的结果是______________. 09.已知=______________.10.(全国初中数学竞赛)设a、b、c的平均数为M,a、b的平均数为N,又N、c的平均数为P,若a>b>c,则M与P大小关系______________.11.(资阳)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,。

人教版七年级数学上册期末培优复习卷 含答案

人教版七年级数学上册期末培优复习卷    含答案

人教版七年级数学上册期末培优复习卷一.选择题1.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母22个或螺栓16个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.则下面所列方程中正确的是()A.2×16x=22(27﹣x)B.16x=22(27﹣x)C.22x=16(27﹣x)D.2×22x=16(27﹣x)2.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为()A.150°B.145°C.140°D.135°3.王涵同学在某月的日历上圈出了三个数a,b,c,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是()A.B.C.D.4.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…利用你所发现的规律,得230的末位数字(个位上的数字)是()A.2 B.4 C.6 D.85.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么n条直线最多有()个交点.A.2n﹣3 B.2n2C.D.n(n﹣1)二.填空题6.已知多项式﹣﹣6是五次四项式,单项式0.4x2n y5﹣m的次数与这个多项式的次数相同,则m=,n=.7.若A、B、P是数轴上的三点且点A表示的数为﹣2,点B表示的数为1,点P表示的数为x,当其中一点到另外两点的距离相等时,则x的值为.8.如图是小明用火柴搭的1条、2条、3条“金鱼”…,则搭n条“金鱼”需要火柴根.9.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:其中表示∠B余角的式子有.(填序号)①90°﹣∠B;②∠A﹣90°;③(∠A﹣∠B);④(∠A+∠B).10.如图,观察表中数字的排列规律,则数字2000在表中的位置是第行,第列.1 3 5 7 9 …2 6 10 14 18 …4 12 20 28 36 …8 24 40 56 72 …16 48 80 112 144 …………………三.解答题11.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?12.一种商品按销售量分三部分制定销售单价,如下表:销售量单价不超过50件部分 2.6元/件超过50件不超过100件部分 2.2元/件超过100件部分2元/件(1)若买50件花元,买100件花元;买200件花元;(2)小明买这种商品花了196元,列方程求购买这种商品多少件?(3)若小明花了n元(n>130),恰好购买0.45n件这种商品,求n的值.13.已知:如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,(1)若线段AB=a,CE=b,|a﹣16|+(b﹣4)2=0,求a+b的值;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=17,AD=2BE,求线段CE的长.14.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=﹣4,则a的值为(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.15.如图,在数轴上每相邻两点间的距离为一个单位长度.点A、B、C、D对应的数分别是a、b、c、d,且d﹣3a=20.(1)a=,b=,c=.(2)点A以2个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点B到达D点处立刻返回,返回时,点A与点B在数轴的某点处相遇,求这个点对应的数.(3)如果A、C两点分别以2个单位/秒和3个单位/秒的速度同时向数轴的负方向运动,同时,点B从图上的位置出发向数轴的正方向以1个单位/秒的速度运动,当满足AB+AC =AD时,点A对应的数是多少?16.