电力系统自动低频减载
第三章第四节--电力系统低频减载

第四节电力系统低频减载一、概述1)事故情况下,系统可能产生严重的有功缺额,因而导致系统频率大幅度下降。
2)所缺功率已经大大超过系统热备用容量,只能在系统频率降到某值以下,采取切除相应用户的办法来减少系统的有功缺额,使系统频率保持在事故允许的限额之内。
3)这种办法称为按频率自动减负荷。
中文简拼为“ZPJH”,英文为UFLS(Under Frequency Load Shedding)。
二、系统频率的事故限额(1)系统频率降低使厂用机械的出力大为下降,有时可能形成恶性循环,直至频率雪崩。
(2)系统频率降低使励磁机等的转速也相应降低,当励磁电流一定时,发送的无功功率会随着频率的降低而减少,可能造成系统稳定的破坏。
发生在局部的或某个厂的有功电源方面的事故可能演变成整个电力系统的灾难。
(3)电力系统频率变化对用户的不利影响主要表现在以下几个方面:①频率变化将引起异步电动机转速的变化,有这些电动机驱动的纺织、造纸等机械产品的质量将受到影响,甚至出现残、次品。
②系统频率降低将使电动机的转速和功率降低,导致传动机械的出力降低。
③国防部门和工业使用的测量、控制等电子设备将因为频率的波动而影响准确性和工作性能,频率过低时甚至无法工作。
“电力工业技术管理法规”中规定的频率偏差范围为±0.2~±0.5Hz。
(4)汽轮机对频率的限制。
频率下降会危及汽轮机叶片的安全。
因为一般汽轮机叶片的设计都要求其自然频率充分躲开它的额定转速及其倍率值。
系统频率下降时有可能因机械共振造成过大的振动应力而使叶片损伤。
容量在300MW 以上的大型汽轮发电机组对频率的变化尤为敏感。
例如我国进口的某350MW机组,频率为48.5Hz时,要求发瞬时信号,频率为47.5Hz时要求30s跳闸,频率为47Hz时,要求0s跳闸。
进口的某600MW机组,当频率降至47.5Hz时,要求9s跳闸。
(5)频率升高对大机组的影响。
电力系统因故障被解列成几个部分时,有的区域因有功严重缺额而造成频率下降,但有的区域却因有功过剩而造成频率升高,从而危及大机组的安全运行。
电力系统自动低频减载(整理)

电力系统自动低频减载电力系统频率及有功功率的自动调节1. 电力系统自动调频1.1电力系统频率波动的原因频率是电能质量的重要指标之一,在稳态条件下,电力系统的频率是一个全系统一致的运行参数。
系统频率的波动直接原因是发电机输入功率&输出功率之间的不平衡,众所周知,单一电源的系统频率是同步发电机转速的函数:60np f =n ――电机的转速,r/min ; f ――电力系统的频率,HZ ; p ――电机的极对数;对于一般的火力发电机组,发电机的极对数为1,额定转速为3000 r/min ,亦即额定频率为50HZ 。
此时,系统频率又可以用同步发电机的角速度的函数来表示:π2w f =为了研究系统频率变换的规律,需要研究同步发电机的运动规律。
同步发电机组的运动方程为:dtdw JT T T e m =∆=-mT ――输入机械转距;e T ――输出电磁转距(忽略空载转距,即负荷转距);J ――发电机组的转动惯量;dtdw ――发电机组的角加速度;由于功率和力矩之间存在转换关系(P=wT )上式经过规格化处理和拉氏变换后,可得传递函数:w H P P S e m ∆=-2P――原动机功率(发电机的输入功率);mP――发电机电磁功率;eH――发电机组的惯性常数;S――角速度变化量;w由此可知,当原动机功率和发电机电磁功率之间产生不平衡的时候,必然引起发电机转速的变化,即引起系统频率的变化。
在众多发电机组并联运行的电力系统中,尽管原动机功率P不是恒定不变的,但它主要m取决与本台发电机的原动机和调速器的特性,因而是相对容易控制的因素;而发电机电磁功率P的变化则不仅与本台发电机的电磁特性有关,更取决于电力系统的负荷特性,是难以控e制的因素,而这正是引起电力系统频率波动的主要原因。
1.2调频的必要性电力系统的频率变动对用户、发电厂和电力系统本身都会产生不良的影响,所以必须保持频率在额定值50hz上下,且其偏移量不能超过一定范围。
电力系统自动装置第六章低频减载

i1
i
PL*i 1 PLk*KL*fi*1 PLk*KL*fh*
k1
k1
1ki11PLk*KL1*K fi*L*fhf*h*
