第十五章---分式方程(知识点+题型分类练习)

合集下载

八上数学第十五章知识点总结

八上数学第十五章知识点总结

八上数学第十五章知识点总结一、分式的概念。

1. 分式的定义。

- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。

例如(x)/(x + 1),(1)/(x)等都是分式,而(3)/(5)不是分式,因为分母5是常数,不含有字母。

2. 分式有意义的条件。

- 分式(A)/(B)有意义的条件是B≠0。

例如对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,该分式有意义。

3. 分式的值为零的条件。

- 分式(A)/(B)的值为零的条件是A = 0且B≠0。

比如对于分式(x - 1)/(x+1),当x - 1 = 0(即x = 1)且x+1≠0(x≠ - 1)时,分式的值为0。

二、分式的基本性质。

1. 基本性质。

- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

即(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。

例如(2x)/(3y)=(2x×2)/(3y×2)=(4x)/(6y)。

2. 约分。

- 把一个分式的分子与分母的公因式约去,叫做分式的约分。

例如对于分式(6x^2y)/(9xy^2),分子分母的公因式是3xy,约分后得到(2x)/(3y)。

- 最简分式:分子与分母没有公因式的分式叫做最简分式。

像(x + 1)/(x^2+1)就是最简分式。

3. 通分。

- 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

通分的关键是确定最简公分母。

例如对于分式(1)/(x)和(1)/(x + 1),最简公分母是x(x + 1),通分后分别为(x+1)/(x(x + 1))和(x)/(x(x + 1))。

三、分式的运算。

1. 分式的乘除。

- 分式的乘法法则:分式乘分式,用分子的积做积的分子,分母的积做积的分母。

即(A)/(B)·(C)/(D)=(A· C)/(B· D)。

分式方程(知识点+典型例题)完美打印版

分式方程(知识点+典型例题)完美打印版

考点4 分式方程的特殊解问题【例7】若关于x 的方程2222=-++-xm x x 的解为正数,求m 的取值范围?【例8】已知关于x 的分式方程21a x ++=1的解是非正数,则a 的取值范围是( ) A .a≤-1B .a≤-1且a≠-2C .a≤1且a≠-2D .a≤1【例9】如图,点A ,B 在数轴上,它们所对应的数分别是3-和xx--21,且点A ,B 到原点的距离相等,求x 的值.【课堂练习】 1、分式方程0131-x 2=+-x 的解为( )[来源Com] A .x=3 B .x=﹣5 C .x=5 D .无解2、关于x 的分式方程=1的解为正数,则字母a 的取值范围为( )A. a≥﹣1B. a >﹣1C. a≤﹣1D. a <﹣1 3、若分式方程)2)(1(11+-=--x x m x x 有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和-2 D 、3 4、关于x 的分式方程1mx +=-1的解是负数,则m 的取值范围是( ) A .m >-1 B .m >-1且m≠0 C .m≥-1D .m≥-1且m≠05、方程201x xx +=+的根是 。

6、分式方程2111x x x +--=3的解是 。

-3xx --21 B .A .7、若关于x 的方程15102x mx x-=--无解,则m= 。

8、已知关于x 的分式方程2122=--x a x 的解为非负数,求a 得取值范围。

9、的值求有增根若分式方程m x x m x x ,)2)(1(11+-=--【课后作业】1、解分式方程x x -2=2+3x -2,去分母后的结果是( )A .x =2+3B .x =2(x -2)+3C .x(x -2)=2+3(x -2)D .x =3(x -2)+2 2、若分式的值为0,则x 的值是( )A. x=3B. x=0C. x=﹣3D. x=﹣43、若3x 与61x -互为相反数,则x 的值为( ) A.13 B.-13C.1D.-1 4、若方程32x x --=2mx-无解,则m=——————.5、已知x =2y +33y -2,用x 的代数式表示y ,则y =____.6、解方程:(1)x x 332=-; (2)11322x x x -=--- (3)2240x-11x -=-。

