随机信号分析实验报告二 2

合集下载

随机信号分析实验报告

随机信号分析实验报告

《随机信号分析》实验报告二班级_______学号______姓名_______实验二高斯噪声的产生和性能测试1.实验目的(1)掌握加入高斯噪声的随机混合信号的分析方法。

(2)研究随机过程的均值、相关函数、协方差函数和方差。

⒉实验原理(1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。

(2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。

⒊实验报告要求(1)简述实验目的及实验原理。

(2)采用幅度为1,频率为25HZ的正弦信号为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。

试求随机过程的均值、相关函数、协方差函数和方差。

用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。

(3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。

(4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。

(5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。

4、源程序及功能注释(逐句注释)(1):clear all;clc;t=0:320;x=sin(2*pi*t*25);x1=wgn(1,321,0);z=x+x1;y=trapz(t,z);%y=int(z,x,0,t);subplot(3,2,1),plot(z);title('随机信号序列')meany=mean(z);subplot(3,2,3),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(3,2,4),plot(t,vary,'.');title('随机信号方差')cory=xcorr(z,'unbiased');%自相关函数subplot(3,2,2),plot(cory);title('随机信号自相关函数')covv=cov(y);subplot(3,2,5),plot(t,covv,'.');title('随机信号协方差')(2):t=[0:0.0005:0.045];X1=sin(2*pi*25*t);%正弦subplot(3,4,1);plot(t,X1);gridtitle('正弦函数序列');X2=randn(1,length(t)); %产生均值为0,方差σ^2=1,标准差σ=1的正态分布的随机数或矩阵的函数高斯随机信号%X2=normrnd(2,0.04); %高斯随机序列均值,标准差subplot(3,4,2);plot(t,X2);title('高斯噪声序列');X=X1+X2; %混合随机信号X(t)subplot(3,4,3);plot(t,X);gridtitle('混合随机信号');meany1=mean(X1); %原信号的均值subplot(3,4,6),plot(t,meany1);title('原信号均值');vary1=var(X1); %原信号的方差subplot(3,4,7),plot(t,vary1);title('原信号方差');cory1=xcorr(X1,'unbiased'); %原信号的自相关函数subplot(3,4,8),plot(cory1);title('原信号自相关函数');meany=mean(X); %混合信号的均值subplot(3,4,10),plot(t,meany);title('混合信号均值');vary=var(X); %混合信号的方差subplot(3,4,11),plot(t,vary);title('混合信号方差')cory=xcorr(X,'unbiased'); %混合信号的自相关函数subplot(3,4,12),plot(cory);title('混合信号自相关函数')covy=cov(X1,X); %协方差subplot(3,4,4),plot(covy);title('协方差');[f1,xi]=ksdensity(X1); %原信号的概率密度subplot(3,4,5);plot(xi,f1);title('原信号的概率密度分布)');[f2,xi]=ksdensity(X); %混合信号的概率密度subplot(3,4,9);plot(xi,f2);title('混合信号概率密度分布');(3):clcclear allclose allA = imread('dadian.jpg'); % 读入图像V=0.01;Noisy=imnoise(A,'gaussian',0,V);subplot(1,2,1),imshow(A),title('原图像');subplot(1,2,2),imshow(Noisy),title('加噪后图像'); (4):clcclear allclose allt=0:320;A = wavread('alert.wav'); % 读入音频x = double(A);y=awgn(x,2,0.04);%x1 = double(z);%y=x+x1;subplot(2,3,1),plot(y);title('随机信号序列')meany=mean(y);subplot(2,3,2),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(2,3,3),plot(t,vary,'.');title('随机信号方差')cory=xcorr(y,'unbiased');%自相关函数subplot(2,3,4),plot(cory);title('随机信号自相关函数')fy=fft(y);ym=abs(fy);subplot(2,3,5),plot(ym);title('随机信号频谱图')fz=fft(cory);zm=abs(fz);subplot(2,3,6),plot(zm);title('随机信号功率谱密度图')5. 实验总结(手写)可给出实验过程中遇到的问题、解决方法、自己的收获、可否有改进办法等。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。