〔5〕自动减载装置的延时与防止误动作
系统发生事故
电压急剧下降 增加一个时限
频率继电器可 能会误动作
自动低频减载装置采用一个的延时
地区变电站短时供电中断
•确定系统事故情况下最大的可能功率缺额,以及接入自动低频减 载装置的功率值,是系统平安运行的重要保证。
•一般应该根据最不利的运行方式下发生事故时,实际可能发生的 最大功率缺额来考虑。例如:按系统中断开最大机组,或者某一 电厂来考虑。
•一般希望系统切除负荷后的恢复频率要小于系统额定频率 fh fN
•自动低频减载装置的最大可能断开的功率PL.max要小于最大功率
f
1 KL
Ph
系统功率缺额 负荷的频率调节特性
f 50 Ph KL*PLN
系统功率缺额
ห้องสมุดไป่ตู้ 2、电力系统频率的动态特性
B系统
i
PAi
PBi
Uii
在系统稳态运行情况下
A系统 u i U m siiin ti
全电网统一的角频率
•当系统受到微小扰动时,系统频率仍然维持 f X ,PAi PBi 发生
变化, i 也发生变化。此时,母线电压的瞬时角频率为
i d dtXtiXdditXi
fi fXfi
•由于在扰动过程中,各母线电压的相角不可能具有相同的变化
率,因此,系统中各母线电压频率变化并一致。 f i
变化情况。
取决于
i
的
2、电力系统频率的动态特性
•电力系统由于有功功率的平衡遭到破坏,引起系统频率发生变 化,频率从正常状态过渡到另一个稳定值所经历的时间过程—
电力系统自动低频减载装置设计

电力系统自动低频减载装置设计设计背景随着电力系统负荷的不断增加和电力网络规模的扩大,电力系统频率异常变化的问题日益突出。
频率异常变化可能会导致发电机转子振动增大、发电机转矩波动、电力设备过热等,严重影响电力系统的正常运行和设备寿命。
因此,设计一种自动低频减载装置对于保护电力系统设备的稳定运行非常必要。
设计目标本设计的主要目标是实现对电力系统中频率异常变化的快速检测和自动减载,以保护电力系统设备免受频率异常的影响。
具体来说,设计要求如下:1.快速检测频率异常:装置能够实时监测电力系统的频率变化情况,对异常频率进行迅速判断。
2.准确判断异常变化:装置能够准确判断频率变化是否属于异常范围,避免误判和误报。
3.自动低频减载:一旦检测到频率异常变化,装置能够自动启动低频减载操作,保护设备免受影响。
4.故障自恢复:当频率恢复正常后,装置能够自动解除减载操作,确保电力系统快速恢复正常运行。
设计原理本设计主要依靠电力系统的频率检测模块和执行控制模块实现。
具体原理如下:1.频率检测:装置通过连接电力系统的频率检测装置,监测电力系统频率的变化情况。
通过对频率变化速度和幅度的检测,确定是否属于异常范围。
2.异常判断:装置内部设定异常范围并与检测到的频率变化进行对比,判断是否属于异常范围。
如果是异常变化,则进入下一步操作。
3.自动减载:装置通过控制电力系统负荷开关或关闭一部分负荷设备,实现低频减载操作。
这样可以降低电力系统负荷,使得发电机等设备不再过负荷运行,保护设备的正常运行。
4.故障恢复:当频率恢复正常后,装置自动解除低频减载操作,恢复电力系统的正常运行。
实施方案考虑到电力系统的复杂性和可靠性要求,进行实施方案设计时需要注意以下几个方面:1.模块化设计:将频率检测模块、异常判断模块、执行控制模块等划分为独立的模块,方便装置的维护和升级。
2.可靠性保障:采用双备份设计,确保装置的可靠性和稳定性。
设计备用频率检测模块和执行控制模块,确保一旦主模块故障,备用模块能够顺利接管,并及时发出警报。
第六章 电力系统自动低频减载及其他安全自动控制装置

§6-2 自动低频减载
p发生频率崩溃现象
当 f↓→ 47~48Hz时,火电厂的厂用机械 (如给水泵等 )的出力将显著 ↓,→锅炉出力↓,导致发电厂发电功率进一步↓,致使功率缺额 更为严重。于是系统 f 进一步↓,这样恶性循环将使发电厂运行受 到破坏,从而造成所谓 “ 频率崩溃 ” 现象。
p对汽轮机的影响
l
Ø Ø Ø Ø
本章重要内容
电力系统安全自动控制装置的意义 ; 低频运行对电力系统运行的影响; 电力系统频率的静态和动态特性; 自动低频减载的工作原理;
2
第六章 电力系统自动低频减载及其他安全自 动控制装置
n
n
n