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。

人教版八年级数学上册考点与题型归纳 15.3 分式方程

人教版八年级数学上册考点与题型归纳 15.3 分式方程

人教版八年级数学上册考点与题型归纳第十五章分式15.3 分式方程一:考点归纳考点一:分式方程的意义分母中含有未知数的方程叫做分式方程.考点二:分式方程的解法:⑴去分母,把方程两边同乘以各分母的最简公分母。

(产生增根的过程)⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

考点三:分式方程解应用题基本步骤①审—仔细审题,找出等量关系。

②设—合理设未知数。

③列—根据等量关系列出方程(组)。

④解—解出方程(组)。

注意检验⑤答—答题。

二:【题型归纳】题型一:分式方程的意义1.如果关于x 的分式方程m 2x x 22x ---=1有增根,那么m 的值为( ) A .4B .﹣4C .2D .﹣2题型二:分式方程的解 2.解分式方程211112x x x x --=--时,去分母后得到的方程正确的是( ) A .211x x x -+=- B .2421x x x -+=-C .2421x x x +-=-D .211x x x +-=- 3.解方程:242111x x x x +=-+-题型三:分式方程解答应用题 4.学校为满足学生体育运动的需求,计划购买一定数量的篮球和足球.若每个足球的价格比篮球的价格贵15元,且用600元购买篮球的数量与用800元购买足球的数量相同.设每个篮球的价格为x 元,则可列方程为( )A .60080015x x =+ B .60080015x x =- C .60080015x x =+ D .60080015x x =-5.山西民间的雕刻艺术源远流长,主要以古代传统吉祥纹样为素材,以石雕、木雕砖雕等形式,来体现主人的高尚情操和文化修养以及人们的美好愿望.某木雕经销商购进“木象”和“木马”两种雕刻艺术品,购“木象”艺术品共用了2000元,“木马”艺术品共用了2400元已知“木马”每件的进价比“木象”每件的进价贵8元,且购进“木象”“木马”的数量相同.()1求每件“木象”、“木马”艺术品的进价;()2该经销商将购进的两种艺术品进行销售,“木象”的销售单价为60元,“木马”的销售单价为88元,销售过程中发现“木象”的销量不好,经销商决定:“木象”销售一定数量后,将剩余的“木象”按原销售单价的七折销售;“木马”的销售单价保持不变要使两种艺术品全部售完后共获利不少于2460元,问“木象”按原销售单价应至少销售多少件?三:基础巩固和培优一、单选题1.如果关于x 的方程2133m x x =---无解,则m 的值等于( ) A .﹣3B .﹣2C .﹣1D .3 2.分式方程71222x x+=--的解是( ). A .1x =B .2x =C .2x =-D .4x = 3.若关于x 的方程62033x m x x --=--有增根,则m 的值是( )A .32B .23-C .3D .3-4.县城建局对某一条街的改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x 天,则所列方程正确的是( )A .4116x x x +=+-B .116x x x =-+C .4116x x x +=--D .4116x x x +=-+ 5.若关于x 的方程111ax x +=-有增根,则a =( ) A .1- B .3- C .1 D .36.关于x 的方程2311x m x -=-的解是正数,m 的值可能是( ) A .23 B .12C .0D .-17.对于两个不相等的实数a ,b ,我们规定符号Max(a ,b)表示a ,b 中的较大的值,如Max(2,4)=4,按照这个规定,方程Max( 1x , 2x )=1- 3x的解是( ) A .x=4B .x=5C .x=4或x=5D .无实数解8.