北师大版高中数学必修四《三角函数》单元复习测试题1及答案解析.docx
(常考题)北师大版高中数学必修四第一章《三角函数》检测(答案解析)

一、选择题1.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=-- D .()sin(2)13g x x π=-+2.函数()2cos 3⎛⎫=+ ⎪⎝⎭πf x x 在[]0,π的单调递增区间是( )A .20,3π⎡⎤⎢⎥⎣⎦B .2,33ππ⎡⎤⎢⎥⎣⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .2π,π33.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+ ⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 4.已知实数a ,b 满足0<2a <b <3-2a ,则下列不等关系一定成立的是( ) A .sin sin2b a < B .()2cos >cos 3a b -C .()2sin sin3a b +<D .23cos >sin 2b a ⎛⎫-⎪⎝⎭5.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )(3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米6.已知函数()tan()0,02f x x πωϕϕω⎛⎫=+<<< ⎪⎝⎭最小正周期为2π,且()f x 的图象过点,03π⎛⎫ ⎪⎝⎭,则方程()sin 2([0,])3f x x x π⎛⎫=+∈π ⎪⎝⎭所有解的和为( ) A .76πB .56π C .2πD .3π 7.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B 151+C .1916D .349.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠<⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-10.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=- ⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .1311.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦3二、填空题13.若函数()sin (0)4f x x πωωω⎛⎫=-> ⎪⎝⎭取得最值的点到y 轴的最近距离小于6π,且()f x 在711,2020ππ⎛⎫⎪⎝⎭单调递增,则ω的取值范围为_________. 14.已知函数()()πsin (00)2f x M x M ωϕωϕ=+>><,的部分图象如图所示,其中()23A ,(点A 为图象的一个最高点)502B ⎛⎫- ⎪⎝⎭,,则函数()f x =___________.15.函数()2sin(2),0,32f x x x ππ⎡⎤=-∈⎢⎥⎣⎦的单调减区间___________ 16.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________. 17.将函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的所有交点从左到右依次记为125,,...,A A A ,若P 点坐标为(3,则125...PA PA PA +++=____.18.函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是______(写出所有正确结论的编号). ①图象C 关于直线1112π=x 对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数; ④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C . 19.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 20.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.三、解答题21.现给出以下三个条件:①()f x 的图象与x 轴的交点中,相邻两个交点之间的距离为2π; ②()f x 的图象上的一个最低点为2,23A π⎛⎫- ⎪⎝⎭; ③()01f =.请从上述三个条件中任选两个,补充到下面试题中的横线上,并解答该试题. 已知函数()()2sin 05,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足________,________. (1)根据你所选的条件,求()f x 的解析式; (2)将()f x 的图象向左平移6π个单位长度,得到()g x 的图象求函数()()1y f x g x =-的单调递增区间. 22.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围.23.已知函数2()cos cos (0)f x x x x ωωωω=->周期是2π. (1)求()f x 的解析式,并求()f x 的单调递增区间;(2)将()f x 图像上所有点的横坐标扩大到原来的2倍,再向左平移6π个单位,最后将整个函数图像向上平移32个单位后得到函数()g x 的图像,若263x ππ≤≤时,()2g x m -<恒成立,求m 得取值范围.24.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值.25.已知函数()sin 2sin 2233f x x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,(1)求函数()f x 的最小正周期; (2)当π[0,]2x ∈时,(i )求函数()f x 的单调递减区间;(ii )求函数()f x 的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量x 的值.26.已知函数()21cos 2f x x x =-+. (1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围; (2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.2.C解析:C 【分析】先求出函数的单调增区间,再给k 取值即得解. 【详解】 令22223+<+<+ππk πx πk π(k ∈Z ) ∴42233+<<+ππk πx k π(k ∈Z ), 所以函数的单调递增区间为4[2,2]33ππk πk π++(k ∈Z ), 当1k =-时,5233ππx -<<- 当0k =时,433x ππ<<又∵[]0,x π∈, 故选:C 【点睛】方法点睛:求三角函数()cos()f x A wx ϕ=+的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.3.B解析:B 【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B 的纵坐标满足的关系式,则吊舱到底面的距离为点B 的纵坐标减2. 【详解】如图所示,以点M 为坐标原点,以水平方向为x 轴,以OM 所在直线为y 轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭.故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.4.D解析:D 【分析】对各个选项一一验证:对于A.由0<2a <b <3-2a ,可以判断出2ba <,借助于正弦函数的单调性判断; 对于B.由0<2a <b <3-2a ,可以判断出23a b <-,借助于余弦函数的单调性判断; 对于C.由0<2a <b <3-2a ,可以判断出23a b +<,借助于正弦函数的单调性判断; 对于D.先用诱导公式转化为同名三角函数,借助于余弦函数的单调性判断; 【详解】 因为0<2a <b <3-2a 对于A. 有0<2b a <, 若22b a π<<,有sin sin 2b a <;若22b a π<<,有sin sin 2ba >,故A 错; 对于B.有 23ab <-,若232a b π<<-,有()2cos >cos 3a b -,故B 错;对于C. 23a b +<,若232a b π<+<,有()2sin sin 3a b +>,故C 错;对于D. 222333sin cos cos 2222a a a ππ+⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为b <3-2a <3,所以2cos >cos(3)b a -∵22332a a π+-<-∴()223cos 3cos 2a a π+⎛⎫->-⎪⎝⎭∴()22233cos cos 3cos sin 22a a b a π+⎛⎫⎛⎫>->-=- ⎪ ⎪⎝⎭⎝⎭,故D 对.故选:D. 【点睛】利用函数单调性比较大小,需要在同一个单调区间内.5.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=,由sin43AD AO π===可得:弦2AD ==所以:弧田面积12=(弦⨯矢+矢221)22)292=+=≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.6.A解析:A 【分析】先根据()f x 的最小正周期计算出ω的值,再根据图象过点,03π⎛⎫⎪⎝⎭结合ϕ的范围求解出ϕ的值,再根据条件将方程变形,先确定出tan 23x π⎛⎫+ ⎪⎝⎭的值,然后即可求解出方程的根,由此确定出方程所有解的和. 【详解】因为()f x 的最小正周期为2π,所以22πωπ==,又因为()f x 的图象过点,03π⎛⎫⎪⎝⎭,所以2tan 03πϕ⎛⎫+= ⎪⎝⎭, 所以2,3k k Z ϕππ+=∈,又因为02πϕ<<,所以3πϕ=且此时1k =,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,即tan 2sin 233x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 即tan 2cos 21033x x ππ⎡⎤⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又因为tan 203x π⎛⎫+= ⎪⎝⎭时,sin 203x π⎛⎫+= ⎪⎝⎭,cos 213x π⎛⎫+=± ⎪⎝⎭, 所以tan 2cos 210tan 2=0333x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫++-=⇔+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为[]0,x π∈,所以72,333x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, 当tan 2=03x π⎛⎫+⎪⎝⎭时,23x ππ+=或223x ππ+=,解得3x π=或56x π=, 所以方程()[]()sin 20,3f x x x ππ⎛⎫=+∈ ⎪⎝⎭所有解的和为57366πππ+=. 故选:A. 【点睛】关键点点睛:解答本题的关键是通过分析方程得到tan 2=03x π⎛⎫+ ⎪⎝⎭,此处需要注意不能直接约去tan 23x π⎛⎫+⎪⎝⎭,因为需要考虑tan 2=03x π⎛⎫+⎪⎝⎭的情况. 7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B .【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.9.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-= ⎪⎝⎭.则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭,由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 10.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+,故()f x 是周期函数且周期为π,故③正确. 又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确.故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.【分析】根据题意可得为的一个零点且且上有且只有一个最值点从而可得再由在单调递增可得解不等式组即可求解【详解】依题意为的一个零点且所以在上有且只有一个最值点可得化简得又则所以解得当时可得又所以故答案为解析:65,53⎛⎤⎥⎝⎦【分析】根据题意可得,04π⎛⎫⎪⎝⎭为()f x 的一个零点,且45T π≥,且,66ππ⎛⎫- ⎪⎝⎭上有且只有一个最值点,从而可得665ω<<,再由()f x 在711,2020ππ⎛⎫ ⎪⎝⎭单调递增,可得221032210k k ππωπππωπ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解不等式组即可求解. 【详解】 依题意,04π⎛⎫⎪⎝⎭为()f x 的一个零点且117420205T πππ≥-=, 所以在,66ππ⎛⎫- ⎪⎝⎭上有且只有一个最值点, 可得46446T ππππ-<<+,化简得665ω<<, 又711,2020x ππ⎛⎫∈ ⎪⎝⎭,则3,41010x πωπωπω⎛⎫⎛⎫-∈ ⎪ ⎪⎝⎭⎝⎭所以221032210k k ππωπππωπ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得5520203k k ω-+≤≤+,k Z ∈,当0k =时,可得553ω-≤≤,又665ω<<,所以6553ω<≤. 故答案为:65,53⎛⎤⎥⎝⎦【点睛】关键点点睛:本题考查了三角函数的性质,解题的关键是根据三角函数的最值得665ω<<,以及函数的单调递增区间可得5520203k k ω-+≤≤+,k Z ∈,考查了分析、计算能力.14.【分析】由点的坐标可得的值由图象可求得函数的图象可得该函数的最小正周期可求得的值再将点的坐标代入函数的解析式结合的取值范围可求得的值可得出函数的解析式【详解】由于函数的图象的一个最高点为则由图象可知解析:ππ3sin 36x ⎛⎫- ⎪⎝⎭【分析】由点A 的坐标可得M 的值,由图象可求得函数()y f x =的图象可得该函数的最小正周期,可求得ω的值,再将点A 的坐标代入函数()y f x =的解析式,结合ϕ的取值范围可求得ϕ的值,可得出函数()y f x =的解析式. 【详解】由于函数()y f x =的图象的一个最高点为()2,3A ,则3M =, 由图象可知,函数()y f x =的最小正周期为452632T ⎛⎫=+= ⎪⎝⎭, 23T ππω∴==,()3sin 3x f x πϕ⎛⎫∴=+⎪⎝⎭, 将点A 的坐标代入函数()y f x =的解析式得()223sin 33f πϕ⎛⎫=+=⎪⎝⎭,可得2sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,则27636πππϕ<+<,232ππϕ∴+=,解得6πϕ=-,()3sin 36x f x ππ⎛⎫∴=- ⎪⎝⎭故答案为:()3sin 36x f x ππ⎛⎫=- ⎪⎝⎭ 【点睛】本题考查利用三角函数图象求解函数解析式,考查计算能力,属于中等题.15.【解析】当时由得所以减区间为解析:5,122ππ⎡⎤⎢⎥⎣⎦【解析】当[0,]2x π∈时,ππ2π2[,]333x -∈-,由22233x πππ≤-≤,得5122x ππ≤≤,所以减区间为5[,]122ππ. 16.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈,又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.17.10【分析】由函数与直线的图象可知它们都关于点中心对称再由向量的加法运算得最后求得向量的模【详解】由函数与直线的图象可知它们都关于点中心对称所以【点睛】本题以三角函数和直线的中心对称为背景与平面向量解析:10 【分析】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知,它们都关于点3(1,0)A 中心对称,再由向量的加法运算得1253...5PA PA PA PA +++=,最后求得向量的模. 【详解】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知, 它们都关于点3(1,0)A 中心对称,所以1253...5||5(010PA PA PA PA +++===. 【点睛】本题以三角函数和直线的中心对称为背景,与平面向量进行交会,考查运用数形结合思想解决问题的能力.18.①②③【分析】利用整体代入的方式求出对称中心和对称轴分析单调区间利用函数的平移方式检验平移后的图象【详解】由题:令当时即函数的一条对称轴所以①正确;令当时所以是函数的一个对称中心所以②正确;当在区间解析:①②③ 【分析】利用整体代入的方式求出对称中心和对称轴,分析单调区间,利用函数的平移方式检验平移后的图象. 【详解】由题:()3sin 23x f x π⎛⎫=- ⎪⎝⎭,令2,32x k k Z πππ-=+∈,5,122k x k Z ππ=+∈, 当1k =时,1112π=x 即函数的一条对称轴,所以①正确; 令2,3x k k Z ππ-=∈,,62k x k Z ππ=+∈,当1k =时,23x π=, 所以2,03π⎛⎫⎪⎝⎭是函数的一个对称中心,所以②正确; 当5,1212x ππ⎛⎫∈- ⎪⎝⎭,,2223x ππ⎛⎫∈- ⎪⎝π⎭-,()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数,所以③正确;3sin 2y x =的图象向右平移3π个单位长度得到23sin 23sin 233y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,与函数()3sin 23x f x π⎛⎫=- ⎪⎝⎭不相等,所以④错误. 