已知∠AOC=50°,∠BOD=30°,∠AOC和∠BOD均可绕点O进行旋转,点M,O,N在同一条直线上,OP是∠COD的平分线.(1)如图,当点A与点M重合,点B与点N重合,且射线OD在直线MN的同侧时,求∠BOP的余角的度数;(2)在(1)的基础上,若∠BOD从ON处开始绕点O逆时针方向旋转,转速为5°/s,同时∠AOC从OM处开始绕点O逆时针方向旋转,转速为3°/s,如图2所示,当旋转6s 时,求∠DOP的度数.17.已知∠AOB=m°,与∠AOC互为余角,与∠BOD互为补角,OM平分∠AOC,ON平分∠BOD,(1)如图,当m=35°时,求∠AOM的度数;(2)在(1)的条件下,请你补全图形,并求∠MON的度数;(3)当∠AOB为大于30°的锐角,且∠AOC与∠AOB有重合部分时,请求出∠MON的度数.(写出说理过程,用含m的代数式表示)18.已知,如图1,OB,OC分别为定角(大小不会发生改变)∠AOD内部的两条动射线,∠AOC与∠BOD互补,∠AOB+∠COD=40°.(1)求∠AOD的度数;(2)如图2,射线OM,ON分别为∠AOB,∠COD的平分线,当∠COB绕着点O旋转时,下列结论:①∠AON的度数不变;②∠MON的度数不变,其中只有一个是正确的,请你做出正确的选择并求值;(3)如图3,OE,OF是∠AOD外部的两条射线,且∠EOB=∠COF=110°,OP平分∠EOD,OQ平分∠AOF,当∠BOC绕着点O旋转时,∠POQ的大小是否会发生变化?若不变,求出其度数;若变化,说明理由,19.数轴上点A对应的数为a,点B对应的数为b,且多项式x3y﹣2xy+5的二次项系数为a,常数项为b.(1)直接写出:a=,b=;(2)数轴上点A,B之间有一动点P,若点P对应的数为x,试化简|2x+4|+2|x﹣5|﹣|6﹣x|;(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动,同时点N从点B 出发,沿数轴以每秒2个单位长度的速度向左移动,到达点A后立即返回并向右继续移动,速度保持不变.试求出经过多少秒后,M,N两点相距1个单位长度?20.观察下面三行数:﹣1,4,﹣9,16,﹣25,…;①0,6,﹣6,20,﹣20,…;②﹣2,3,﹣10,15,﹣26,…;③(1)分析第一行数的排列规律,请用代数式表示第n个数.(2)分析第②③行数分别与第①行数的关系.请用代数式表示每行的第n个数.(3)取每行的第n个数,计算这三个数的和,并求当n=100时的值.21.用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图形中的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数;(用含n的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?22.如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,当点P运动到AB中点时,它所表示的数是;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数辅向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:①当点P运动多少秒时,点P追上点Q?②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.23.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.参考答案一.选择题1.解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母22个或螺栓16个,∴可得2×16x=22(27﹣x).故选:A.2.解:∵∠AOC=∠BOD=80°,∠BOC=25°,∴∠AOB=∠AOC﹣∠BOC=80°﹣25°=55°,∴∠AOD=∠BOD+∠AOB=80°+55°=135°,故选:D.3.解:A、设最小的数是x.x+x+7+x+14=45,解得x=8,故本选项不合题意;B、设最小的数是x.x+x+1+x+8=45,解得:x=12,故本选项不符合题意;C、设最小的数是x.x+x+6+x+12=45,解得:x=9,故本选项不合题意;D、设最小的数是x.x+x+6+x+14=45,解得:x=,故本选项符合题意.故选:D.4.解:∵末位数以2,4,8,6的顺序周而复始又∵30÷4=7 (2)∴230的末位数应该是第2个数为4.故选:B.5.解:∵两条直线相交,最多有1个交点,三条直线相交,最多有1+2=3个交点,四条直线相交,最多有1+2+3=6个交点.…∴n条直线相交,最多有1+2+3+…+(n﹣1)=个交点.