2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。

[N1 N2]表示读取从N1点到N2点的值。

2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。

3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。

4、方差定义为随机过程的方差。

方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。

5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。

自相关函数可正,可负,其绝对值越大表示相关性越强。

6.哈明(hamming)窗(10.100)121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。

哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。

概率论与随机信号分析2

概率论与随机信号分析2

电子科技大学中山学院学生实验报告学院: 电子信息学院 课程名称: 概率论与随机信号分析一、实验目的1.了解随机信号的产生方法;2.产生实际信号进行验证。

二、实验原理1.均匀分布随机数的产生:①将已有的随机数存入列表,需要时直接使用;②利用物理方法制成随机数发生器,如热噪声、雪崩二极管等;③利用数学方法,产生伪随机数,12(,,...,)n n n n k u f u u u ---=,④线性或混合同余法:()1(mod )/n n n n y Ay B N u y N -=+=选择合适的系数A,B 就可以产生均匀分布随机数U[0,1)。

2.任意分布随机信号的产生。

由均匀分布的随机数可以构造出任意F(x)分布的随机数,最基本的方法是逆变换法。

给定分布函数F(X)(严格单调),由他的反函数F -1()对均匀分布随机变量U 进行变换,可得X=F -1(U),则X 的分布函数正好是F(X)。

3.产生参数为λ的指数分布随机信号,F(x)=1-e -λx 。

产生均匀分布随机数{u i };x i =-lnu i /λ或x i =-ln(1-u i )/λ4.产生正态分布随机信号。

(1)累加近似法:产生12个相互独立的u 1,u 2,…,u 12;计算x j =∑u i -6(2)变换法:①产生两个相互独立的均匀分布随机数u 1,u 2 ②122222x u x u ππ⎧=⎪⎨=⎪⎩5.随机信号的概率统计:用直方图表示随机信号的分布情况,从形状上判断与理论曲线的关系。

三、实验内容与步骤程序代码:close allclear alln=500; %随机数数量x=rand(1,n);subplot(2,1,1);plot(x,'.');cc=sprintf('1.Random Numbers n=%d',n);title(cc);subplot(2,1,2);m1=mean(x); %均值c1=std(x); %标准差m=20; %直方图区间数hist(x,m); %绘制直方图grid oncc=sprintf('Histogram n=%d',n);title(cc);cc=sprintf('mean=%5.2f',m1);gtext(cc);cc=sprintf('C^2=%5.3f',c1*c1);gtext(cc);1、产生均匀分布随机数~U(0,1),并对其进行概率统计和参数估计,显示其均值、方差和概率分布图(运行以上程序可得如下图像):。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

随机信号分析报告实验

随机信号分析报告实验

实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法;2、实现随机序列的数字特征估计。

二、实验原理1. 随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky Mod y y n n n n /))((110===-, (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: (1) 7101057k 10⨯≈==,周期,N ;(2) (IBM 随机数发生器)8163110532k 2⨯≈+==,周期,N ; (3) (ran0)95311027k 12⨯≈=-=,周期,N ;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -= (1.2)由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2. MATLAB 中产生随机序列的函数(1) (0,1)均匀分布的随机序列 函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。

(2) 正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《随机信号分析》实验报告二班级:学号:姓名:实验二高斯噪声的产生和性能测试1.实验目的(1)掌握加入高斯噪声的随机混合信号的分析方法。