故答案为:①②③ 【点睛】此题考查三角函数的图象和性质,利用整体代入的方式求解对称轴对称中心,求解单调区间,根据函数的平移变换求解平移后的函数解析式.19.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称, ∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.20.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π- 【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.三、解答题21.答案见解析. 【分析】(1)选择①②:由①可得2ω=,再将2,23A π⎛⎫-⎪⎝⎭代入()f x 得6π=ϕ;选择①③:由①可得2ω=,又()02sin 1f ϕ==,所以6π=ϕ;选择②③:由()02sin 1f ϕ==,所以6π=ϕ,再将2,23A π⎛⎫-⎪⎝⎭代入()f x 得2ω=;所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)根据平移可得函数()2cos2g x x =,故2sin 46y x π⎛⎫=+ ⎪⎝⎭,根据三角函数图象性质可得函数的单调递增区间. 【详解】解:(1)选择①②:由已知得222T πππω==⋅=,所以2ω=,从而()2sin(2)f x x ϕ=+, 将2,23A π⎛⎫-⎪⎝⎭代入()f x 得,42sin 23πϕ⎛⎫+=- ⎪⎝⎭, 解得26k πϕπ=+,k Z ∈,又02πϕ<<,所以6π=ϕ,所以()2sin 26f x x π⎛⎫=+⎪⎝⎭;选择①③:由已知得222T πππω==⨯=,所以2ω=,从而()2sin(2)f x x ϕ=+, 又()02sin 1f ϕ==, 因为02πϕ<<,所以6π=ϕ. 所以()2sin 26f x x π⎛⎫=+⎪⎝⎭; 选择②③:由()02sin 1f ϕ==,又02πϕ<<,所以6π=ϕ, 将2,23A π⎛⎫-⎪⎝⎭代入()f x 得,22sin 236ππω⎛⎫+=- ⎪⎝⎭,解得23k ω=+,k Z ∈, 又05ω<<,所以2ω=, 所以()2sin 26f x x π⎛⎫=+⎪⎝⎭; (2)由已知得()2sin 22sin 22cos 2662g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故()()1y f x g x =-4sin 2cos 216x x π⎛⎫=+- ⎪⎝⎭22cos 22cos 21x x x =+-4cos 4x x =+2sin 46x π⎛⎫=+ ⎪⎝⎭,令242262k x k πππππ-+≤+≤+,k Z ∈,得62122k k x ππππ-+≤≤+,k Z ∈,所以函数()()1y f x g x =-的单调递增区间为,62122k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈. 【点睛】求三角函数的解析式时,由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.22.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞. 【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论; (2)由,04x π⎛⎫∈-⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围.【详解】(1)对于函数()1tan ln1tan x f x x -=+,有1tan 01tan xx->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数; (2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x e x x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x xa x x x +-===-<+++, 所以,实数a 的取值范围是(),0-∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 23.(1)1()sin 462f x x π⎛⎫=-- ⎪⎝⎭,单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈;(2)()0,2. 【分析】(1)根据正弦和余弦的二倍角公式化简可得1()sin 262f x x πω⎛⎫=-- ⎪⎝⎭,由222T ππω==,解得2ω=,带入正弦函数的递增区间242262k x k πππππ-≤-≤+,化简即可得解; (2)根据三角函数的平移和伸缩变换可得()sin 216g x x π⎛⎫=++ ⎪⎝⎭,根据题意只需要max min [()2][()2]g x m g x -<<+,分别在263x ππ≤≤范围内求出()g x 的最值即可得解. 【详解】(1)2()cos cos f x x x x ωωω=-12(cos 21)22x x ωω=-+ 1sin 262x πω⎛⎫=-- ⎪⎝⎭由222T ππω==,解得2ω= 所以,1()sin 462f x x π⎛⎫=-- ⎪⎝⎭ ∵242262k x k πππππ-≤-≤+∴224233k x k ππππ-≤≤+∴21226k k x ππππ-≤≤+ ∴()f x 的单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈ (2)依题意得()sin 216g x x π⎛⎫=++ ⎪⎝⎭因为|()|2g x m -<,所以()2()2g x m g x -<<+因为当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()2()2g x m g x -<<+恒成立所以只需max min [()2][()2]g x m g x -<<+转化为求()g x 的最大值与最小值当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()y g x =为单调减函数所以max ()1126g x g π⎛⎫==+= ⎪⎝⎭,()min 21103g x g π⎛⎫==-+=⎪⎝⎭, 从而max [()2]0g x -=,min [()2]2g x +=,即02m <<所以m 的取值范围是()0,2. 【点睛】本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有: (1)三角函数基本量的理解应用; (2)三角函数图像平移伸缩变换的方法; (3)恒成立思想的理解及转化. 24.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296, 所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.25.(1)最小正周期为π;(2)(i )ππ[,]122;(ii )当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【分析】(1)利用和差公式展开合并,再利用辅助角公式计算可得()2sin (2+)3f x x π=,可得最小正周期为π;(2)(i )通过换元法令π23t x =+,求出sin y t =的范围,然后再根据sin y t =的单调递减区间求解即可;(ii )根据函数单调性求得最大值,然后计算端点值,比较大小之后可得函数的最小值. 【详解】 解:(1)πππ()=sin(2+)sin(2)2=sin 22=2sin(2+)333f x x x x x x x +-.2π==π2T ,∴()f x 的最小正周期为π. (2)(i )π[0,]2x ∈,∴ππ4π2[,]333t x =+∈,sin y t =,π4π[,]33t ∈的单调递减区间是π4π[,]23t ∈,且由ππ4π2233x ≤+≤,得ππ122x ≤≤, 所以函数()f x 的单调递减区间为ππ[,]122. (ii )由(i )知,()f x 在ππ[,]122上单调递减,在π[0,]12上单调递增.且π(0)=2sin 3f =ππ()=2sin 2122f =,π4π()=2sin 23f =所以,当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【点睛】思路点睛:(1)关于三角函数解析式化简问题,首先利用和差公式或者诱导公式展开合并化为同角,然后再利用降幂公式进行降次,最后需要运用辅助角公式进行合一化简运算;(2)三角函数的单调区间以及最值求解,需要利用整体法计算,可通过换元利用sin y t =的单调区间以及最值求解.26.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 222226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,. (2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题.。
(常考题)北师大版高中数学必修四第一章《三角函数》检测题(包含答案解析)

一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (51AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④3.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)4.函数()2cos 3⎛⎫=+ ⎪⎝⎭πf x x 在[]0,π的单调递增区间是( ) A .20,3π⎡⎤⎢⎥⎣⎦B .2,33ππ⎡⎤⎢⎥⎣⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .2π,π35.函数()()sin cos y x =的部分图象大致为( )A .B .C .D .6.已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( )A .,33xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66xk x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ 7.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )(3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米8.当5,2,2παβπ⎛⎫∈ ⎪⎝⎭时,若αβ>,则以下不正确的是( ) A .sin sin tan tan αββα->- B .cos tan cos tan αββα+<+ C .sin tan sin tan αββα> D .tan sin tan sin αββα<9.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④10.:sin 3cos 1p x x +>的一个充分不必要条件是( ) A .02x π<<B .203x π<<C .32x ππ-<<D .566x ππ<<11.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=- ⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .1312.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度二、填空题13.已知函数()22f x x ω=-(0>ω)的图象关于点3,04π⎛⎫⎪⎝⎭对称,且()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,则ω的值为______. 14.sin 75=______.15.函数f (x )=A sin(ωx +φ)(00)2A πωϕ>><,,的部分图象如图所示,则f (0)的值为___________.16.已知函数()sin 2sin 23f x x x π⎛⎫=++⎪⎝⎭,将其图象向左平移(0)ϕϕ>个单位长度后,得到的图象为偶函数,则ϕ的最小值是_______ 17.已知函数()sin cos f x a x x =+的一条对称轴为3x π=,则a =______;18.如图所示为函数()sin 2y A x ωϕ=++,()ϕπ<的图像的一部分,它的解析式为________.19.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?20.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.三、解答题21.已知函数()()2sin 0,22x f x ωϕωπϕ=≥<⎛⎫+ ⎪⎝⎭的图像向右平移6π个单位长度得到()g x 的图像, ()g x 图像关于原点对称,()f x 的相邻两条对称轴的距离是2π. (1)求()f x 在[]0,π上的增区间; (2)若()230f x m -=+在0,2x π⎡⎤∈⎢⎥⎣⎦上有两解,求实数m 的取值范围. 22.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R . (1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.23.为整治校园环境,设计如图所示的平行四边形绿地ABCD ,在绿地中种植两块相同的扇形花卉景观,两扇形的边(圆心分别为A 和C )均落在平行四边形ABCD 的边上,圆弧均与BD 相切,其中扇形的圆心角为120°,扇形的半径为12米.(1)求两块花卉景观扇形的面积;(2)记BDA θ∠=,求平行四边形绿地ABCD 占地面积S 关于θ的函数解析式,并求面积S 的最小值.24.下图是函数()()sin()0,0f x x ωϕωϕπ=+><<的部分图象.(1)求ϕ的值及()f x 单调递增区间.(2)若()f x 的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移3π个单位,最后向上平移1个单位,得到函数()g x 的图象,若()g x 在[0,](0)b b >上恰有10个零点,求b 的取值范围.25.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示.(1)求函数()f x 的解析式; (2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,若函数()g x 在[]0,m 上单调递增,当实数m 取最大值时,求函数()f x 在[]0,m 上的最大值. 26.已知函数()23,4f x x x R π⎛⎫=+∈ ⎪⎝⎭.(1)求f (x )的最小正周期;(2)求f (x )的单调递增区间和单调递减区间;(3)当0,2x π⎡⎤∈⎢⎥⎣⎦,求f (x )值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯,)213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(1132m π==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.3.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解4.C解析:C 【分析】先求出函数的单调增区间,再给k 取值即得解. 【详解】令22223+<+<+ππk πx πk π(k ∈Z ) ∴42233+<<+ππk πx k π(k ∈Z ), 所以函数的单调递增区间为4[2,2]33ππk πk π++(k ∈Z ), 当1k =-时,5233ππx -<<- 当0k =时,433x ππ<<又∵[]0,x π∈, 故选:C 【点睛】方法点睛:求三角函数()cos()f x A wx ϕ=+的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.5.A解析:A 【分析】先确定奇偶性,再取特殊值确定函数值可能为负,排除三个选项后得出结论. 【详解】记()()sin cos f x x =,则()()()sin cos()sin cos ()f x x x f x -=-==,为偶函数,排除D ,当23x π=时,21()sin cos sin 032f x π⎛⎫⎛⎫⎛⎫==-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,排除B ,C .故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可通过研究函数的性质如奇偶性、单调性等排除一些选项,再由特殊的函数值,函数值的正负,变化趋势等排除一些选项后得出正确结论.6.D解析:D 【分析】由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解. 【详解】由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤, 因为()0,1A -,()3,1B 是函数()f x 图象上的两点,所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤, 因为()f x 是定义在R 上的增函数, 可得02sin 13x ≤+≤,解得:1sin 12x -≤≤, 由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈, 所以原不等式的解集为722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤.7.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=,由sin43AD AO π===可得:弦2AD ==所以:弧田面积12=(弦⨯矢+矢221)22)292=+=≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.8.D解析:D 【分析】对A ,由()sin tan f x x x =+在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对B ,由()cos tan f x x x =-在52,2ππ⎛⎫ ⎪⎝⎭上单调递减可判断;对C ,由()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对D ,由tan ()sin x f x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断. 