随着电力工业的迅速发展,电力系统的规模日益增大。运 行经验表明 大系统事故将使国民经济蒙受巨大损失,给人 民生活造成 极大困难 。例如 1965年 11月 9日美国电力系统 事故大约 20万 km2 的区域停电 13 h 以上,停电负荷达 2500 万 kW。 所以,对于系统性事故采取有效对策,以提高电 力系统运行的可靠性具有特别重要的实际意义。 当电力系统发生某些故障时,如不及时采取措施,就有可 能引起连锁反应,使事故扩大,以致危及整个系统的安全 运行。 本章所介绍的电力系统中常见的几种自动装置就是针对危 及系统安全运行的故障所采用的自动化对策,它们的主要 任务是,当系统发生某些故障时,按照预定的控制准则迅 速作出反应,采取必要措施避免事故扩大。
运行经验表明,某些汽轮机长时期在 f < 49~49.5Hz以下运行时,叶 片容易产生裂纹,当 f ↓→ 45Hz附近时,个别级的叶片可能发生共 振而引起断裂事故。
p发生电压崩溃现象
当 f↓时,励磁机、发电机等的 n相应↓,由于发电机的电动势↓和 电动机 n↓,加剧了系统无功不足情况,使系统电压水平↓。运行 经验表明,当 f ↓→ 46~45Hz时,系统电压水平受到严重影响,当 某些中枢点电压低于某一临界值时,将出现所谓 “ 电压崩溃 ” 现象, 系统运行的稳定性遭到破坏,最后导致系统瓦解。
第二节 低频减载及低压减载

第二节低频减载及低压减载一、自动低频减载的基本原理这部分我们将要介绍自动低频减载的基本原理:低频减载又称自动按频率减负载,或称低周减载(简称为AFL),是保证电力系统安全稳定的重要措施之一。
当电力系统出现严重的有功功率缺额时,通过切除一定的非重要负载来减轻有功缺额的程度,使系统的频率保持在事故允许限额之内,保证重要负载的可靠供电。
图11-7 自动低频减载(负载)的工作原理基本级的作用是根据系统频率下降的程序,依次切除不重要的负载,以便限制系统频率继续下降。
例如,当系统频率降至f1时,第一级频率测量元件启动,经延时△t1后执行元件CA1动作,切除第一级负载△P1;当系统频率降至f2时,第二级频率测量元件启动,经延时△t2后元件CA2动作,切除第二级负载△P2。
如果系统频率继续下降,则基本级的n级负载有可能全部被切除。
当基本级全部或部分动作后,若系统频率长时间停留在较低水平上,则特殊级的频率测量元件fsp启动,以延时△tsp1后切除第一级负载△Psp1;若系统频率仍不能恢复到接近于fn,则将继续切除较重要的负载,直至特殊级的全部负载切除完。
基本级第一级的整定频率一般为47.5-48.5Hz,最后一级的整定频率一般为46-46.5 Hz,相领两级的整定频率差取0.4-0.5 Hz。
当某一地区电网内的全部自动按频率减负载装置均已动作时,系统频率应恢复到48-49.5 Hz以上。
特殊级的动作频率可取47.5~48.5Hz,动作时限可取15~25s,时限级差取5s左右。
1. AFL的基本要求:能在各种运行方式和功率缺额的情况下,有效地防止系统频率下降至危险点以下。
切除的负载应尽可能少,无超调和悬停现象。
应能保证解列后的各孤立子系统也不发生频率崩溃。
变电站的馈电线路故障或变压器跳闸造成失压,负载反馈电压的频率衰减时,低频减负载装置应可靠闭锁。
电力系统发生低频振荡时,不应误动。
电力系统受谐波干扰时,不应误动。
2. 对自动低频减载闭锁方式的分析:(1)时限闭锁方式。
电力系统自动装置 第3版 第六章 电力系统自动低频减载装置

5、电力系统受谐波干扰时,低频减载装置不应 误动作。
§6-2 自动低频减载装置的工作原理 二、最大功率缺额的确定
当系统出现有功功率缺额时,为了使停电的用户 尽可能少,一般希望系统频率恢复到可运行的水平 即可,并不要求恢复到额定频率,即系统恢复频率 小于额定功率。这样,低频减载装置可能断开的最 大功率△ PL.max 可小于最大功率缺额△Ph.max 。设正常 运行时系统负荷为 PL ,根据式(6-7)可得
Ph.max PL.max PL PL.max
K Lf
PL. m a x
Ph. m a x 1
K L PL f K Lf
§6-2 自动低频减载装置的工作原理 三、自动低频减载装置动作顺序
根据起动频率的不同,低频减载装置可分为若 干级,按所接负荷的重要性又分为n个基本级和n个 特殊级。