故选:C.二.填空题6.解:∵多项式﹣﹣6是五次四项式,∴m+1=3,∴m=2,∵单项式0.4x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=5,∴n=1,故答案为:2,1.7.解:①当A到B、P的距离相等时,AB=AP,∴3=|x+2|,∴x=1或x=﹣5,∵x=1时,P与B重合,∴x=﹣5;②当B到A、P的距离相等时,AB=BP,∴3=|1﹣x|,∴x=﹣2或x=4,∵x=﹣2时,P点与A点重合,∴x=4;③当P到A、B的距离相等时,AP=BP,∴P是AB的中点,∴x=﹣;④当P与A重合时,BP=AB,则x=﹣2;⑤当P与B重合时,AP=AB,则x=1.∴x的值为﹣5或4或﹣或﹣2或1.故答案为﹣5或4或﹣或﹣2或1.8.解:观察图形发现:搭1条金鱼需要火柴8根,搭2条金鱼需要14根,即发现了每多搭1条金鱼,需要多用6根火柴.则搭n条“金鱼”需要火柴8+6(n﹣1)=6n+2.9.解:①根据互余角定义知,∠B的余角为:90°﹣∠B,此题结论正确;②∵∠A和∠B互补,∴∠B=180°﹣∠A,∴90°﹣∠B=90°﹣180°+∠A=∠A﹣90°,故此题结论正确;③∵∠A和∠B互补,∴∠A+∠B=180°,∴90°﹣∠B=(∠A+∠B)﹣∠B=,故此题结论正确;④∵∠A和∠B互补,∴∠A+∠B=180°,∴=90°,不是∠B的余角,故此题结论错误.故答案为:①②③.10.解:由表格中的数据可知,第一行是一些连续的奇数,第二行的数据是对应的第一行数据的2倍,第三行的数据是对应的第二行数据的2倍,第四行的数据是对应的第三行数据的2倍,…,∵2000=2×1000,1000=2×500,500=2×250,250=2×125,125=2×63﹣1,∴数字2000在表中的位置是第5行,第63列,故答案为:5,63.三.解答题11.解:(1)第①种方案应付的费用为:10×40+(40﹣10)×8=640(元),第②种方案应付的费用为:(10×40+40×8)×90%=648(元);答:第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)设购买文具盒x个时,两种方案所付的费用相同,由题意得:10×40+(x﹣10)×8=(10×40+8x)×90%,解得:x=50;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.12.解:(1)买50件花:2.6×50=130(元),买100件花:2.6×50+2.2×(100﹣50)=240(元),买200件花:2.6×50+2.2×50+2×(200﹣100)=440(元),故答案为:130,240,440;(2)设小明购买这种商品x件,∵196<240,∴小明购买的件数少于100件,∴130+2.2(x﹣50)=196,解得:x=80;答:小明购买这种商品80件.(3)①当130<n≤240时,130+2.2(0.45n﹣50)=n,解得:n=2000(不符合题意,舍去),②当n>240时,240+2(0.45n﹣100)=n,解得:n=400,综上所述:n的值为400.13.解:(1)∵|a﹣16|+(b﹣4)2=0,∴a﹣16=0,b﹣4=0,∴a=16,b=4,∴a+b=16+4=20;(2)∵点C为线段AB的中点,AB=16,CE=4,∴AC=AB=8,∴AE=AC+CE=12,∵点D为线段AE的中点,∴DE=AE=6,(3)设BE=x,则AD=2BE=2x,∵点D为线段AE的中点,∴DE=AD=2x,∵AB=17,∴AD+DE+BE=17,∴x+2x+2x=17,解方程得:x=,即BE=,∵AB=17,C为AB中点,∴BC=AB=,∴CE=BC﹣BE=﹣=.14.解:(1)∵b=﹣4,AB=14,∴14=a+4,∴a=10,故答案为10;(2)当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,m=,所以,OA=,点A在原点O的右侧,a的值为.当A在原点的左侧时(如图),a=﹣,综上,a的值为±;(3)当点A在原点的右侧,点B在点C的左侧时(如图),c=﹣a,﹣b=3(c﹣b),a﹣b=14,∴c=﹣;当点A在原点的右侧,点B在点C的右侧时(如图),c=﹣8.当点A在原点的左侧,点B在点C的右侧时,c=.当点A在原点的左侧,点B在点C的左侧时,c=8.综上,点c的值为:±8,±.15.解:(1)由数轴可知,d=a+8,∵d﹣3a=20,∴a+8﹣3a=20,∴a=﹣6,∴b=﹣8,c=﹣3,故答案为﹣6,﹣8,﹣3;(2)∵a=﹣6,∴d=2,∴BD=10,B点运动到D点需要时间为2.5秒,此时A点运动到﹣6+2×3.5=1,∴AB距离为1,∴AB相遇时间为=秒,此时A点位置为1+=,∴A、B相遇时的点为.