【详解】A .设()sin tan f x x x =+,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以sin tan sin tan ααββ+>+,所以sin sin tan tan αββα->-,所以A 对,不符合题意;B .设()cos tan f x x x =-,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递减, 因为αβ>,所以()()f f αβ<,所以cos tan cos tan ααββ-<-,所以cos tan cos tan αββα+<+,所以B 对,不符合题意; C .设()sin tan f x x x =,因为sin ,tan x x 在52,2ππ⎛⎫⎪⎝⎭都为正数,且都单调递增, 所以()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>, 所以sin tan sin tan ααββ>,所以sin tan sin tan αββα>,所以C 对,不符合题意; D .设tan ()sin x f x x =,则tan 1()sin cos x f x x x ==在52,2ππ⎛⎫ ⎪⎝⎭上单调递增,因为αβ>,所以()()f αf β>,所以tan tan sin sin αβαβ>, 所以tan sin tan sin αββα>,所以D 错,符合题意. 故选:D. 【点睛】本题考查利用三角函数的单调性比较大小,解题的关键是恰当构造函数,判断函数的单调性,利用单调性判断大小.9.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.10.A解析:A 【分析】首先求解命题p 表示的集合,再根据集合关系表示充分不必要条件,判断选项. 【详解】:sin 2sin 13p x x x π⎛⎫+=+> ⎪⎝⎭,即1sin 32x π⎛⎫+> ⎪⎝⎭,解得:522,636k x k k Z πππππ+<+<+∈, 得22,62k x k k Z ππππ-+<<+∈,设22,62M x k x k k Z ππππ⎧⎫=-+<<+∈⎨⎬⎩⎭经分析,只有选项A 的集合是集合M 的真子集, 故选:A 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.11.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=- ⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.12.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.二、填空题13.【分析】根据函数图像的对称点得到的表达式根据在区间上单调得到的范围从而得到的范围再得到的值【详解】函数的图像关于点对称所以即得到在区间上单调所以即所以所以而所以故答案为:【点睛】本题考查根据余弦型函解析:23【分析】根据函数图像的对称点,得到ω的表达式,根据()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,得到T 的范围,从而得到ω的范围,再得到ω的值. 【详解】函数()f x x ω=-的图像关于点3,04π⎛⎫⎪⎝⎭对称,所以304πω⎛⎫-= ⎪⎝⎭,即342k ππωπ=+,k ∈Z ,得到4233k ω=+,k ∈Z ,()f x 在区间20,3π⎛⎫⎪⎝⎭上单调, 所以223T π≥,即43T π≥, 所以243ππω≥,所以32ω≤,而0>ω,所以0k =,23ω=. 故答案为:23. 【点睛】本题考查根据余弦型函数的对称中心求参数的值,根据余弦型函数的周期求参数的值,属于中档题.14.【解析】试题分析:将非特殊角化为特殊角的和与差是求三角函数值的一个有效方法考点:两角和的正弦 解析:【解析】 试题分析:232162sin 75sin(4530)sin 45cos30cos 45sin 302︒︒︒︒︒︒︒+=+=+==将非特殊角化为特殊角的和与差,是求三角函数值的一个有效方法. 考点:两角和的正弦15.【分析】由图可得的周期振幅即可得再将代入可解得进一步求得解析式及【详解】由图可得所以即又即又故所以故答案为:【点睛】本题考查由图象求解析式及函数值考查学生识图计算等能力是一道中档题解析:3- 【分析】由图可得()f x 的周期、振幅,即可得,A ω,再将(,0)6π代入可解得ϕ,进一步求得解析式及()0f . 【详解】由图可得2A =,1()46124T πππ=--=,所以2T ππω==,即2ω=,又()06f π=,即2sin(2)06πϕ⨯+=,,3k k Z πϕπ+=∈,又||2ϕπ<,故3πϕ=-,所以()sin()f x x π=-223,(0)2sin()33f π=-=-故答案为:. 【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.16.【分析】先利用两角和的正弦公式化简的解析式然后再利用图象平移变换的规律求平移后的解析式最后由奇偶性可得的最小值【详解】将其图象向左平移个单位长度后得的图象由图象为偶函数图象可得所以令得故答案为:【点 解析:6π【分析】先利用两角和的正弦公式化简()f x 的解析式,然后再利用图象平移变换的规律求平移后的解析式,最后由奇偶性可得ϕ的最小值. 【详解】1()sin 2sin 2sin 2sin 2cos 2322f x x x x x x π⎛⎫=++=++ ⎪⎝⎭3sin 2cos 22226x x x π⎛⎫=+=+ ⎪⎝⎭ , 将其图象向左平移(0)ϕϕ>个单位长度后,得()22266y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭的图象,由图象为偶函数图象可得262k ππϕπ+=+()k Z ∈所以62k ϕππ=+ ()k Z ∈ 令0k =,得6π=ϕ. 故答案为:6π 【点睛】本题主要考查了三角函数图象的平移变换,以及三角函数的奇偶性,属于中档题.17.【分析】根据三角函数的性质可知在取得最大值或最小值建立方程即可求解【详解】其中是辅助角是的一条对称轴整理得解得故答案为:【点睛】本题考查三角函数性质得应用利用在对称轴的函数值是最大或最小是解题的关键【分析】根据三角函数的性质可知()f x 在3x π=取得最大值或最小值,建立方程即可求解.【详解】()()sin cos f x a x x x ϕ=+=+,其中ϕ是辅助角, 3x π=是()f x 的一条对称轴,231()1322f a a ,整理得230a -+=,解得a =【点睛】本题考查三角函数性质得应用,利用在对称轴的函数值是最大或最小是解题的关键,属于中档题.18.【分析】由两最值点对应横坐标可求周期由波峰波谷可求将代入可求【详解】由图可知即将得即又当时故故答案为:【点睛】本题考查由三角函数图像求解具体解析式属于中档题解析:33sin 224y x π⎛⎫=-+ ⎪⎝⎭【分析】由两最值点对应横坐标可求周期,由波峰波谷可求,A 将,16π⎛⎫⎪⎝⎭代入可求ϕ【详解】 由图可知,522663T ππππ=-=,即43T π=,24332ππωω=⇒=, 3112A -==,将,16π⎛⎫⎪⎝⎭3sin 22y x ϕ⎛⎫=++ ⎪⎝⎭得2,42k k Z ππϕπ+=-+∈,即32,4k k Z πϕπ=-+∈,又ϕπ<,当0k =时,34πϕ=-,故33sin 224y x π⎛⎫=-+ ⎪⎝⎭ 故答案为:33sin 224y x π⎛⎫=-+ ⎪⎝⎭【点睛】本题考查由三角函数图像求解具体解析式,属于中档题19.【分析】根据题意得到化简得到或得到答案【详解】设时间为根据题意:故故或故或故故答案为:【点睛】本题考查了三角函数的应用意在考查学生的应用能力解析:【分析】根据题意得到40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,化简得到124t k =+或128t k =+,得到答案. 【详解】设时间为t ,0t >,根据题意:40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,故1sin 622t ππ⎛⎫-= ⎪⎝⎭. 故2626t k ππππ-=+或52626t k ππππ-=+,故124t k =+或128t k =+,k Z ∈. 故1234564,8,16,20,28,32t t t t t t ======. 故答案为:32. 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.20.【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题三、解答题21.(1)70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)12⎛ ⎝⎦. 【分析】(1)由()f x 的相邻两条对称轴的距离是2π,可得函数的周期,从而得出ω的值,由平移得出()g x 的解析式,根据()g x 图像关于原点对称,可求出ϕ的值,从而可求()f x 单调增区间,得出答案.(2)令23t x π=+则4,33t ππ⎡⎤∈⎢⎥⎣⎦,则[2s n 2]i t ∈,根据()230f x m -=+有两解,即2sin 32t m =-有两解,从而可得答案. 【详解】解:由()f x 的相邻两条对称轴的距离是2π,则22T ππω==,1,ω∴= ()()2sin 2f x x ϕ∴=+()2sin 2sin 2326x g x x ππϕϕ⎡⎤⎛⎫-+ ⎪⎢⎛⎫==-+ ⎪⎝⎥⎝⎣⎦⎭⎭函数()g x 的图像关于原点对称,3k πϕπ-+=,,2πϕ<所以3πϕ=()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭(1)由222232k x k πππππ-≤+≤+,k Z ∈得51212k x k ππππ-≤≤+,k Z ∈ 令0k =得51212x ππ-≤≤ 1k =得7131212x ππ≤≤ ()f x ∴在[]0,π增区间是70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦()2令23t x π=+,0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∴∈⎢⎥⎣⎦所以[2s n 2]i t ∈若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,由2sin y t =的图象可得,3322m ≤-<,即1233m <≤-13322m -∴<≤m ∴的取值范围是133,22⎛⎤- ⎥ ⎝⎦【点睛】关键点睛:本题考查求正弦型函数的单调增区间和根据方程的解个数求参数的范围问题,解答本题的关键是设23t x π=+,由0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∈⎢⎥⎣⎦所以[2s n ,2]i 3t ∈-若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,然后数形结合求解,属于中档题.22.(1)答案见解析;(2)3,2⎡⎤⎣⎦;(3)5,6ππ⎡⎤-⎢⎥⎣⎦ 【分析】(1)利用五点法作图,按照列表、描点、连线的步骤作图即可;(2)根据x ππ-≤≤求出126x π+的范围,再利用正弦函数的性质求出1sin 26x π⎛⎫+ ⎪⎝⎭的范围即可求值域; (3)先求出()12sin 6212g x f x x ππ⎛⎫=+⎛⎫=-⎪⎝⎭ ⎪⎝⎭,再令12222122k x k πππππ-+≤+≤+, ()k Z ∈,不等式的解集与[],ππ-求交集即可.【详解】(1)利用五点法作图列表如下:126x π+ 02ππ32π 2πx3π-23π 53π 83π 113π()f x0 2 02-(2)因为x ππ-≤≤,所以123263x πππ-≤+≤, 所以31sin 126x π⎛⎫≤+≤ ⎪⎝⎭, 所以()12sin 2263x f x π⎛⎫=+≤⎪⎝⎭-≤, 函数()f x 在[],ππ-内的值域为3,2⎡⎤-⎣⎦(3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象, 则()112sin 2sin 6266212g x x x x f ππππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎛⎫=- ⎪⎝⎝⎦⎭⎭⎣, 令12222122k x k πππππ-+≤+≤+()k Z ∈,解得:754466k x k ππππ-+≤≤+()k Z ∈, 当0k =时,7566x ππ-≤≤,当1k =时172966x ππ≤≤, 又因为[],x ππ∈-,所以56x ππ-≤≤, ()g x 在[],ππ-内的单调增区间为5,6ππ⎡⎤-⎢⎥⎣⎦,【点睛】关键点点睛:在求三角函数单调区间时,要把x ωϕ+看成一个整体让其满足正弦的单调区间,解出的x 的范围即为所求三角函数的单调区间.23.(1)96π平方米;(2)1443sin 262S θ+-⎪⎝⎭=,且最小值为2883平方米. 【分析】(1)根据题中条件,由扇形面积公式,即可计算出结果;(2)过点A 作AE BD ⊥于点E ,由题中条件,得到12AE =,再由θ分别表示出BE 和DE ,得出BD ,进而可得出平行四边形ABCD 的面积S 关于θ的函数解析式,由三角函数的性质,即可求出最小值. 【详解】(1)因为两扇形所在圆的半径均为12米,扇形的圆心角为23π, 所以两块花卉景观扇形的面积为112212129623S ππ=⨯⨯⨯⨯=平方米;(2)过点A 作AE BD ⊥于点E ,因为圆弧均与BD 相切,所以E 即为切点,则12AE =, 又BDA θ∠=,23BAD π∠=,所以3DBA πθ∠=-,π0θ3, 在Rt ADE △中,tan AE DE θ=,所以1212cos tan sin DE θθθ==; 在Rt ABE △中,tan 3AE BE πθ⎛⎫=- ⎪⎝⎭,所以12cos 123tan sin 33BE πθππθθ⎛⎫- ⎪⎝⎭==⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 则12sin cos cos sin 12cos 3312cos 3sin sin sin sin 33BD BE DE πππθθθθθθππθθθθ⎡⎤⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=+=+=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭12sin 63631233131131sin sin sin 2sin 2cos 2sin cos sin 36222πππθθθθθθθθ====⎛⎫⎛⎫⎛⎫-+-+-- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,因此平行四边形绿地ABCD占地面积sin 216222S BD AE θ+-⎝⨯⨯⎪⎭=⨯=因为π0θ3,所以52666πππθ<+<,因此当262ππθ+=,即6πθ=时,1sin 262S πθ⎛⎫+-⎪⎝⎭=取得最小值,且最小值为min S =.【点睛】 关键点点睛:求解本题的关键在于用θ表示出BD ,再由S BD AE =⨯,得出平行四边形的面积S 关于θ的函数解析式,利用正弦函数的性质,即可求解最值.24.(1)23ϕπ=,7[,],1212k k k Z ππππ--∈;(2)59671212b ππ≤<. 【分析】(1)依题意求出函数的周期T ,再根据2Tπω=,求出ω,再根据函数过点,06π⎛⎫⎪⎝⎭,求出ϕ,即可求出函数解析式,再令222+2,232k x k k Z πππππ-≤≤+∈,求出x 的取值范围,即可求出函数的单调区间;(2)根据三角函数的变换规则求出()g x 的解析式,令()0g x =即可求出函数的零点,要使()g x 在[0,](0)b b >上恰有10个零点,则b 不小于第10个零点的横坐标,小于第11个零点的横坐标即可,即可得到不等式,解得即可; 【详解】 解:(1)由图易知22362T πππ=-=,则T π=,22T πω==,所以()()sin 2f x x ϕ=+ 因为函数过点,06π⎛⎫⎪⎝⎭所以sin 2066f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭所以2,6k k Z πϕπ⨯+=∈,又0ϕπ<<,故23ϕπ=, 则()2sin(2)3f x x π=+ 令:222+2,232k x k k Z πππππ-≤≤+∈,整理得7,1212k x k k Z ππππ-≤≤-∈,所以()f x 的单调增区间是7,,1212k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦. (2)若()f x 的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移3π个单位,最后向上平移1个单位,得到函数()2sin 21g x x =+ 令()0g x =,得712x k ππ=+或11()12x k k Z ππ=+∈. 所以在[0,]π上恰好有两个零点,若()g x 在[0,]b 上恰有10个零点,则b 不小于第10个零点的横坐标,小于第11个零点的横坐标即可,即b 的范围为:115941212b πππ≥+=.且1111767412121212b ππππππ<++-+= 即59671212b ππ≤< 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.25.(1) ())3f x x π=+;【分析】(1)根据函数()f x 的部分图象可得A 及周期T ,再根据周期公式可求出ω,由五点法作图的第三个点可求出ϕ的值,从而可得函数()f x 的解析式;(2)根据平移变换和伸缩变换的规律,可求出()g x 的解析式,再根据函数()g x 在[]0,m 上单调递增,可求出m 的最大值,再根据正弦函数的图象与性质,即可求出函数()f x 在[0,]m 上的最大值.