(2)研究随机过程的均值、相关函数、协方差函数和方差。

⒉实验原理(1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。

(2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。

⒊实验报告要求(1)简述实验目的及实验原理。

(2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。

为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。

试求随机过程的均值、相关函数、协方差函数和方差。

用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。

(3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。

(4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。

(5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。

4、源程序及功能注释(2)源程序:clear all;clc;t=0:320; %t=0:320x=sin(2*pi*t/25); %x=sin(2*p1*t/25)x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbwz=x+x1; %z=x+x1;y=trapz(t,z); %y=int(z,x,o,t),返回到从0到t的定积分z,积分变量为xsubplot(2,3,1),plot(z); %将图像窗口分为6个画图区,在第一个区域画图,以z为纵坐标title('随机信号序列') %命名图像meany=mean(z); %返回y中表示的平均值subplot(2,3,2),plot(t,meany,'.'); %在第二个区域画图title('随机信号均值') %命名vary=var(y); %方差subplot(2,3,3),plot(t,vary,'.'); %在第三个区域作图title('随机信号方差') %命名cory=xcorr(z,'unbiased');%自相关函数subplot(2,3,4),plot(cory); %自相关函数title('随机信号自相关函数') %命名covv=cov(y);%协方差subplot(2,3,5),plot(t,covv,'.'); %在第五个区域作图title('随机信号协方差') %命名(3)源程序:t=[0:0.0005:0.045]; %t=[0:0.0005:0.045]X1=sin(2*pi*25*t); %正弦subplot(3,4,1); %将图像窗口分为12个画图区,在第一个区域画图,以z为纵坐标plot(t,X1);grid %以t为横坐标,X1为纵坐标,在画图中设置网格线title('正弦函数序列');%命名X2=randn(1,length(t)); %产生均值为0,方差σ^2=1,标准差σ=1的正态分布的随机数或矩阵的函数高斯随机信号%X2=normrnd(2,0.04); %高斯随机序列均值,标准差subplot(3,4,2); %在第二个区域作图plot(t,X2);title('高斯噪声序列'); %命名X=X1+X2; %混合随机信号X(t)subplot(3,4,3); %在第三个区域作图plot(t,X);gridtitle('混合随机信号'); %命名meany1=mean(X1); %原信号的均值subplot(3,4,5),plot(t,meany1); %在第六个区域作图title('原信号均值'); %命名vary1=var(X1); %原信号的方差subplot(3,4,6),plot(t,vary1); %在第6个区域作图title('原信号方差'); %命名cory1=xcorr(X1,'unbiased'); %原信号的自相关函数subplot(3,4,7),plot(cory1); %在第七个区域作图title('原信号自相关函数'); %命名meany=mean(X); %混合信号的均值subplot(3,4,9),plot(t,meany); %在第九个区域作图title('混合信号均值'); %命名vary=var(X); %混合信号的方差subplot(3,4,10),plot(t,vary); %在第十个区域作图title('混合信号方差') %命名cory=xcorr(X,'unbiased'); %混合信号的自相关函数subplot(3,4,11),plot(cory); %在第十一个区域作图title('混合信号自相关函数') %命名covy=cov(X1,X); %协方差subplot(3,4,4),plot(covy);title('协方差'); %命名[f1,xi]=ksdensity(X1); %原信号的概率密度subplot(3,4,5);plot(xi,f1);title('原信号的概率密度分布)'); %命名[f2,xi]=ksdensity(X); %混合信号的概率密度subplot(3,4,9); %在第九个区域内作图plot(xi,f2);title('混合信号概率密度分布') %图像命名(4)源程序:[I,M]=imread('大殿.jpg');J=imnoise(I,'gaussian',0,0.01);subplot(2,1,1),imshow(I,M),title('大殿1');subplot(2,1,2),imshow(J,M),title('大殿2');K=zeros(242,308);i=1:100;J=imnoise(I,'gaussian',0,0.01);J1=im2double(J);K=K+J1;endK=K/100;(5)源程序:clc;%清除所有变量clear all;%清屏t=[0:0.005:0.5]; %t为0-0.045的由0开始每隔0.0005一个点的数组A=wavread('F:\好好学习\随机信号\实验\实验2\alert.wav '); %读取音频信号subplot(3,3,1),plot(A); %所画图像共有3行3列,该图是第1个,画出A的图像title('音频信号'); %显示图像名称“音频信号”noise=normrnd(2,0.2); %生成均值为2,方差为0.04的高斯噪声x=A+noise; %将音频与噪声混合subplot(3,3,3),plot(x); %所画图像共有3行3列,该图是第3个,画出x的图像title('混合信号'); %显示图像名称“混合信号”meany=mean(x); %计算混合信号的均值subplot(3,3,4),plot(t,meany); %所画图像共有3行3列,该图是第4个,画出mean-t的图像title('混合信号均值'); %显示图像名称“混合信号均值”vary=var(x); %计算混合过程的方差subplot(3,3,5),plot(t,vary); %所画图像共有3行3列,该图是第5个,画出vary-t 的图像title('混合信号方差'); %显示图像名称“混合信号方差”cory=xcorr(x,'unbiased');%计算混合信号的自相关函数subplot(3,3,6),plot(cory); %所画图像共有3行3列,该图是第6个,画出cory 的图像title('混合信号自相关函数'); %显示图像名称“混合信号自相关函数”covv=cov(x);%计算混合信号的协方差subplot(3,3,7),plot(t,covv,'.'); %所画图像共有3行3列,该图是第7个,画出covv-t 的图像title('混合信号协方差'); %显示图像名称“混合信号协方差”fx=fft(x);%求x的离散傅里叶变换ym=abs(x);%求x的绝对值subplot(3,3,8),plot(ym);%所画图像共有3行3列,该图是第8个title('混合信号频谱图')%显示标题为:混合信号频谱图fz=fft(cory);%求cory的离散傅里叶变换zm=abs(fz);%求fz的绝对值subplot(3,3,9),plot(zm);%所画图像共有2行3列,该图是第6个,画出zm的图像title('混合信号功率谱密度图')%显示标题为:混合信号功率谱密度图5 、实验结果(2)结果:(3)结果:(4)结果:6、实验总结。

相关文档
最新文档