(3)设运动时间为t秒,A点运动t秒后对应的数为﹣6﹣2t,C点运动t秒后对应的数为﹣3﹣3t,B点运动t秒后对应的数为﹣8+t,∴AB=|﹣6﹣2t+8﹣t|=|2﹣3t|,AC=|﹣6﹣2t+3+3t|=|t﹣3|,AD=|2+6+2t|=|8+2t|,∵AB+AC=AD,∴|2﹣3t|+|t﹣3|=|4+t|,当0≤t≤时,2﹣3t+3﹣t=4+t,∴t=,当<t≤3时,3t﹣2+3﹣t=4+t,∴t=3,当t>3时,3t﹣2+t﹣3=4+t,∴t=3,∴t=或t=3,∴A点表示的数是﹣或﹣12.16.解:(1)如图1,∵∠COD=180°﹣50°﹣30°=100°,OP是∠COD的平分线.∴∠COP=∠DOP=∠COD=50°,∴∠BOP=∠BOD+∠DOP=30°+50°=80°,∴∠BOP的余角为90°﹣80°=10°;(2)如图2,由(1)可知∠AOC=50°,∠BOD=30°,由旋转可得,∠BON=5×6=30°,∠MOA=3×6=18°,∴∠MOC=∠AOC﹣∠MOA=50°﹣18°=32°,∴∠COD=180°﹣∠MOC﹣∠BOD﹣∠BON=180°﹣32°﹣30°﹣30°=88°,∵OP平分∠COD,∴∠DOP=∠COP=∠COD=×88°=44°,17.解:(1)∵∠AOB=m°,且与∠AOC互为余角,∴∠AOC=90°﹣m°,∵OM平分∠AOC,∴∠AOM=∠AOC==27.5°;(2)分两种情况:i)当∠AOB和∠BOD没有重合部分时,如图1所示,∵∠BOD与∠AOB互补,∴∠BOD=180°﹣m°,∵ON平分∠BOD,∴∠BON=;∴∠MON=∠BOM+∠BON==135°;ii)当∠AOB和∠BOD有重合部分时,如图2所示,∵∠BOD与∠AOB互补,∴∠BOD=180°﹣35°=145°,∵ON平分∠BOD,∴∠BON=72.5°,∴∠MON=∠BON﹣∠BOM=72.5°﹣62.5°=10°;(3)当30°<m≤45°时,分两种情况:①如图3,当∠AOB和∠BOD没有重合部分时,∵OM平分∠AOC,∴∠AOM=∠AOC=,∵ON平分∠BOD,∴∠DON=,∴∠MON=180°﹣∠DON﹣∠AOM=180°﹣﹣=(45+m)°;②如图4,当∠AOB和∠BOD有重合部分时,则∠AON=∠BOD﹣∠AOB﹣∠NOD=180﹣m°﹣m°﹣=,∴∠MON=∠AON+∠AOM=+=(135﹣2m)°,当45°<m<90°时,分三种情况:①如图5,当45°<m°<67.5°时,∠AOB和∠BOD有重合部分时,∠MON=∠BON﹣∠BOC﹣∠COM,=﹣(m°﹣∠AOC)﹣∠AOC,=∠BOD﹣m°+∠AOC,=(180°﹣m°)﹣m°+(90°﹣m°),=(135﹣2m)°;②如图6,当67.5°<m°<90°时,∠AOB和∠BOD有重合部分时,∠MON=∠BOM﹣∠BON,=∠AOB﹣∠AOM﹣∠BON,=m°﹣﹣,=(2m﹣135)°;②如图7,当∠AOB和∠BOD没有重合部分时,∠MON=180°﹣∠AOM﹣∠DON=180°﹣﹣=(45+m)°,综上所述,∠MON的度数为:(45+m)°或(135﹣2m)°或(2m﹣135)°.18.解:(1)∵∠AOC与∠BOD互补,∴∠AOB+∠COD+2∠BOC=180°,∵∠AOB+∠COD=40°,∴∠BOC=70°,∴∠AOD=∠AOB+∠COD+∠BOC=110°;(2)②正确,∠MON的度数为90°不变;理由如下:∵射线OM,ON分别为∠AOB,∠COD的平分线,∴∠CON+∠BOM=(∠COD+∠AOB)=,∴∠MON=∠CON+∠BOM+∠BOC=20°+70°=90°,故②正确,∠MON的度数为90°不变;(3)∠POQ的大小不变为130°,∵∠EOB=∠COF=110°,∠BOC=70°,∴∠COE=∠BOF=110°﹣70°=40°,∵∠COE+∠BOF=∠COD+∠DOE+∠AOB+∠AOF=80°,∵∠AOB+∠COD=40°,∴∠DOE+∠AOF=40°,∵OP平分∠EOD,OQ平分∠AOF,∴∠DOP+∠AOQ=(∠DOE+∠AOF)=20°,∴∠POQ=∠DOP+∠AOQ+∠AOD=20°+110°=130°.19.解:(1)∵多项式x3y﹣2xy+5的二次项系数为a,常数项为b,∴a=﹣2,b=5.故答案为:﹣2;5.(2)由题意,可知:﹣2≤x≤5,∴|2x+4|+2|x﹣5|﹣|6﹣x|=2x+4﹣2(x﹣5)﹣(6﹣x)=x+8.(3)设经过t秒后,M,N两点相距1个单位长度.