【详解】(1)由已知可得A =52()63πT ππ=-=,所以22=πωT =,所以())f x x ϕ=+,根据五点法作图可得23πϕπ⨯+=,所以=3πϕ,所以())3f x x π=+(2) 将函数()f x 的图象向右平移3π个单位长度,可得22333πππy x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()43g x x π⎛⎫=- ⎪⎝⎭的图象,因为函数()g x 在[]0,m 上单调递增,所以432m ππ-≤,所以524m π≤,m 的最大值为524π,由50,24x π⎡⎤∈⎢⎥⎣⎦,可得32,334x πππ⎡⎤+∈⎢⎥⎣⎦,所以当2=32x +ππ时,()f x .故函数()f x 在[]0,m . 【点睛】方法点睛:确定()sin()(0,0)f x A x B A ωϕω=++>>的解析式的步骤: (1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=; (2)求ω,确定函数的周期T ,则2Tπω=; (3)求ϕ,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定ϕ值时,往往以寻找“五点法”中的特殊点作为突破口. 26.(1)23π;(2)单调递增区间为22,,34312k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;单调递减区间为225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)⎡⎣. 【分析】 (1)由公式2T πω=求周期;(2)利用正弦函数的单调性求单调区间; (3)求出34x π+的范围,然后结合正弦函数的性质得值域.【详解】解:(1)由解析式得ω=3,则函数的最小周期223T ππω==. (2)由232242k x k πππππ-≤+≤+,k ∈Z ,所以2234312k k x ππππ-≤≤+,k ∈Z , 即函数的单调递增区间为22,34312k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z , 由3232242k x k πππππ+≤+≤+k ∈Z , 得225312312k k x ππππ+≤≤+,k ∈Z , 即函数的单调递减区间为225,312312k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z . (3)当x ∈[0,2π]时,73,444x πππ⎡⎤+∈⎢⎥⎣⎦,则当3x +4π=2π时,函数f (x )取得最大值,此时f (x 2π=,当3x +342ππ=时,函数f (x )取得最小值,此时f (x 32π=即f (x )值域为[. 【点睛】关键点点睛:本题考查正弦型三角函数的性质.对于()sin()f x A x ωϕ=+(0,0)A ω>>,最小正周期为2T πω=,利用正弦函数sin y x =的性质,把x ωϕ+作为一个整体替换sin x 中的x ,可得()f x 的性质.。
(常考题)北师大版高中数学必修四第一章《三角函数》测试题(包含答案解析)

一、选择题1.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z2.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 3.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=-- D .()sin(2)13g x x π=-+4.已知点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴.若()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,则ϕ=( ) A .6πB .3π C .23π D .56π 5.如图,一半径为4.8m 的筒车按逆时针方向转动,已知筒车圆心O 距离水面2.4m ,筒车每60s 转动一圈,如果当筒车上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要10sB .点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭ C .在筒车转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间 D .当筒车转动50s 时,点P 在水面下方,距离水面1.2m 6.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫ ⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( ) A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ 7.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 9.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④10.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+⎪⎝⎭11.将函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,则以下说法正确的是( ) A .1ω=B .函数()y f x =图象的一条对称轴为12x π=C .()3f f x π⎛⎫⎪⎝⎭D .函数()y f x =在区间0,2π⎛⎫⎪⎝⎭,上单调递增12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦3二、填空题13.以下关于函数()()21sin 324f x x x R π⎛⎫=-∈ ⎪⎝⎭的结论: ①()y f x =的图象关于直线2x π=-对称; ②()f x 的最小正周期是4π;③()y f x =在区间[]2,3ππ上是减函数; ④()y f x =的图象关于点,02π⎛⎫- ⎪⎝⎭对称.其中正确的结论是__________________(写出所有正确结论的序号). 14.若将函数()cos 212f x x π⎛⎫=+⎪⎝⎭的图象向左平移8π个单位长度,得到函数()g x 的图象,则下列说法正确的是_________.①()g x 的最小正周期为π ②()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减 ③12x π=不是函数()g x 图象的对称轴 ④()g x 在,66ππ⎡⎤-⎢⎥⎣⎦上的最小值为12-15.已知函数()()πsin (00)2f x M x M ωϕωϕ=+>><,的部分图象如图所示,其中()23A ,(点A 为图象的一个最高点)502B ⎛⎫- ⎪⎝⎭,,则函数()f x =___________.16.将函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的所有交点从左到右依次记为125,,...,A A A ,若P 点坐标为()0,3,则125...PA PA PA +++=____.17.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .18.将函数()sin 23cos2f x a x x =+的图象向左平移6π个单位长度,若所得图象关于原点对称,则a 的值为_________.19.已知函数()sin f x x =,若对任意的实数(,)46αππ∈--,都存在唯一的实数(0,)m β∈,使()()0f f αβ+=,则实数m 的最大值是____.20.已知函数()sin cos x f x x x =-,23,34x ππ⎡⎤∈⎢⎥⎣⎦,则()f x 的最小值是__________ 三、解答题21.已知函数()()sin (0,)2f x A x πωϕωϕ=+><部分图象如图所示.(1)求ω和ϕ的值;(2)求函数()f x 在[,]-ππ上的单调递增区间;(3)设()1212x f x f x ππϕ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,已知函数2()2()3()21g x x x a ϕϕ=-+-在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,求实数a 的最小值和最大值. 22.在①()f x 的图象关于直线3x π=对称,②()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,③()f x 的图象上最高点中,有一个点的横坐标为6π这三个条件中任选一个,补充在下面问题中,并解答.问题:已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><<⎪⎝⎭的振幅为2,初相为3π,最小正周期不小于...π,且______. (1)求()f x 的解析式;(2)求()f x 在区间[],0π-上的最大值和最小值以及取得最大值和最小值时自变量x 的值.注:如果选择多个条件分别解答,按第一个解答计分.23.已知函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭,函数12y f x π⎛⎫=- ⎪⎝⎭为奇函数. (1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象,证明:当0,4x π⎡⎤∈⎢⎥⎣⎦时,22()()10g x g x --≤.24.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示.(1)求函数()f x 的解析式; (2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,若函数()g x 在[]0,m 上单调递增,当实数m 取最大值时,求函数()f x 在[]0,m 上的最大值.25.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.26.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据图象得到函数()f x 解析式,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,可得()y g x =解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论. 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+. 将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中, 整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确; 故选:D. 【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.2.A解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.3.D解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.4.B解析:B 【分析】 先由点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴,求出ω的范围,再由()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调求出φ.【详解】 由题意得:62484T πππ-=≥, 得1248ππω⨯≤,所以ω4≥. 又()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,所以3662T πππ-=≤,得1226ππω⨯≥,所以ω6≤所以ω=4或5或6.当ω=4时, ()()cos 4f x x ϕ=+,有cos 402424460f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩解得3πϕ=.当ω=5时, ()()cos 4f x x ϕ=+,有cos 502424560f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解. 当ω=6时, ()()cos 4f x x ϕ=+,有cos 602424660f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.综上: 3πϕ=.故选:B 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;(3)求φ通常利用函数上的点带入即可求解.5.B解析:B 【分析】先建立坐标系,从点0P 开始计时,建立三角函数模型()0sin h A t b ωϕ=++,通过题中条件求出参数0,,,A b ωϕ,再利用函数解析式对选项依次判断正误即可. 【详解】以水面所在直线为t 轴,过O 作OO t '⊥轴,建立坐标系如图:设点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为()0sin h A t b ωϕ=++.依题意可知, 2.4OO '=, 2.41sin 4.82OPO '∠==,6OPO π'∠=. 高度h 最大值为2.4 4.87.2+=,最小值为2.4 4.8 2.4-=-,故()()7.2 2.47.2 2.44.8, 2.422A b --+-====, 周期60T =s ,则230T ππω==, 0t =时,06πϕ=-,故函数解析式为 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭,故B 正确;点P 到达最高点时 4.8sin 2.47.2306h t ππ⎛⎫=-+= ⎪⎝⎭,即sin 1306t ππ⎛⎫-= ⎪⎝⎭,故2,3062t k k Z ππππ-=+∈,即2060,t k k Z =+∈,又0t ≥,故第一次到达最高点时,0,20k t ==s ,故A 错误;在筒车转动的一圈内,点P 距离水面的高度不低于4.8m ,即4.8sin 2.4 4.8306h t ππ⎛⎫=-+≥ ⎪⎝⎭,得1sin 3062t ππ⎛⎫-≥ ⎪⎝⎭,故563066t ππππ≤-≤,解得1030t ≤≤,故共有20 s 时间,C 错误;当筒车转动50s 时,即50t =代入 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭得,34.8sin 50 2.4 4.8sin 2.4 2.43062h πππ⎛⎫=⨯-+=+=- ⎪⎝⎭,故点P 在水面下方,距离水面2.4m ,故D 错误. 故选:B. 【点睛】 关键点点睛:本题解题关键在于按照题意,建立三角函数模型()0sin h A t b ωϕ=++,并解出解析式,才能解决选项中的实际问题,突破难点.6.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+ 将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤, 故选:A. 【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.C解析:C 【分析】根据弧度制与角度制的关系求解即可. 【详解】因为180π︒=弧度, 所以156********4ππ︒=⨯=, 故选:C9.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.10.D解析:D 【分析】结合图象,依次求得,,A ωϕ的值. 【详解】 由图象可知2A =,2,,22362T T πππππωω⎛⎫=--==== ⎪⎝⎭,所以()()2sin 2f x x ϕ=+,依题意0ϕπ≤≤,则2333πππϕ-≤-≤, 2sin 0,0,6333f ππππϕϕϕ⎛⎫⎛⎫-=-+=-+== ⎪ ⎪⎝⎭⎝⎭,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.故选:D. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.11.C解析:C 【分析】由周期求出ω,然后由正弦函数的性质判断. 【详解】函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,所以22πωπ==,A 错; 12x π=时,206x π-=,12x π=不是对称轴,B 错;3x π=时,226x ππ-=,即23f π⎛⎫= ⎪⎝⎭为最大值,因此()3f f x π⎛⎫⎪⎝⎭正确,C 正确; 0,2x π⎛⎫∈ ⎪⎝⎭时,52,666x πππ⎛⎫-∈- ⎪⎝⎭,而sin y x =在5,66ππ⎛⎫- ⎪⎝⎭上不单调,D 错; 故选:C . 【点睛】方法点睛:本题考查三角函数的性质,对函数()sin()f x A x ωϕ=+,掌握五点法是解题关键.解题时可由x 的值或范围求得x ωϕ+的值或范围,然后结合正弦函数性质判断.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确.故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.①②③【分析】利用正弦型函数的对称性可判断①④的正误;利用正弦型函数的周期公式可判断②的正误;利用正弦型函数的单调性可判断③的正误【详解】对于①所以的图象关于直线对称①正确;对于②的最小正周期是②正解析:①②③ 【分析】利用正弦型函数的对称性可判断①④的正误;利用正弦型函数的周期公式可判断②的正误;利用正弦型函数的单调性可判断③的正误. 【详解】 对于①,212sin 232243f πππ⎡⎤⎛⎫⎛⎫-=⨯--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以,()y f x =的图象关于直线2x π=-对称,①正确; 对于②,()f x 的最小正周期是2412T ππ==,②正确; 对于③,当23x ππ≤≤时,3154244x πππ≤-≤, 所以,函数()y f x =在区间[]2,3ππ上是减函数,③正确; 对于④,由①可知,④错误. 