某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm ,则根据题意可得方程( )A .240024008(120%)x x-=+ B .240024008(120%)x x -=+ C .240024008(120%)x x -=- D .240024008(120%)x x-=-9.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠- D .a 1>且a 2≠10.已知关于x 的分式方程433x k x x-=--的解为非正数,则k 的取值范围是( ) A .k≤-12B .k≥ -12且k ≠ -3C .k>-12D .k<-12二、填空题 11.若关于x 的分式方程12224x a a x x ++=--无解,则a 的值为__________. 12.当m =______时,分式方程233x m x x-=--会出现增根 13.x=1是关于x 的方程2x -a=0的解,则a 的值是_____.14.若数a 使关于x 的不等式组542x x a<⎧⎨-≥⎩有且只有四个整数解,且使关于y 的方程2211y a a y y ++=--的解为非负数,则符合条件的正整数a 的值为___________.15.若关于x 的分式方程a b x =的解为1a b +,我们就说这个方程是和解方程.比如:24x=-就是一个和解方程.如果关于x 的分式方程3n n x =-是一个和解方程,则n =___________.三、解答题16.解分式方程(1)32122x x x-=--- (2) 2216224x x x x x +-=-+- 17.若关于x 的方程233x m x x -=--的解为正数,求m 的取值范围 18.解方程:22311x x x++=-- 19.清明时节,张老师和王老师组织八年级1班学生步行到距学校10.8千米的烈士陵园扫墓.出发时,王老师带领学生先出发,30分钟后,张老师骑自行车出发,张老师骑自行车的速度是学生步行速度的2倍,当学生到达烈士陵园时,张老师已经到达1个小时,并为大家买好了扫墓门票.(1)求学生的步行速度和张老师骑自行车的速度各是多少;(2)当张老师追上学生时,距离烈士陵园还有多远?20.端午节是中华民族的传统节日,全国各地素来都有端午节吃粽子的习俗.在今年端午节前夕,某商场采购了一批甲、乙两种品牌的粽子共600盒,其中采购甲品牌粽子花费7200元,采购乙品牌粽子花费9600元,已知每盒甲品牌粽子的进价是乙品牌粽子进价的1.5倍.(1)求该商场采购的甲、乙两种品牌的粽子每盒进价分别是多少元.(2)该商场原计划确定甲品牌粽子的售价为60元/盒,乙品牌粽子的售价为32元/盒.后调整销售策略,对甲品牌粽子进行打折销售,乙品牌粽子按原价售出.若要使购进的甲、乙两种品牌的粽子全部售出后所获利润不低于5600元,则每盒甲品牌粽子最低能打几折?21.阅读下列材料∶11x c x c +=+的解是12111,,x c x x c c x c ==-=-的解是121,x c x c ==-22x c x c +=+的解是12233,,x c x x c c x c ==+=+的解是123,x c x c== (1)请观察上述方程与解的特征,猜想方程m m x c x c -=-的解分别为:1x =___ ,2x =___ .(2)利用这个结论可得关于x 的方程;4455x x +=的解为:1x =___ ,2x =___ . (3)利用这个结论求解关于x 的方程:3225x x -=参考答案题型归纳1.B2.C3.x=24.A5.()1 “木象”艺术品每件进价为40元,“木马”艺术品每件进价为48元.()2至少销售20件.基础巩固和培优1.B2.C3.A4.D5.A6.B7.B8.A9.D10.A11.2a =-或32a =-12.-1.13.214.2 15.3416.(1)16x =;(2)无解 17.6m >-,且3m ≠-18.34x =. 19.(1)学生的步行速度为3.6千米/时,张老师骑自行车的速度为7.2千米/时;(2)当张老师追上学生时,距离烈士陵园还有 7.2千米20.(1)每盒甲品牌粽子进价为36元,每盒乙品牌粽子进价为24元;(2)每盒甲品牌棕子最低打8折21.(1) c ,m c -;(2)5,45;(3)1235,5x x ==-。