分两种情况讨论:①当点N从点B向点A移动,即0≤t≤3.5时,点M表示的数为﹣2+t,点N表示的数为5﹣2t,由题意得:|﹣2+t﹣(5﹣2t)|=1,解得:t1=2,t2=;②当点N从点A向右移动,即t>3.5时,点M表示的数为﹣2+t,点N表示的数为﹣2+2(t﹣3.5)=2t﹣9,由题意得:|﹣2+t﹣(2t﹣9)|=1,解得:t3=6,t4=8.综上所述,经过2秒、秒、6秒或8秒后,M,N两点相距1个单位长度.20.解:(1)∵﹣1,4,﹣9,16,﹣25,…,∴第n个数为:(﹣1)n•n2;(2)∵﹣1,4,﹣9,16,﹣25,…;①0,6,﹣6,20,﹣20,…;②﹣2,3,﹣10,15,﹣26,…;③∴第②行第n个数为:(﹣1)n•n2+n,第③行第n个数为:(﹣1)n•n2﹣1;(3)取每行的第n个数,则这三个数的和为:(﹣1)n•n2+[(﹣1)n•n2+n]+[(﹣1)n•n2﹣1]=(﹣1)n•3n2+n ﹣1,当n=100时,(﹣1)100•3×1002+100﹣1=1×3×10000+100﹣1=30000+100﹣1=30099.21.解:(1)如图所示:图形编号 1 2 3 4 5 6 图形中的棋6 9 12 15 18 21子(2)依题意可得当摆到第n个图形时棋子的枚数应为:6+3(n﹣1)=6+3n﹣3=3n+3;(3)由上题可知此时3n+3=99,∴n=32.答:第32个图形共有99枚棋子.22.解:(1)∵数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,∴数轴上点B表示的数是6﹣11=﹣5,∵点P运动到AB中点,∴点P对应的数是:×(﹣5+6)=0.5,故答案为:﹣5,0.5;(2)设点P与Q运动t秒时重合,点P对应的数为:6﹣3t,点Q对应的数为:﹣5+2t,∴6﹣3t=﹣5+2t,解得:t=2.2,∴点P与Q运动2.2秒时重合;(3)①运动t秒时,点P对应的数为:6﹣3t,点Q对应的数为:﹣5﹣2t,∵点P追上点Q,∴6﹣3t=﹣5﹣2t,解得:t=11,∴当点P运动11秒时,点P追上点Q;②∵点P与点Q之间的距离为8个单位长度,∴|6﹣3t﹣(﹣5﹣2t)|=8,解得:t=3或t=19,当t=3时,点P对应的数为:6﹣3t=6﹣9=﹣3,当t=19时,点P对应的数为:6﹣3t=6﹣57=﹣51,∴当点P与点Q之间的距离为8个单位长度时,此时点P在数轴上所表示的数为﹣3或﹣51.23.解:(1)由题意,得AB=﹣10﹣(﹣24)=14,BC=10﹣(﹣10)=20.故答案为:14,20;(2)答:不变.∵经过t秒后,A、B、C三点所对应的数分别是﹣24﹣t,﹣10+3t,10+7t,∴BC=(10+7t)﹣(﹣10+3t)=4t+20,AB=(﹣10+3t)﹣(﹣24﹣t)=4t+14,∴BC﹣AB=(4t+20)﹣(4t+14)=6.∴BC﹣AB的值不会随着时间t的变化而改变.(3)经过t秒后,P、Q两点所对应的数分别是﹣24+t,﹣24+3(t﹣14),由﹣24+3(t﹣14)﹣(﹣24+t)=0解得t=21,①当0<t≤14时,点Q还在点A处,∴PQ═t,②当14<t≤21时,点P在点Q的右边,∴PQ=(﹣24+t)﹣[﹣24+3(t﹣14)]=﹣2t+42,③当21<t≤34时,点Q在点P的右边,∴PQ=[﹣24+3(t﹣14)]﹣(﹣24+t)=2t﹣42.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学上册培优训练题1(新人教版含答案)
初一数学上册培优训练题1(新人教版含答案)1.下列关于单项式的说法中,正确的是()
A.系数是3,次数是2 B.系数是,次数是2
c.系数是,次数是3 D.系数是,次数是3
2.下列四个平面图形中,不能折叠成无盖的长方体盒子的是()
A B c D
3.某顾客以八折的优惠价买了一商品,比标价少付了30元,那么他购买这商品花了()
A.70元 B.120元 c.150元 D.300元
4.若,则。

5.如图,点A在射线X上,A的长等于2c。

如果A绕点按逆时针方向旋转30°到,那么点的位置可以用(2,30°)表示。

如果将再沿逆时针方向继续旋转45°,到,那么点的位置可以用(,)表示。

6.已知线段AB=20c,直线AB上有一点c,且Bc=6c,是线段Ac的中点,则
A= c。

7.某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位。

(1)请你在下表的空格里填写一个适当的代数式
第1排的座位数第2排的座位数第3排的座位数第4排的座位数…第n排的座位数
12 12+a…
(2)已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少个座位?。

相关文档
最新文档