故答案为:①②③. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.14.①③④【分析】由函数图像的变换可得结合余弦函数的周期性单调性对称轴等即可判断选项得出答案【详解】的最小正周期为选项A 正确;当时时故在上有增有减选项B 错误;故不是图象的一条对称轴选项C 正确;当时且当即解析:①③④ 【分析】由函数图像的变换可得()cos 23π⎛⎫=+ ⎪⎝⎭g x x ,结合余弦函数的周期性、单调性、对称轴等即可判断选项,得出答案. 【详解】()cos 2cos 28123g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.()g x 的最小正周期为π,选项A 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,42,333x πππ⎡⎤+∈⎢⎥⎣⎦ 时,故()g x 在0,2π⎡⎤⎢⎥⎣⎦上有增有减,选项B 错误;012g π⎛⎫= ⎪⎝⎭,故12x π=不是()g x 图象的一条对称轴,选项C 正确;当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,220,33x ππ⎡⎤+∈⎢⎥⎣⎦,且当2233x ππ+=,即6x π=时,()g x 取最小值12-,D 正确. 故答案为:①③④. 【点睛】本题考查了三角函数图像的变换、余弦函数的周期性、单调性和对称轴等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.15.【分析】由点的坐标可得的值由图象可求得函数的图象可得该函数的最小正周期可求得的值再将点的坐标代入函数的解析式结合的取值范围可求得的值可得出函数的解析式【详解】由于函数的图象的一个最高点为则由图象可知解析:ππ3sin 36x ⎛⎫- ⎪⎝⎭【分析】由点A 的坐标可得M 的值,由图象可求得函数()y f x =的图象可得该函数的最小正周期,可求得ω的值,再将点A 的坐标代入函数()y f x =的解析式,结合ϕ的取值范围可求得ϕ的值,可得出函数()y f x =的解析式. 【详解】由于函数()y f x =的图象的一个最高点为()2,3A ,则3M =, 由图象可知,函数()y f x =的最小正周期为452632T ⎛⎫=+= ⎪⎝⎭, 23T ππω∴==,()3sin 3x f x πϕ⎛⎫∴=+⎪⎝⎭, 将点A 的坐标代入函数()y f x =的解析式得()223sin 33f πϕ⎛⎫=+=⎪⎝⎭,可得2sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,则27636πππϕ<+<,232ππϕ∴+=,解得6πϕ=-,()3sin 36x f x ππ⎛⎫∴=- ⎪⎝⎭故答案为:()3sin 36x f x ππ⎛⎫=- ⎪⎝⎭ 【点睛】本题考查利用三角函数图象求解函数解析式,考查计算能力,属于中等题.16.10【分析】由函数与直线的图象可知它们都关于点中心对称再由向量的加法运算得最后求得向量的模【详解】由函数与直线的图象可知它们都关于点中心对称所以【点睛】本题以三角函数和直线的中心对称为背景与平面向量解析:10 【分析】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知,它们都关于点3(1,0)A 中心对称,再由向量的加法运算得1253...5PA PA PA PA +++=,最后求得向量的模. 【详解】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知, 它们都关于点3(1,0)A 中心对称,所以221253...5||5(01)(30)10PA PA PA PA +++==-+-=. 【点睛】本题以三角函数和直线的中心对称为背景,与平面向量进行交会,考查运用数形结合思想解决问题的能力.17.【分析】取中点连结交于点交于点连结设推导出和从而得出文化景观区域面积利用三角函数的性质解出面积最大值【详解】取中点连结交于点交于点连结设则文化景观区域面积:当即时文化景观区域面积取得最大值为故答案为 解析:()40023-【分析】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,推导出DC 和CF ,从而得出文化景观区域面积,利用三角函数的性质,解出面积最大值. 【详解】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,则20sin DN CN ϕ==,40sin DC ϕ∴=,20cos 20cos 203tan 30PFCF DE PN ON OP ϕϕϕ===-=-=-︒,∴文化景观区域面积:()4020203EFCD S sin cos sin ϕϕϕ=-矩形400sin 2cos 2)ϕϕ=--800sin(2)3πϕ=+-∴当232ππϕ+=,即12πϕ=时,文化景观区域面积取得最大值为2400(2)m -.故答案为:400(2-. 【点睛】本题考查文化景观区域面积的最大值的求法,考查扇形、三角函数恒等变换等基础知识,考查运算求解能力,是中档题.18.【分析】求出平移后的函数解析式由新函数图象过原点得出【详解】将函数的图象向左平移个单位长度得解析式为它的图象关于原点对称则即故答案为:【点睛】本题考查三角函数的图象平移变换考查三角函数的对称性注意性解析:【分析】求出平移后的函数解析式,由新函数图象过原点得出a , 【详解】将函数()sin 23cos2f x a x x =+的图象向左平移6π个单位长度,得解析式为()sin 23cos 266g x a x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,它的图象关于原点对称,则(0)0g =,即sin3cos033a ππ+=,a =故答案为:. 【点睛】本题考查三角函数的图象平移变换,考查三角函数的对称性,注意性质:函数()sin()f x A x ωϕ=+的图象与x 轴的交点是其对称中心,它的对称中心在函数图象上.19.【分析】利用任意性与存在性原命题可转化为有且仅有一个解然后根据三角函数的性质和图像求解即可【详解】由则存在唯一的实数使即有且仅有一个解作函数图像与直线当两个图像只有一个交点时由图可知故实数的最大值是解析:34π【分析】利用任意性与存在性原命题可转化为()1,,22f k k β⎛=∈ ⎝⎭有且仅有一个解,然后根据三角函数的性质和图像求解即可. 【详解】由()sin f x x =,(,)46αππ∈--,则()21,22f α⎛⎫∈-- ⎪ ⎪⎝⎭,存在唯一的实数(0,)m β∈,使()()0f f αβ+=, 即()12,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,作函数图像()y f β=与直线12,,22y k k ⎛=∈ ⎝⎭,当两个图像只有一个交点时,由图可知,344m ππ<≤, 故实数m 的最大值是34π. 故答案为:34π 【点睛】本题主要考查了三角函数的图像与性质,属于较为基础题.20.【分析】计算导数然后构造函数利用导数研究该函数的单调性进而判断原函数的单调性可得结果【详解】由题可知:令则由所以所以则在递减所以又则所以函数在递增所以所以故答案为:【点睛】本题考查函数在区间的最值难 解析:433π-【分析】计算导数,然后构造函数()cos sin h x x x x =+,利用导数研究该函数的单调性进而判断原函数的单调性,可得结果. 【详解】 由题可知:'2cos si ()cos co n s f x x xxx x =-+ 令()cos sin h x x x x =+,则()'sin sin cos cos h x x x x x x x =-++=由23,34x ππ⎡⎤∈⎢⎥⎣⎦,所以cos 0x < 所以()'0h x <,则()h x 在23,34x ππ⎡⎤∈⎢⎥⎣⎦递减 所以()min 3333cos sin 4444h x h ππππ⎛⎫==+⎪⎝⎭()min 31024h x π⎫=->⎪⎝⎭,又cos 0x < 则'2cos sin ()cos 0cos f x x x x xx=-+> 所以函数()f x 在23,34x ππ⎡⎤∈⎢⎥⎣⎦递增 所以min 2223()sin 233cos 3f x f ππππ⎛⎫==- ⎪⎝⎭所以min 243()132f x ππ==--故答案为:43π- 【点睛】本题考查函数在区间的最值,难点在于构造函数二次求导,注意细节,需要通过判断函数在区间的单调情况才能代值计算,考查对问题的分析能力,属中档题.三、解答题21.(1)ω=2,6π=ϕ;(2)5,6ππ⎡⎤--⎢⎥⎣⎦,,36ππ⎡⎤-⎢⎥⎣⎦,2π,π3;.(3)最小值为12,最大值为1716. 【分析】(1)先由函数图象,先得到周期,求出ω,再由最大值点,求出ϕ;(2)由(1)的结果,确定函数解析式,利用正弦函数的单调性,求出函数增区间,再由给定区间,即可得出结果;(3)先化简得到()sin 23x x πϕ⎛⎫=- ⎪⎝⎭,根据函数()g x 在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,得到222sin 23sin 2133ππa x x ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭在,62ππ⎡⎤⎢⎥⎣⎦上有解,令sin 23t x π⎛⎫=- ⎪⎝⎭,由正弦函数性质,求出,62x ππ⎡⎤⎢⎥⎣⎦时,[]0,1t ∈,再结合二次函数的性质,得到2231y t t =-++的范围,即可得出结果.【详解】(1)由图象可知:22362T πππ=-=,T π=,则22T πω==,又22,62k k Z ππϕπ⨯+=+∈得26k πϕπ=+,又2πϕ<,所以6π=ϕ,(2)()sin 26f x x π⎛⎫+⎝=⎪⎭,由222,262k x k k Z πππππ-≤+≤+∈得,,36k x k k Z ππππ-≤≤+∈,令1k =-,得4536x ππ-≤≤-,因x ππ-≤≤,则56x ππ-≤≤-, 令0k =,得36x ππ-≤≤,令1k =,得2736x ππ≤≤,因x ππ-≤≤,则2ππ3x ,所以()f x 在[,]-ππ上的单调递增区间为5,6ππ⎡⎤--⎢⎥⎣⎦,,36ππ⎡⎤-⎢⎥⎣⎦,2π,π3;. (3)()sin 2sin 21212126126x f x f x x x ππππππϕ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+=-+-++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1sin 2sin 2sin 22sin 2323x x x x x ππ⎛⎫⎛⎫=-+=-=- ⎪ ⎪⎝⎭⎝⎭,2()2sin 23sin 22133g x x x a ππ⎛⎫⎛⎫=---+- ⎪ ⎪⎝⎭⎝⎭,由函数()g x 在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,则222sin 23sin 2133ππa x x ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭在,62ππ⎡⎤⎢⎥⎣⎦上有解, 令sin 23t x π⎛⎫=-⎪⎝⎭,由,62x ππ⎡⎤∈⎢⎥⎣⎦,则220,33x ππ⎡⎤-∈⎢⎥⎣⎦,即[]0,1t ∈,则223171723121,488y t t t ⎛⎫⎡⎤=-++=--+∈ ⎪⎢⎥⎝⎭⎣⎦,所以17128a ≤≤,即117216a ≤≤, 故a 的最小值为12,最大值为1716. 【点睛】 思路点睛:求解含三角函数的二次式在给定区间上的最值时,一般需要用换元法,将三角函数换成t 来表示,得到关于t 的二次函数,由三角函数的性质,得到t 的范围,再结合二次函数的性质,即可求解.22.(1)见解析(2)见解析 【分析】(1)由题意可知2,3A πϕ==,选择条件①,由正弦函数的对称性求出ω,进而得出解析式;选择条件②,由正弦函数的对称性求出ω,进而得出解析式;选择条件③,由正弦函数的性质求出ω,进而得出解析式;(2)由[],0x π∈-,求出x ωϕ+的范围,再结合正弦函数的性质求出最值. 【详解】(1)由题意可知2,3A πϕ==选择条件①因为()f x 的图象关于直线3x π=对称,所以332k πππωπ+=+,解得13,2k k Z ω=+∈ 由21321302kk k Z ππ⎧≥⎪+⎪⎪⎨⎪+>⎪⎪∈⎩,解得0k =,即12ω=故1()2sin 23f x x π⎛⎫=+ ⎪⎝⎭选择条件②因为()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,所以,26,63k k k Z ππωπω-+==-∈由226260k k k Zππ⎧≥⎪-⎪⎨->⎪⎪∈⎩,解得0k =,即2ω=故()2sin 23f x x π⎛⎫=+ ⎪⎝⎭选择条件③因为()f x 的图象上最高点中,有一个点的横坐标为6π,所以2,632k k Z πππωπ+=+∈,解得112,k k Z ω=+∈由21121120kk k Zππ⎧≥⎪+⎪⎨+>⎪⎪∈⎩,解得0k =,即1ω= 故()2sin 3f x x π⎛⎫=+ ⎪⎝⎭(2)选择条件①1,2363x πππ⎡⎤+∈-⎢⎥⎣⎦当1236x ππ+=-,即x π=-时,min ()2sin 16f x π⎛⎫=-=- ⎪⎝⎭当1233x ππ+=,即0x =时,max ()2sin 3f x π== 选择条件②52,333x πππ⎡⎤+∈-⎢⎥⎣⎦当5233x ππ+=-或233x ππ+=,即x π=-或0x =时,max ()2sin 3f x π==当232x ππ+=-,即512x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭选择条件③2,333x πππ⎡⎤+∈-⎢⎥⎣⎦当33x ππ+=,即0x =时,max ()2sin3f x π==当32x ππ+=-,即65x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭【点睛】关键点睛:解决本题的关键是将正弦型函数的问题转化为正弦函数的性质进行求解,利用已知知识解决未知问题.23.(1),(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)证明见解析. 【分析】(1)根据sin 2126f x x ππϕ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数可得6π=ϕ,则()sin 26f x x π⎛⎫=+ ⎪⎝⎭,再由222,Z 262k x k k πππππ-≤+≤+∈可得答案;(2)根据三角函数图象的变换规律可得()sin 46g x x π⎛⎫=-⎪⎝⎭,由0,4x π⎡⎤∈⎢⎥⎣⎦,求出1(),12g x ⎡⎤=-⎢⎥⎣⎦,进而可得结论.【详解】(1)由题意知:sin 2126y f x x ππϕ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数 所以()6k k Z πϕπ-=∈,(Z)6k k πϕπ=+∈因为02πϕ<<,所以0k =,6π=ϕ 所以()sin 26f x x π⎛⎫=+ ⎪⎝⎭由222,Z 262k x k k πππππ-≤+≤+∈,解得:,Z 36k x k k ππππ-≤≤+∈, 所以()f x 的单调递增区间为,(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)由题知:将()y f x =的图象向右平移6π个单位得sin 266y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 即sin 26y x π⎛⎫=-⎪⎝⎭,再将图象上各点的横坐标缩小到原来的12倍, 得()sin 46g x x π⎛⎫=- ⎪⎝⎭,因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以54,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 因此1()sin 4,162g x x π⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦, 则2()10g x +≥且()10g x -≤,所以22()()1[2()1][()1]0g x g x g x g x --=+-≤ 【点睛】方法点睛:函数sin()y A x ωϕ=+()0,0A ω>>的单调区间的求法:,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间;2222k x k πππωϕπ-+≤+≤+求得增区间.24.(1) ())3f x x π=+;【分析】(1)根据函数()f x 的部分图象可得A 及周期T ,再根据周期公式可求出ω,由五点法作图的第三个点可求出ϕ的值,从而可得函数()f x 的解析式;(2)根据平移变换和伸缩变换的规律,可求出()g x 的解析式,再根据函数()g x 在[]0,m 上单调递增,可求出m 的最大值,再根据正弦函数的图象与性质,即可求出函数()f x 在[0,]m 上的最大值.【详解】(1)由已知可得A =52()63πT ππ=-=,所以22=πωT=,所以())f x x ϕ=+,根据五点法作图可得23πϕπ⨯+=,所以=3πϕ,所以())3f x x π=+(2) 将函数()f x 的图象向右平移3π个单位长度,可得22333πππy x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()43g x x π⎛⎫=- ⎪⎝⎭的图象,因为函数()g x 在[]0,m 上单调递增,所以432m ππ-≤,所以524m π≤,m 的最大值为524π,由50,24x π⎡⎤∈⎢⎥⎣⎦,可得32,334x πππ⎡⎤+∈⎢⎥⎣⎦,所以当2=32x +ππ时,()f x .故函数()f x 在[]0,m .【点睛】方法点睛:确定()sin()(0,0)f x A x B A ωϕω=++>>的解析式的步骤: (1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=; (2)求ω,确定函数的周期T ,则2Tπω=; (3)求ϕ,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定ϕ值时,往往以寻找“五点法”中的特殊点作为突破口.25.(1)()23f x x π⎛⎫=+⎪⎝⎭;(2),,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3){},66πππ⎡⎤-⋃⎢⎥⎣⎦. 【分析】(1)利用题中图象可知A =,44T π=,结合周期公式求得=2ω,再由3x π=代入计算得=3πϕ即得解析式;(2)根据三角函数平移的方法求得()g x ,再利用整体代入法求单调递减区间即可;(3)先由()32fx ≥可得sin 23x π⎛⎫+≥ ⎪⎝⎭,再由,2x ππ⎡⎤∈-⎢⎥⎣⎦得到23x π+的前提范围,结合正弦函数性质得到不等式中23x π+的范围,再计算x 范围即可.【详解】解:(1)由题中图象可知:A =,741234T πππ=-=, 2T ππω∴==,即2ω=,又由图象知,3x π=时,223k πϕππ⋅+=+,即23k πϕπ=+,k Z ∈,又02ϕπ≤<,∴=3πϕ,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()f x 向左平移12π个单位后得到函数()g x ,故()2221232g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由余弦函数性质知,令222,k x k k Z πππ≤≤+∈,得减区间,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z , ∴()g x 的单调递减区间为,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3)由题意知:()3232f x x π⎛⎫=+≥ ⎪⎝⎭,即sin 232x π⎛⎫+≥ ⎪⎝⎭, 由,2x ππ⎡⎤∈-⎢⎥⎣⎦,知[]0,x π∈,2,2333x ππππ⎡⎤+∈+⎢⎥⎣⎦,由正弦函数图象性质可知,22333x πππ≤+≤或2233x πππ+=+ 即06x π≤≤或x =π,又,2x ππ⎡⎤∈-⎢⎥⎣⎦,得x 的取值范围为{},66x πππ⎡⎤∈-⋃⎢⎥⎣⎦.【点睛】 方法点睛:求三角函数()()sin f x A x b ωϕ=++性质问题时,通常利用整体代入法求解单调性、对称性,最值等性质,或者整体法求三角不等式的解. 26.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解; (2)根据三角函数的图象解不等式得解集. 【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=;(2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题.。