【人教版】八年级数学上册 第十五章《分式方程及其应用》(讲义+习题+随堂测试及答案)

【人教版】八年级数学上册 第十五章《分式方程及其应用》(讲义+习题+随堂测试及答案)

分式方程及其应用(讲义)➢课前预习1.请回顾相关知识,填空:2.回忆并背诵应用题的处理思路,回答下列问题:(1)理解题意,梳理信息.梳理信息的主要手段有_______________________________.(2)建立数学模型.建立数学模型要结合不同特征判断对应模型,如:①共需.同时.刚好.恰好.相同……,考虑___________;②不超过.不多于.少于.至少……,考虑_____________. (3)求解验证,回归实际.主要是看结果是否_________________. ➢ 知识点睛1. 分式方程的定义:__________________的方程叫做分式方程.2. 解分式方程:根据________________,把分式方程转化为__________求解,结果必须_______,因为解方程的过程中有可能产生______. 增根产生的原因是方程两边同乘了一个_________________.3. 列分式方程解应用题,也要进行___________.➢ 精讲精练1. 下列关于x 的方程是分式方程的有__________.(填写序号)①315x -=;②x x π=π;③11123x y -=;④1152x x +=+;⑤11x a b =-. 2. 已知方程2512kx x +=+的解为1x =,则k =_________.3. 解分式方程:(1)2115225x x x ++=--; (2)100602020x x=+-; (3)3201(1)x x x x +-=--; (4)2216124x x x ++=---;(5)2236111x x x +=+--; (6)2221114268x x x x x +-=----+.4. 对于分式方程,下列说法一定正确的是( )A .只要是分式方程,一定有增根B .分式方程若有增根,把增根代入最简公分母,其值一定为0C .使分式方程中分母为零的值,都是此方程的增根D .分式方程化成整式方程,整式方程的解都是原分式方程的解5. 若分式方程1322m x x x -=---有增根,则m 的值为( ) A .2 B .3 C .1 D .1-6. 若分式方程11222kx x x-+=--有增根,则k 的值为( ) A .2- B .1- C .1 D .27. 若分式方程61(1)(1)1mx x x -=+--有增根,则它的增根是( )A .0B .1C .1-D .1和1-8. 若分式方程342(2)a x x x x =+--有增根,则增根可能为( ) A .0 B .2 C .0或2 D .19. 某校用420元钱到商店购买笔记本,经过还价,每本便宜0.5元,结果多买了20本,则原价每本多少元?设原价每本x 元,则由题意列出的方程为( )A .420420200.5x x -=- B .420420200.5x x -=- C .4204200.520x x -=-D .4204200.520x x-=-10. 已知A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时.若水流速度为4千米/时,设该轮船在静水中的速度为x 千米/时,则由题意列出的方程为( ) A .4848944x x +=+-B .4848944x x +=+- C .4849x+=D .9696944x x +=+-11. 为保证某高速公路在2016年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲.乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,则由题意列出的方程为( )A .111104014x x x +=--+ B .111104014x x x +=++- C .111104014x x x -=++- D .111101440x x x +=-+- 12. 某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.(1)第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,则每支售价至少是多少元?13.公交快速通道开通后,小王上班由骑电动车改为乘坐公交车.已知小王家距上班地点9千米,他用乘公交车的方式平均每小时行驶的路程比他用骑电动车的方式平均每小时行驶的路程的1.5倍还多5千米,他从家出发到达上班地点,乘公交车方式所用时间是骑电动车方式所用时间的4.小王用骑电动车方式上班平均每7小时行驶多少千米?【参考答案】➢课前预习1.等式,消元不等号,不等式2.(1)列表,画线段图或示意图(2)①方程模型;②不等式模型(3)符合实际情况➢知识点睛1.分母中含有未知数2.等式的基本性质,整式方程,检验,增根使分母为零的整式3.检验➢精讲精练1.②④2.-13.(1)4x=3(2)5x=(3)无解(4)无解(5)无解(6)x=14.B5.C6.C7.B8.A9.B10. A11. B12. (1)第一次每支铅笔的进价是4元(2)每支售价至少是6元13.小王用骑电动车方式上班平均每小时行驶20千米分式方程及其应用(习题)➢ 例题示范 例1:解分式方程:11322x x x-=---. 【过程书写】1(1)3(2)1136242x x x x x x =----=-+-+==解:检验:把x =2代入原方程,不成立 ∴x =2是原分式方程的增根 ∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度. 【思路分析】 列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h , 由题意得,1201200.51.2x x =-解得,x =40经检验:x =40是原方程的解,且符合题意 答:慢车的速度是40km/h . ➢ 巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a ba x a++= B .xa b x b a +=-11 C .bx a a x 1-=+ D .1=-+++-nx mx m x n x 2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( )A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程2(1)3(1)6x x -++= C .解这个整式方程,得1x = D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( ) A .1515112x x -=+ B .1515112x x -=+C .1515112x x -=- D .1515112x x -=- 4. 若方程61(1)(1)1mx x x -=+--有增根,则m =_________.5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是___________.6. 解分式方程:(1)43(1)1x x x x +=--; (2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--; (4)11222x x x-=---.7. 某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍.A,B两车间共同完成一半的生产任务后,A车间因出现故障而停产,剩下的全部由B车间单独完成,结果前后共用了20天完成全部生产任务.则A,B两车间每天分别能加工多少件该款夏装?【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】【参考答案】 ➢ 巩固练习1. C2. D3. B4. 35.x =36. (1)x =2(2)43x = (3)无解 (4)无解7. A 车间每天能加工384件该款夏装B 车间每天能加工320件该款夏装8. 商厦共盈利90260元分式方程及其应用(随堂测试)1. 下列关于x 的方程:①2103x -=;②x x 3=π-1;③31πy x -=;④13+4x=; ⑤11x a b =-;⑥2153x x x -=--. 其中属于分式方程的是________________.(填序号) 2. 解方程:214111x x x +-=--.3. 如果解关于x 的分式方程1132x k x x+-=--出现了增根,那么增根是_________,k 的值是________.【参考答案】 1. ②④⑥2. x =1是原方程的增根,原分式方程无解3.2x =,4. 1。