1、基本级。基本级的作用是根据频率下降的程 度,依次切除不重要的负荷,制止系统频率的继续 下降。为了确定基本级的级数,首先应该确定第一 级起动频率 f1 和最末一级起动频率 fn 的数值。
§6-1 概述 一、低频运行的危性
(3)系统频率若长时间运行在49.5~49Hz以下 时,某些汽轮机的叶片容易产生裂纹;当频率 降低到45Hz附近时,汽轮机个别级别的叶片可 能发生共振而引起断裂事故。
运行实践表明:电力系统的运行频率偏差不 超过±o.2Hz;系统频率不能长时间运行在(49 .5~49)Hz以下;事故情况下.不能较长时间 停留在47Hz以下;系统频率的瞬时值绝对不能 低于45Hz。
§6-1 概述 二、系统的动态频率特性
§6-2 自动低频减载装置的工作原理 一、对自动低频减载装置的基本要求
电力系统自动低频减载及其他安全控制装置

演讲人
目录
01. 自动低频减载 02. 其他安全控制装置 03. 电力系统安全控制技术 04. 电力系统安全控制装置的应
用案例
自动低频减载
工作原理
自动低频减载装置通过检测电网频 率,判断电网是否处于低频状态。
当电网频率低于设定值时,自动低频 减载装置启动,开始切除部分负荷。
01
某地区通过部署 安全控制装置, 实现了对电力系 统的实时监控和 预警
03
02
某变电站通过安 装安全控制装置, 提高了电力系统 的稳定性和可靠 性
04
某发电厂通过使 用安全控制装置, 提高了发电效率 和能源利用率
案例启示
案例一:某地区电 网发生故障,自动 低频减载装置成功 避免大面积停电
案例三:某地区遭 遇恶劣天气,自动 低频减载装置成功 保障了电力系统的 稳定运行
降低电力系统损 失:自动低频减 载技术可以减少 系统损失,提高 电力系统效率。
支持可再生能源 并网:自动低频 减载技术可以支 持可再生能源并 网,提高可再生 能源的利用率。
电力系统安全控制装 置的应用案例
实际案例分析
01 案例一:某地区电网发
生故障,自动低频减载
装置成功切除部分负荷,
保障电网稳定运行。
网络化:利用网络技术实现远程监控和 控制,提高系统的可维护性和灵活性
绿色化:采用节能环保技术,降低能 源消耗,减少对环境的影响
关键技术
低频减载技术:自动 切除部分负荷,保持
系统稳定
故障诊断技术:实时 监测系统状态,及时
发现故障
快速保护技术:快速 切断故障,防止系统
崩溃
负荷预测技术:预测 未来负荷需求,优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
page21
装置动作顺序
2019/11/2
page22
装置动作顺序
f 2f ft f y f-最大误差频率0.15 ~ 0.015Hz ft-对应于t的频率变化0.15Hz f y-频率裕度0.05Hz
★一般0.5Hz,对于微机式装置,可达0.2~0.3Hz
2019/11/2
★负荷的频率调节效应系数:衡量调节效应的大小。
PL*
2019/11/2
标么值K L*
tan
dPL* df*
PL* f*
有名值K L
PL f
换算关系K L*
KL
*
fN PLN
f* f P P fN * P
KL
K
L*
*
PLN fN
K L* * PLN
page7
电力系统自动低频减载
内容 一、低频减负荷原理 二、最大功率缺额及切除功率计算 三、装置动作顺序 四、各轮最佳断开功率 五、低频减负荷相关问题 六、低频减负荷装置简介
2019/11/2
page2
一、电力低系频统减低频负减荷负原荷理的重要性
Pt
A
B
★情况1:B系统负荷突然增加 ★情况2:A系统电源突然减少 ★情况3:系统间一条联络线突然切除 ★结果:出现功率缺额,系统频率降低,可能失稳
2019/11/2
page3
二、电低力频系统减频负率荷控原制理的基本方法
m
m
m
PTi PGi PLi
1
1
1
一次调频
☆控制频率
★发电侧:控制 原动机出力
二次调频 经济运行
★负荷侧:控制 负荷大小
低频减负荷 DSM
2019/11/2
page4
2019/11/2
三、低低频频减减负负荷装荷置原的理工作原理
page19
装置动作顺序
☆(二)末级启动频率的选择: ★原则:防止“电压崩溃”,“频率崩溃”
★46~46.5Hz
2019/11/2