(常考题)北师大版高中数学必修四第一章《三角函数》测试(包含答案解析)

一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (51AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④3.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .454.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到5.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .D 6.已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( )A .,33x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66x k x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ 7.已知点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴.若()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,则ϕ=( ) A .6π B .3π C .23π D .56π 8.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .19.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠<⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-10.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个11.若函数)22()sin 2cos sin f x x x x =-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2πB .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数 D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称B .最小正周期是πC .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦3二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为3.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.15.已知函数()sin()0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,关于函数()y f x =有下列结论:①图象关于点,03π⎛⎫⎪⎝⎭对称; ②单调递减区间为2,,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ; ③若()f x a =,则cos 32a x πω⎛⎫-= ⎪⎝⎭; ④2()()log g x f x x =-有4个零点.则其中结论正确的有____________(填上所有正确结论的序号) 16.若将函数()cos 212f x x π⎛⎫=+⎪⎝⎭的图象向左平移8π个单位长度,得到函数()g x 的图象,则下列说法正确的是_________.①()g x 的最小正周期为π ②()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减 ③12x π=不是函数()g x 图象的对称轴 ④()g x 在,66ππ⎡⎤-⎢⎥⎣⎦上的最小值为12-17.若函数()cos()(0)4f x wx w π=+>在[]0,π的值域为212⎡-⎢⎣⎦,,则w 的取值范围是______18.已知函数()sin cos f x a x x =+的一条对称轴为3x π=,则a =______;19.函数[]y x =的函数值表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=.则对于函数()[]f x x x =-,有下列说法:①()f x 的值域为[)0,1;②()f x 是1为周期的周期函数;③()f x 是偶函数;④()f x 在区间[)1,2上是单调递增函数.其中,正确的命题序号为___________.20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.已知()2sin 216f x x a π⎛⎫=-++ ⎪⎝⎭(a 为常数).(1)求()f x 的最小正周期和单调递增区间; (2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为4,求a 的值. 22.已知函数()223cos 2cos 1(0)212212212x x x f x ωπωπωπω⎛⎫⎛⎫⎛⎫=++-++>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭图象上相邻的两个最高点之间的距离为π. (1)求()f x 的单调增区间;(2)是否存在两个不同的实数1x ,20,2x π⎡⎤∈⎢⎥⎣⎦,使得点()()11,x f x ,()()22,x f x 关于8x π=的对称点都在函数25cos y x x a =+的图象上,若存在,请求出实数a 的取值范围;若不存在,请说明理由.23.已知函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭,函数12y f x π⎛⎫=- ⎪⎝⎭为奇函数. (1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象,证明:当0,4x π⎡⎤∈⎢⎥⎣⎦时,22()()10g x g x --≤.24.已知函数21()cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合.25.已知sin(2)cos 2()cos tan()2f ππαααπαπα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)化简()f α,并求3f π⎛⎫⎪⎝⎭; (2)若tan 2α=,求224sin 3sin cos 5cos αααα--的值;(3)求函数2()2()12g x f x f x π⎛⎫=-++⎪⎝⎭的值域. 26.已知函数()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,x ∈R . (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)求()f x 在区间06,π⎡⎤⎢⎥⎣⎦上的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯, )213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))51222l n πππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(113232m ππ+==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.3.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 4.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.5.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.6.D解析:D 【分析】由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解. 【详解】由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤, 因为()0,1A -,()3,1B 是函数()f x 图象上的两点,所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤, 因为()f x 是定义在R 上的增函数, 可得02sin 13x ≤+≤,解得:1sin 12x -≤≤, 由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈, 所以原不等式的解集为722,66x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤.7.B解析:B 【分析】 先由点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴,求出ω的范围,再由()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调求出φ.【详解】 由题意得:62484T πππ-=≥, 得1248ππω⨯≤,所以ω4≥. 又()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,所以3662T πππ-=≤,得1226ππω⨯≥,所以ω6≤ 所以ω=4或5或6.当ω=4时, ()()cos 4f x x ϕ=+,有cos 402424460f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩解得3πϕ=.当ω=5时, ()()cos 4f x x ϕ=+,有cos 502424560f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.当ω=6时, ()()cos 4f x x ϕ=+,有cos 602424660f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.综上: 3πϕ=.故选:B 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;(3)求φ通常利用函数上的点带入即可求解.8.B解析:B 【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值. 【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124Tππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B 【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.9.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-=⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭,由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 10.B解析:B 【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫=⎪⎝⎭,()3g π=,所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.11.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭, 则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确.故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得. 【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的解析:(40π+【分析】如图,作出月牙湖的示意图,由题意可得3sin 2QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.15.②③【分析】先根据图象结合已知条件限制求出的解析式再利用代入验证法判断①错误;利用整体代入法求单调区间判断②正确;解方程并结合诱导公式判断③正确;将函数零点问题转化成函数交点问题数形结合判断④错误即解析:②③ 【分析】先根据图象,结合已知条件限制求出()y f x =的解析式,再利用代入验证法判断①错误;利用整体代入法求单调区间判断②正确;解方程并结合诱导公式判断③正确;将函数零点问题转化成函数交点问题,数形结合判断④错误即可. 【详解】由图象可知,2A =,(0)2sin 1f ϕ==,故1sin 2ϕ=,又2πϕ<,故6π=ϕ,故()2sin 6f x x πω⎛⎫=+⎪⎝⎭,又由11112sin 012126f πππω⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭得,112,126k k Z ππωπ+=∈,即224,1111kk Z ω=-+∈,由题意0>ω,由图知1112T π>,即22411T πω=<,故1k =时2ω=.故()2sin 26f x x π⎛⎫=+⎪⎝⎭. ①因为252sin 2sin 103366f ππππ⎛⎫⎛⎫=+==≠ ⎪ ⎪⎝⎭⎝⎭,故点,03π⎛⎫ ⎪⎝⎭不是()y f x =图象的对称中心,故错误; ②令322,2,622x k k k Z πππππ⎛⎫+∈++∈ ⎪⎝⎭, 解得单调递减区间为2,,63k k k ππππ⎛⎫++∈⎪⎝⎭Z ,故正确;③若()2sin 26f x x a π⎛⎫=+= ⎪⎝⎭,则sin 262a x π⎛⎫+= ⎪⎝⎭, 则cos cos 2sin 2sin 2332362a x x x x πππππω⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=+-=+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故正确; ④令2()()log 0g x f x x =-=,得方程2()log f x x =的根的问题, 即函数()2sin 26y f x x π⎛⎫==+⎪⎝⎭与函数2log y x =的交点个数问题,如图,令22,62x k k Z πππ+=+∈,则,6x k k Z ππ=+∈时()y f x =取得最大值2.如图,6x π=时,2()log f x x >;76x π=时,746π<,227log log 426π<=2()2log f x x =>;当136x π=时,1346π>,2213log log 426π>=,2()2log f x x =<. 故函数()2sin 26y f x x π⎛⎫==+⎪⎝⎭与函数2log y x =有3个交点,即2()()log g x f x x =-有3个零点.故错误. 故答案为:②③. 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()0f x =等价于()()h x g x =,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.16.①③④【分析】由函数图像的变换可得结合余弦函数的周期性单调性对称轴等即可判断选项得出答案【详解】的最小正周期为选项A 正确;当时时故在上有增有减选项B 错误;故不是图象的一条对称轴选项C 正确;当时且当即解析:①③④ 【分析】由函数图像的变换可得()cos 23π⎛⎫=+ ⎪⎝⎭g x x ,结合余弦函数的周期性、单调性、对称轴等即可判断选项,得出答案. 