(完整)第十五章--分式方程(知识点+题型分类练习),推荐文档

(完整)第十五章--分式方程(知识点+题型分类练习),推荐文档
第 10 页 共 10 页

2x a
6.(2013•牡丹江)若关于 x 的分式方程 x 1 =1 的解为正数,那么字母 a 的取值范围是

x 3a
7.(2013•齐齐哈尔)若关于 x 的分式方程 x 1 2x 2 -2 有非负数解,则 a 的取值范围是

8.若分式方程 x 2 a 有增根,则 a 的值为
x4
x4
()
(m≠0)
3、 约分:根据
把一个分式分子和分母的
约去叫做分式的约分。
约分的关键是确保分式的分子和分母中的
,约分的结果必须是
分式。
4、通分:根据
把几个异分母的分式化为
分母分式的过程叫做分式的通分,通分的
关键是确定各分母的
提醒:①最简分式是指
② 约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的
1
0
的根.
2.(2012•遵义)先化简
(
x
x 1
x
x2
) 1
x2
x2
x 2x
1
,并从-1≤x≤3
中选一个你认为合适的整数
x
代入求
值.
3.先化简,再求值:
2
4 x
x2 x
4
,其中
x=﹣4.
4 x2
x
x
22
4.先化简,再求值: x 1
,其中 x=
7.
第 5 页 共 10 页
5.先化简,再求值:

x 1 m
16.(2013•威海)若关于 x 的方程 x 5 10 2x 无解,则 m=

考点二、解分式方程
1.解下列分式方程

初二数学上册(人教版)第十五章分式15.5知识点总结含同步练习及答案

初二数学上册(人教版)第十五章分式15.5知识点总结含同步练习及答案

高考不提分,赔付1万元,关注快乐学了解详情。
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 若关于 x 的方程 A.0
答案: C
2x − a = 1 无解,则 a 的值等于 ( x−1 B.1 C.2
)
D.4
2. 分式方程 A.2
答案: C
1 m 有增根,则增根为 ( = x−2 x+1
B.−1
)
C.2 或 −1 D.无法确定
两边平方,得
− − − + 5x + 20. x + 8 = 4 + 4√− 5− x− + 20
整理,得
− − − = −x − 4 . √− 5− x− + 20
两边平方,整理得
x2 + 3x − 4 = 0 .
解得
x1 = −4,x2 = 1.
经检验:当 x = 1 时,原方程不成立,所以 x = 1 是增根,舍去. 所以,原方程的根为x = −4.
)
D.−0.5 或 −1.5
x (x − 3) ,得 (2m + x) x − x (x − 3) = 2 (x − 3),即 (2m + 1) x = −6, ⋯ ⋯ ① (1)∵ 当 2m + 1 = 0 时,此方程无解,∴ 此时 m = −0.5 . 2m + x 2 (2)∵ 关于 x 的分式方程 无解,∴ x = 0 或 x − 3 = 0 ,即 x = 0, −1 = x−3 x x = 3,当 x = 0 时,代入 ①,得 (2m + 1) × 0 = −6 ,解得此方程无解;当 x = 3 时,代入 ①,得 (2m + 1) × 3 = −6 ,解得 m = −1.5 . ∴ m 的值是 −0.5 或 −1.5 .