page20
装置动作顺序
☆(三)频率级差的选择: ★原则1:按照选择性确定级差
在前一级动作以后还不能制止频率下降的情况下,后一 级才动作。
★优点:保证不会多切除负荷
2019/11/2
PT* PG*
JN 2 PGNN
d () dt
Tx
d (*) dt
其中Tx
JN 2 PGN
page9
六、系低统频的减频负率荷动原态特理性
2019/11/2
Tx
*
PGN PLN
*
d (f*) dt
PT *
PL*
PT *
(1
K L*
* f*)
Tx
*
PGN PLN
最大功率缺额及切除功率计算
例:某系统总额定容量450MW,此时系统中负荷功率430MW, 负荷调节效应系数为KL*=1.5。设此时发生故障,突然切除额定 容量100MW的发电机组,如不采取措施,求事故情况下的稳态 频率。
解:系统的热备用容量20MW,实际缺额为
100- 20 80MW
f fN * P 50*80 6.2Hz KL* * PLN 1.5* 430
page11
低频减负荷原理
★(1)频率下降值与功率缺额成正比 ★(2)如果切除负荷等于功率缺额,则频率恢复到原值 ★(3)如果切除负荷小于功率缺额,则
情况1:频率恢复到低于原值的某个值 情况2:频率继续下降到某个值
2019/11/2
page12
七、低低频频减减负负荷装荷置原动理作过程
2019/11/2
page23
装置动作顺序
★原则2:不按照选择性确定级差
增加级数,减小级差,减小每级的切除功率,即使两级 间的选择性不好,也影响不大。
f fN f 50 6.2 43.8Hz
2019/11/2
page8
六、系低统频的减频负率荷动原态特理性
2019/11/2
PT
PGFra bibliotekd (W ) dt
d(1 * J *2) 2 dt
J
d () dt
两边除以PGN
PT* PG*
J PGN
d () dt
考虑角速度变化不大
PL
m
-接入装置的最大切除功率
ax
Ph
m
a
-最大功率缺额
x
K
-负荷频率调节效应系数
L*
f*-频率偏差
2019/11/2
page17
最大功率缺额及切除功率计算
例1:某系统负荷总功率5000MW,系统的最大功率缺额 1200MW,负荷调节效应系数为2,希望系统恢复频率48Hz,求 接入低频减负荷装置的功率?
*
d (f*) dt
K L*
* f*
Ph*
Txf
d
(f* dt
)
f*
Ph* K L*
Txf 系统频率下降过程的时间常数
Txf
Tx K L*
* PGN PLN
一般为4 ~ 10s
Ph* 功率缺额(标么值)
KL* 负荷调节效应系数
page10
低频减负荷原理
2019/11/2
解:
f*
50 48 50
0.04
PL m a x
1200 5000* 2*0.04 1 2*0.04
870MW
2019/11/2
page18
装置动作顺序
☆(一)第一级启动频率的选择: ★原则1:保证及早切除负荷,延缓功率下降 ★原则2:躲过热备用的延迟
★48.5~49Hz
2019/11/2
page13
最☆大最功大率功缺率额缺额及的切确除定功率计算
★(1)按系统中断开的最大容量机组考虑 ★(2)按断开发电厂高压母线考虑 ★(3)系统解列后各部分可能的功率缺额
★从系统调度角度进行协调处理
2019/11/2
page14
最大功率缺额举及例切除功率计算
2019/11/2
page15
最大功☆率切缺除额功率及计切算除功率计算
★方案1:接入装置的负荷功率等于全部缺额
缺点:切除功率过多
★方案2:接入装置的负荷功率小于全部缺额
缺点:频率将不能恢复到额定值
2019/11/2
page16
最大功率缺额及切除功率计算
Phmax PLmax PLN PLmax
K L*f*
PL m a x
Phmax K L*PLN f* 1 KL*f*
发生较大事故
机组有功出力增加至上限
功率缺额依然存在 切除部分负荷
低频减负 荷装置
频率恢复
page5
四、切低除频负减荷负的原荷则原理
☆1、对于医院、铁路等重要用户,不能接入装置 ☆2、对于可以短时停电的用户,可以接入 ☆3、有次序、按计划的切除负荷 ☆4、切除负荷量适当
2019/11/2
page6
五、系低统频的减频负率荷静原态特理性