【详解】()cos 2cos 28123g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.()g x 的最小正周期为π,选项A 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,42,333x πππ⎡⎤+∈⎢⎥⎣⎦ 时,故()g x 在0,2π⎡⎤⎢⎥⎣⎦上有增有减,选项B 错误;012g π⎛⎫= ⎪⎝⎭,故12x π=不是()g x 图象的一条对称轴,选项C 正确;当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,220,33x ππ⎡⎤+∈⎢⎥⎣⎦,且当2233x ππ+=,即6x π=时,()g x 取最小值12-,D 正确. 故答案为:①③④.【点睛】本题考查了三角函数图像的变换、余弦函数的周期性、单调性和对称轴等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.17.【分析】先根据题意计算出的范围再根据函数的单调性结合值域列出不等式即可求得【详解】因为且故可得因为在区间单调递减在单调递增且故要满足题意只需解得故答案为:【点睛】本题考查由余弦型函数在区间上的值域求解析:3342⎡⎤⎢⎥⎣⎦,【分析】先根据题意计算出4wx π+的范围,再根据函数的单调性,结合值域,列出不等式,即可求得. 【详解】因为[]0,x π∈,且0w >, 故可得1,444wx w πππ⎡⎤⎛⎫+∈+ ⎪⎢⎥⎝⎭⎣⎦, 因为y cosx =在区间,4ππ⎡⎤⎢⎥⎣⎦单调递减,在7,4ππ⎡⎤⎢⎥⎣⎦单调递增,且7coscos44ππ==,1cos π=-, 故要满足题意,只需1744w πππ⎛⎫≤+≤ ⎪⎝⎭ 解得33,42w ⎡⎤∈⎢⎥⎣⎦.故答案为:3342⎡⎤⎢⎥⎣⎦,.【点睛】本题考查由余弦型函数在区间上的值域,求参数范围的问题,属中档题.18.【分析】根据三角函数的性质可知在取得最大值或最小值建立方程即可求解【详解】其中是辅助角是的一条对称轴整理得解得故答案为:【点睛】本题考查三角函数性质得应用利用在对称轴的函数值是最大或最小是解题的关键【分析】根据三角函数的性质可知()f x 在3x π=取得最大值或最小值,建立方程即可求解.【详解】()()sin cos f x a x x x ϕ=+=+,其中ϕ是辅助角, 3x π=是()f x 的一条对称轴,231()1322f a a ,整理得230a -+=,解得a =【点睛】本题考查三角函数性质得应用,利用在对称轴的函数值是最大或最小是解题的关键,属于中档题.19.①②④【分析】当时即可判断①④;计算即可判断②也可以作图;计算即可判断③【详解】当时所以故①④正确;当时则故②正确;所以③错误故答案为:①②④【点睛】本题考查利用所学知识研究新定义函数的性质涉及到周解析:①②④ 【分析】当[,1)x n n ∈+时,()f x x n =-,即可判断①④;计算(1)f x +,()f x 即可判断②,也可以作图;计算12()33f -=,11()33f =即可判断③. 【详解】当[,1)x n n ∈+时,[]x n =,()||f x x n x n =-=-,所以()[0,1)f x ∈,故①④正确; 当[,1)x n n ∈+时,则1[1,2)x n n +∈++,[1]1x n +=+,(1)|1[1]|f x x x +=+-+|1(1)|||()x n x n f x =+-+=-=,故②正确;1112()|[]|3333f -=---=,1111()|[]|3333f =-=,所以③错误.故答案为:①②④. 【点睛】本题考查利用所学知识研究新定义函数的性质,涉及到周期性、单调性、奇偶性以及值域,是一道中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-= ⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+, 将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ.故答案为:6π. 【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)π,5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)2a =. 【分析】(1)利用诱导公式化简函数的解析式,再根据正弦函数的周期性和单调性求解. (2)根据0,2x π⎡⎤∈⎢⎥⎣⎦得到52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,然后利用正弦函数的性质求解. 【详解】 (1)()2sin 212sin 2166f x x a x a ππ⎛⎫⎛⎫=-++=--++ ⎪ ⎪⎝⎭⎝⎭,它的最小正周期为22ππ=. 令3222262k x k πππππ+≤-≤+, 解得536k x k ππππ+≤≤+,所以函数的单调递增区间为5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时, 所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以()f x 的最大值为42sin 16a π⎡⎤⎛⎫=-⨯-++ ⎪⎢⎥⎝⎭⎣⎦, 解得2a =. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式; 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2πω,y =tan(ωx +φ)的最小正周期为πω; 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.22.(1)单调增区间为,44k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)存在,).【分析】(1)先对函数化简得()2sin f x x ω=,由函数图像上相邻的两个最高点之间的距离为π,可得函数的周期为π,从而由周期公式可得2ω=,则()2sin 2f x x =,由22222k x k ππππ-+≤≤+,可求得()f x 的单调增区间;(2)由题意得点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,所以2sin 22x x a =,由此可得方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,其中sin θ=,2cos 3θ=,只要函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点即可【详解】(1)函数()2cos 2cos 1212212212x x x f x ωπωπωπ⎛⎫⎛⎫⎛⎫=++-++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 2sin 2sin 6666x x x x ππππωωωω⎛⎫⎛⎫⎛⎫=+-+=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由题意,最小正周期T π=,即2||T ππω==, 因为0>ω,所以2ω=,即有()2sin 2f x x =, 令22222k x k ππππ-+≤≤+,解得44k x k ππππ-+≤≤+,从而得()f x 的单调增区间为,44k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈(2)由题意,点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,有:22sin 22x a x π⎛⎫-+= ⎪⎝⎭,即方程2sin 22x x a =,即方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,其中sin θ=,2cos 3θ=,θ为锐角当0,42x πθ⎡⎤∈+⎢⎥⎣⎦时,函数sin(2)y x θ=-单调递增,且当0x =时,sin(2)sin()sin 3x θθθ-=-=-=-; 当42x πθ=+时,sin(2)sin12x πθ-==,所以13y -≤≤, 当,422x πθπ⎡⎤∈+⎢⎥⎣⎦时,函数sin(2)y x θ=-单调递减,且当2x π=时,sin(2)sin()sin x θπθθ-=-==1y ≤≤, 所以要使方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解,即函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,所以133a≤<3a <; 综上所述,在0,2π⎡⎤⎢⎥⎣⎦上存在两个不同的实数1x ,2x 满足条件,此时a 的取值范围是).【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,解题的关键是把点()()11,x f x ,()()22,x f x 关于8x π=的对称点都在函数cos y x x a =+的图象上,转化为点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫- ⎪⎝⎭,在2y x a =+上,从而可得方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,再转化为函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,属于中档题 23.(1),(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)证明见解析.【分析】 (1)根据sin 2126f x x ππϕ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数可得6π=ϕ,则()sin 26f x x π⎛⎫=+ ⎪⎝⎭,再由222,Z 262k x k k πππππ-≤+≤+∈可得答案;(2)根据三角函数图象的变换规律可得()sin 46g x x π⎛⎫=- ⎪⎝⎭,由0,4x π⎡⎤∈⎢⎥⎣⎦,求出1(),12g x ⎡⎤=-⎢⎥⎣⎦,进而可得结论.【详解】(1)由题意知:sin 2126y f x x ππϕ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数 所以()6k k Z πϕπ-=∈,(Z)6k k πϕπ=+∈因为02πϕ<<,所以0k =,6π=ϕ 所以()sin 26f x x π⎛⎫=+ ⎪⎝⎭由222,Z 262k x k k πππππ-≤+≤+∈,解得:,Z 36k x k k ππππ-≤≤+∈, 所以()f x 的单调递增区间为,(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦; (2)由题知:将()y f x =的图象向右平移6π个单位得sin 266y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 即sin 26y x π⎛⎫=-⎪⎝⎭,再将图象上各点的横坐标缩小到原来的12倍, 得()sin 46g x x π⎛⎫=- ⎪⎝⎭, 因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以54,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 因此1()sin 4,162g x x π⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦, 则2()10g x +≥且()10g x -≤,所以22()()1[2()1][()1]0g x g x g x g x --=+-≤ 【点睛】方法点睛:函数sin()y A x ωϕ=+()0,0A ω>>的单调区间的求法:,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间;2222k x k πππωϕπ-+≤+≤+求得增区间.24.(1)2π;(2)2,5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【分析】(1)先利用二倍角公式化简,再用辅助角公式化为()f x sin 16x π⎛⎫=++ ⎪⎝⎭,即可求出()f x 的最小正周期;(2)利用图像变换得到()y g x =的解析式,利用换元法就可以得到()y g x =的最大值及取得最大值时 x 的取值 【详解】(1)∵函数1cos 1()222x f x x +=++ sin 16x π⎛⎫=++ ⎪⎝⎭∴函数的周期为2π(2)依题意:函数()f x sin 16x π⎛⎫=++ ⎪⎝⎭的图象上的各点向左平移32π个单位,得到y 3sin +1= -cos 1626x x πππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭;再保持纵坐标不变,横坐标缩短到原来的一半,得到y = -cos 216x π⎛⎫++ ⎪⎝⎭; 所以()cos 216g x x π⎛⎫=-++ ⎪⎝⎭令226t x k πππ=+=+,即5()12x k k Z ππ=+∈ 使函数()g x 取得最大值2,即max ()2g x =使函数()g x 取得最大值的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.【注意】取得最大值的集合为7,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭也可以. 【点睛】 :(1)关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a ;(2)求y =Asin (ωx +φ)+B 的值域通常用换元法; 25.(1)()cos f αα=,π132f ;(2)1;(3)250,8⎡⎤⎢⎥⎣⎦. 【分析】(1)由诱导公式化简可得()cos f αα=,进而可得3f π⎛⎫⎪⎝⎭; (2)由平方关系和商数关系可转化条件为224tan 3tan 5tan 1ααα--+,即可得解; (3)转化条件为()21252sin 48g x x ⎛⎫=--+ ⎪⎝⎭,结合二次函数的性质即可得解. 【详解】(1)由题意可得sin(2)cos 2()cos tan()2f ππαααπαπα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭sin (sin )cos sin tan ααααα-⋅-==⋅,故1cos 332f ππ⎛⎫==⎪⎝⎭; (2)∵tan 2α=,故224sin 3sin cos 5cos αααα--22224sin 3sin cos 5cos sin cos αααααα--=+ 224tan 3tan 51tan 1ααα--==+; (3)因为()cos f αα=,所以22()2cos cos 12cos sin 12g x x x x x π⎛⎫=-++=++ ⎪⎝⎭22sin sin 3x x =-++21252sin 48x ⎛⎫=--+⎪⎝⎭, 因为sin [1,1]x ∈-, 所以当1sin 4x =时,max 25()8g x =,当sin 1x =-时,min ()0g x =所以()g x 的值域为250,8⎡⎤⎢⎥⎣⎦. 【点睛】关键点点睛:解决本题的关键是利用诱导公式、同角三角函数的关系对原式进行合理变形.26.(Ⅰ)5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, (Ⅱ)()f x 的最大值为31+ 【分析】 (Ⅰ)由222,232k x k k Z πππππ-≤+≤+∈可得答案.(Ⅱ)设23t x π=+,由0,6x π⎡⎤∈⎢⎥⎣⎦,则233t ππ≤≤ ,则sin 12t ≤≤,从而可得答案. 【详解】 (Ⅰ)由222,232k x k k Z πππππ-≤+≤+∈5222,66k x k k Z ππππ-≤≤+∈ 5,1212k x k k Z ππππ-≤≤+∈ 所以函数()f x 的单调递增区间为:5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, (Ⅱ)设23t x π=+,由0,6x π⎡⎤∈⎢⎥⎣⎦,则233t ππ≤≤所以sin 12t ≤≤,则2sin 11,3y t ⎤=+∈⎦当0,6x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为31 【点睛】关键点睛:本题考查求三角函数的单调区间和最值,解答本题的关键是设23t x π=+,由0,6x π⎡⎤∈⎢⎥⎣⎦,则233t ππ≤≤ 所以sin 12t ≤≤,属于中档题.。
最新北师大版高中数学必修四第一章《三角函数》检测题(有答案解析)