(完整版)第十五章分式知识点归纳与整理

(完整版)第十五章分式知识点归纳与整理

第十五章分式知识点归纳与整理§15.1分式1.分式的概念形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母 整式和分式统称有理式。

特别注意:1π不是分式。

2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

MB MA MB M A B A ÷÷=••=(其中0,0≠≠B M ,且M B A ,,均表示的是整式) 【分式的约分】首先要找出分子与分母的公因式,再把分子与分母的公因式约去。

【分式的通分】通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母)。

§15.2 分式的运算1.分式的乘除【乘法法则】分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

注意:如果得到的不是最简分式,应该通过约分进行化简。

【除法法则】分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

2.分式的加减法同分母的分式相加减,分母不变,把分子相加减;异分母的分式想加减,先通分,变为同分母的分式,再把分子相加减。

3.分式的乘方【乘方法则】n n nb a b a =⎪⎭⎫⎝⎛【零指数幂】任何不等于零的数的零次幂都等于1。

【负整指数幂】任何不等于零的数的-N (N 为正整数)次幂,等于这个数的N 次幂的倒数。

【正整数指数幂运算性质】注意:这些性质在整数指数幂中同样适用。

4.科学记数法:把一个数表示成的形式10n a ⨯(其中101<≤a ,n 是整数)的记数方法叫做科学记数法。

(1)用科学记数法表示绝对值大于1的数时,应当表示为10n a ⨯的形式, 其中1≤︱a ︱<10,n 为原整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,则可表示为10n a -⨯的形式,其中n 为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a ︱<10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式提醒:①:若则分式AB无意义②:若分式AB=0,则应且二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。

1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=3、约分:根据把一个分式分子和分母的约去叫做分式的约分。

约分的关键是确保分式的分子和分母中的,约分的结果必须是分式。

4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分,通分的关键是确定各分母的提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分。

③约分通分时一定注意“都”和“同时”避免漏乘和漏除项。

三、分式的运算:1、分式的乘除①分式的乘法:ba•dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =3、分式的乘方:应把分子分母各自乘方:即(ba)m=四、分式方程的概念分母中含有的方程叫做分式方程【提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】二、分式方程的解法:1、解分式方程的基本思路是把分式方程转化为整式方程:即分式方程整式方程2、解分式方程的一般步骤:①、②、③、3、增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

【提醒:1、分式方程解法中的验根是一个必备的步骤,不被省略2、分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解。

如:131=---xxax有增根,则a= ,若该方程无解,则a= 。

三、分式方程的应用:解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须,既要检验是否为原方程的根,又要检验是否符合题意。

【提醒:分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型】重点考点例析考点一:分式有意义的条件1.如果分式3x1-有意义,则x的取值范围是A.全体实数 B.x=1 C.x≠1 D.x=02.(2012•宜昌)若分式21a+有意义,则a的取值范围是()3.当x= 时,分式3x2-无意义.4.若分式x3x2+-有意义,则x≠.考点二:分式值为01.如果分式2x12x2-+的值为0,则x的值是()A. 1 B.0 C.-1 D.±12.(2013贵州)分式2x1x1-+的值为零,则x的值为()A.﹣1 B.0 C.±1 D.13.若分式的值为0,则x的值为()A.4B.﹣4C.±4D.34.若分式的值为零,则的值是()A.0B.1C.D.-2 考点三、分式的基本性质运用1.下列选项中,从左边到右边的变形正确的是()A. B.C. D.2.下列从左到右的变形过程中,等式成立的是( ) A.=B.=C.=D.=3.(2011•遂宁)下列分式是最简分式的( )A.223aa b B.23aa a - C.22a b a b ++ D.222a a ba b--4.将分式约分时,分子和分母的公因式是 .考点四、分式加减运算1.计算2x x2x 2---的结果是( )A. 0B.1C.-1D.x2.化简2xx x11x+--的结果是( )A. x +1B.x 1-C.x -D.x3.化简a1a11a+--的结果为( )A.﹣1B.1C.a 1a1+- D.a 11a+-4.(2013•郴州)化简的结果为( )A.-1B.1C.D.5.计算:211x 1x1---= .6.已知,分式的值为 .考点五、分式乘除运算1.化简()1x y -÷⎪⎪⎭⎫ ⎝⎛-y x 1的结果是()A.x yB.yx -C.y xD.x y -2.化简分式2221x 1x 1x 1⎛⎫÷+ ⎪--+⎝⎭的结果是A.2B.2x1+ C.2x1- D.-23.(2013山东)化简212(1)211a a a a +÷+-+-的结果是( )A.11a-B.11a+C.211a - D.211a +4.(2013河北)若x+y =1,且,则x ≠0,则(x+2xy+y 2x ) ÷x+yx的值为_______.考点六:分式的化简与求值1.先化简,再求值:22m35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x3x 10++=的根.2.(2012•遵义)先化简222()1121x x x x x x x x --÷---+,并从-1≤x ≤3中选一个你认为合适的整数x 代入求值.3.先化简,再求值:24x 42x x -⎛⎫-÷⎪⎝⎭,其中x=﹣4.4.先化简,再求值:()()224xxx 2x 1-+--,其中.5.先化简,再求值:2x 11x x 1x2x ⎛⎫++÷-- ⎪⎝⎭,其中x 1=.6.先化简,再求值:2121(1)1a a a a++-+,其中1a =.7.先化简,再求值:,其中x 满足x 2+x ﹣2=0.8.先化简下式,再求值:22222xyx2yx yx y++-++,其中x1y 2==,;9.(2012•绥化)先化简,再求值:235(2)362m m m m m -÷+---.其中m 是方程x 2+3x-1=0的根.10.请你先将分式:111222+++-+-a aaa a a化简,再选取一个你喜欢且使原式有意义的数代入并求值.11.(2013•乐山)化简并求值:(1x-y + 1x+y )÷2x-y x 2-y2 ,其中x 、y 满足∣x-2∣+(2x-y-3)2=0.考点七:分式创新型题目1.(2013• 枣庄)对于非零实数a b 、,规定11a b ba⊕=-,若2(21)1x ⊕-=,则x 的值为A.56 B.54 C.32 D.16-2.定义运算“*”为:a *b a b b a+=-,若3*m =-15,则m = .分式方程专题练习考点一、分式方程的定义及方程的解 1.y 的方程是2.) A.1x= B.1x=-C.2x =D.2x=-A.a ≤-1B.a ≤-1且a ≠-2C.a ≤1且a ≠-2D.a ≤1A .m >-1B .m >-1且m ≠0C .m ≥-1D .m ≥-1且m ≠08.有增根,则的值为 ( )A.4B.2C.1D.0 9.解关于x 产生增根,则常数的值等于 ( )A.-1B.-2C.1D.210.(2011•齐齐哈尔)分式方程=有增根,则m 的值为( )A. 0和3B.1C. 1和﹣2D.3 11.若关于x = .12.若方程有增根x=5,则m= ﹣5 .a a m33--x x 的分式方程无解,则3.(2013•泰州)解方程:22222222x x x xx x x++--=--考点三、实际应用列方程或方程组解应用题:1.九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的1.5倍,求慢车的速度.2.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?3.一辆汽车开往距离出发地180千米的目的地,按原计划的速度匀速行驶60千米后,再以原来速度的1.5倍匀速行驶,结果比原计划提前40分钟到达目的地,求原计划的行驶速度.。

相关文档
最新文档