一、选择题1.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+2.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .453.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )(3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米4.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A .34B .14C .32D .125.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )①函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称 ②函数()y f x =的图象关于直线512x π=-对称 ③函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 ④该图象向右平移3π个单位可得2sin 2y x =的图象 A .①②B .①③C .①②③D .①②④6.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 7.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 9.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数; (3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+. 同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭10.已知函数1,01()11sin ,14242x x f x x x π+≤≤⎧⎪=⎨+<≤⎪⎩,若不等式2()()20f x af x -+<在[]0,4x ∈上恒成立,则实数a 的取值范围为( )A .3a >B3a <<C.a >D .92a >11.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3πD .3π-12.若函数)22()sin 2cos sin f x x x x =-的图像为E ,则下列结论正确的是( )A .()f x 的最小正周期为2πB .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数 D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E二、填空题13.2020年是苏颂诞辰1000周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,当点P 从枢轮最高处随枢轮开始转动时,退水壶内水面位于枢轮中心下方1.19米处.此时打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动,则点P 至少经过______分钟(结果取整数)进入水中.(参考数据:cos0.9815π≈,2cos0.9115π≈,cos 0.815π≈)14.已知定义在R 上的函数()f x 满足:()()2f x f x π+=,且当[]0,x π∈时,()sin f x x =.若对任意的(],x m ∈-∞,都有()2f x ≤,则实数m 的取值范围是______.15.函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下说法: (1)其中最小正周期为23π; (2)图象关于点(,0)4π对称;(3)由2sin3y x =的图象向右平移34π个单位长度可以得到图象C ; (4)直线4πx =-是其图象的其中一条对称轴. 其中正确命题的序号是__________. 16.函数y =的定义域为________.17.关于函数()()4sin 23f x x x π⎛⎫=-∈ ⎪⎝⎭R ,有下列命题: ①43y f x π⎛⎫=+⎪⎝⎭为偶函数; ②方程()2f x =的解集为,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;③()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭对称;④()y f x =在[]0,2π内的增区间为50,12π⎡⎤⎢⎥⎣⎦和11,212ππ⎡⎤⎢⎥⎣⎦; ⑤()y f x =的振幅为4,频率为1π,初相为3π-.其中真命题的序号为______.18.已知函数2()cos ()1(0,0,0)2πf x A ωx φA ωφ=++>><<的最大值为3,()f x 的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则(1)(2)f f +=_____.19.已知函数()y f x =是R 上的偶函数,当0x ≥时,()4242si ,,n 04x x f x x x ππππ⎛⎫-> ⎪⎝⎭⎛⎫≤⎧⎪⎪=⎨≤ ⎪⎝⎭⎪⎪,关于x 的方程()()f x m m R =∈有且仅有四个不同的实数根,若α是四个根中的最大根,则sin()2πα+=____.20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.在①将函数f (x )图象向右平移12π个单位所得图象关于y 轴对称:②函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数;③当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值.三个中任选一个,补充在题干中的横线处,然后解答问题.题干:已知函数()2sin()f x x ωϕ=+,其中0,||2πωϕ><,其图象相邻的对称中心之间的距离为2π,___________. (1)求函数y =f (x )的解析式;(2)求函数y =f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上的最小值,并写出取得最小值时x 的值. 注:如果选择多个条件分别解答,按第一个解答计分.22.已知函数()()sin (0,)2f x A x πωϕωϕ=+><部分图象如图所示.(1)求ω和ϕ的值;(2)求函数()f x 在[,]-ππ上的单调递增区间;(3)设()1212x f x f x ππϕ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,已知函数2()2()3()21g x x x a ϕϕ=-+-在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,求实数a 的最小值和最大值. 23.在①()f x 的图象关于直线3x π=对称,②()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,③()f x 的图象上最高点中,有一个点的横坐标为6π这三个条件中任选一个,补充在下面问题中,并解答.问题:已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的振幅为2,初相为3π,最小正周期不小于...π,且______. (1)求()f x 的解析式;(2)求()f x 在区间[],0π-上的最大值和最小值以及取得最大值和最小值时自变量x 的值.注:如果选择多个条件分别解答,按第一个解答计分.24.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(50203)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.25.已知函数()2sin(2)f x x ϕ=+. (1)当,0,62x ππϕ⎡⎤=∈⎢⎥⎣⎦时,求()f x 的值域和单调减区间; (2)若()f x 关于3x π=对称,且(0,)ϕπ∈,求ϕ的值.26.已知712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,其中0,4πα⎛⎫∈ ⎪⎝⎭.(1)求tan α的值;(2)求3sin sin 3cos ααα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.2.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 3.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=,由sin43AD AO π===可得:弦2AD ==所以:弧田面积12=(弦⨯矢+矢221)22)292=+=≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.4.C解析:C 【分析】 由0,3x π⎡⎤∈⎢⎥⎣⎦计算出x ω的取值范围,可得出0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,再由函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得出关于ω的等式,由此可解得实数ω的值. 【详解】0ω>,当0,3x π⎡⎤∈⎢⎥⎣⎦时,0,3x πωω⎡⎤∈⎢⎥⎣⎦,由于函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦, 所以,032πωπ<≤,由于函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,所以,函数()f x 在3x π=处取得最大值,则()232k k N πωππ=+∈,又032πωπ<≤,所以,32πωπ=,解得32ω=. 故选:C. 【点睛】关键点点睛:本题通过正弦型函数在区间上的单调性求参数值,解题的就是将函数在区间上的单调性转化为两个区间的包含关系,并且分析出函数()f x 的一个最大值点,进而列出关于ω的等式求解.5.A解析:A 【分析】根据()f x 的图象及三角函数图像和性质,解得函数()f x 的解析式,得到()2sin(2)3f x x π=+,再结合三角函数的图像和性质逐一判定即可.【详解】由函数的图象可得2A =,周期4312T πππ⎛⎫=⨯-= ⎪⎝⎭ 所以222T ππωπ===, 当12x π=时函数取得最大值,即2sin 221212f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭, 所以22()122k k ππϕπ⨯+=+∈Z ,则23k πϕπ=+,又||2ϕπ<,得 3πϕ=, 故函数()2sin(2)3f x x π=+,对于①,当6x π=-时,()2sin(2())0663f πππ-=⨯-+=,正确;对于②,当512x π=-时,()2sin 551212(2())23f πππ=⨯+-=--,正确; 对于③,令3222()232k x k k Z πππππ+≤+≤+∈得7()1212k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,27,,()361212k k k Z ππππππ⎡⎤⎡⎤--⊄++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以不正确; 对于④,向右平移3π个单位,()2sin(2())2sin(2)3333f x x x ππππ-=-+=-,所以不正确; 故选:A. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.6.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案.由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.C解析:C 【分析】根据弧度制与角度制的关系求解即可. 【详解】因为180π︒=弧度, 所以156********4ππ︒=⨯=, 故选:C9.B解析:B根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭, 故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D . 因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦, 故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=-⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数, 故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.10.D解析:D 【分析】这是一个复合函数的问题,通过换元()t f x = ,可知新元的范围,然后分离参数,转为求函数的最大值问题,进而计算可得结果. 【详解】由题可知当[]0,1x ∈时,有[]()11,2f x x =+∈, 当4](1,x ∈时,0sin14xπ≤≤,即111()sin,12422x f x π⎡⎤=+∈⎢⎥⎣⎦ 所以当[]0,4x ∈时,1,22()f x ⎡∈⎤⎢⎥⎣⎦,令()t f x =,则1,22t ⎡⎤∈⎢⎥⎣⎦,从而问题转化为不等式220t at -+<在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,即222t a t t t +>=+在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,由2y t t =+,1,22t ⎡⎤∈⎢⎥⎣⎦,设1212t t <<<()()()1212121212122220t t f t f t t t t t t t t t --=-+-=->, 所以2y t t =+在12t ⎡∈⎢⎣是单调递减函数,122t t <<,()()()1212121212122220t t f t f t t t t t t t t t --=-+-=-<, 所以2y t t=+在t ⎤∈⎦是单调递增函数, 在1,22t ⎡⎤∈⎢⎥⎣⎦上先减后增,而2t t +在12t =时有最大值为92,所以92a >.【点睛】本题考查含参数的恒成立问题,运用到分离参数法求参数范围,还结合双勾函数的单调性求出最值, 同时考查学生的综合分析能力和数据处理能力.11.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-=⎪⎝⎭.则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭,由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 12.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.二、填空题13.【分析】根据题意作出示意图结合枢纽中心到初始水平面的高度水面下降的高度刚进入水面时枢纽中心到水面的高度这三者间的关系列出关于运动时间的方程结合所给数据分析的取值即可【详解】设至少经过分钟进入水中如下 解析:13【分析】根据题意作出示意图,结合枢纽中心到初始水平面的高度、水面下降的高度、P 刚进入水面时枢纽中心到水面的高度这三者间的关系,列出关于运动时间x 的方程,结合所给数据分析x 的取值即可. 【详解】设至少经过x 分钟,P 进入水中,如下图P '为刚好进入水中的位置,由条件可知: 1.7, 1.19OP OA '==,P 转过的角度为23015x x ππ⋅=,所以15xP OB ππ'∠=-,因为OA AB OB +=,所以1.170.017 1.7cos 15x x ππ⎛⎫+=-⎪⎝⎭,所以70100cos 15x x ππ⎛⎫+=- ⎪⎝⎭(*),根据所给数据可知:当12x =时,(*)的左边82=,右边81=,此时左边>右边,说明P 还未进入水中,当13x =时,(*)的左边83=,右边91=,此时左边<右边,说明P 已经进入水中, 当14x =时,(*)的左边84=,右边98=,此时左边<右边,说明P 已经进入水中, 由上可知:x 的取值介于12和13之间,又因为x 的结果取整数,所以13x =, 故答案为:13. 【点睛】关键点点睛:解答本题的关键是通过示意图寻找到枢纽中心到水面的高度与水面下降高度之间的等量关系,通过所给的数据去分析方程的解也是很重要的一步.14.【分析】根据且当时类比周期函数的性质求出函数的解析式然后作出图象利用数形结合法求解【详解】当时;当时当时当时则函数的图象如图所示:当时解得若对任意的都有则故答案为:【点睛】本题主要考查三角函数解析式解析:13,6π⎛⎤-∞ ⎥⎝⎦【分析】根据()()2f x f x π+=,且当[]0,x π∈时,()sin f x x =,类比周期函数的性质,求出函数的解析式,然后作出图象,利用数形结合法求解.【详解】当[]0,x π∈时,()sin f x x =;当(],2x ππ∈时,(]0,x ππ-∈,()()()2si 22n sin ππ--=-==f x x f x x , 当(]2,3x ππ∈时,(],2x πππ-∈,()()()2sin 44sin ππ--===-f x x f x x , 当(],0x π∈-时,(]0,x ππ+∈,()()()1sin 1122sin 2ππ=++==-f x x f x x , 则函数()f x 的图象如图所示:当(]2,3x ππ∈时,()si 24n ==f x x ,解得136x π=, 若对任意的(],x m ∈-∞,都有()2f x ≤, 则136π≤m , 故答案为:13,6π⎛⎤-∞ ⎥⎝⎦. 【点睛】本题主要考查三角函数解析式的求法,三角函数的图象和性质的应用,还考查了数形结合的思想好推理求解问题的能力,属于中档题.15.(1)(2)(4)【分析】根据正弦型函数周期公式正弦型函数对称中心坐标正弦型函数对称轴等知识逐项验证即可求得答案【详解】对于(1)根据正弦型函数周期公式:可得:函数最小正周期为:故(1)正确;对于(解析:(1)(2)(4) 【分析】根据正弦型函数周期公式,正弦型函数对称中心坐标,正弦型函数对称轴等知识,逐项验证,即可求得答案. 【详解】对于(1),根据正弦型函数周期公式:2T ωπ=可得:函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭最小正周期为:2233T ππ==,故(1)正确; 对于(2),根据正弦函数sin ()y x x R =∈的图象的对称中心为(0),k π 正弦型函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭∴令334,k Z x k ππ=∈-,解得4,3k k Z x ππ=+∈ ∴其对称中心坐标为(,0),34k k Z ππ+∈ 当0k =时,对称中心坐标为(,0)4π,故(2)正确;对于(3),将2sin3y x =的图象向右平移34π个单位长度 可得:392sin 32sin 344y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭92sin 322sin 344x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭∴将2sin3y x =的图象向右平移34π个单位长度不能得到图象C ,故(3)错误; 对于(4),根据正弦函数sin ()y x x R =∈的图象的对称轴方程为,2x k k Z ππ=+∈,正弦型函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭∴令,2334Z x k k πππ=+∈-,解得51,32k k x Z ππ=+∈ 当2k =-时,512342x πππ=+=--, ∴3()2sin 34f x x π⎛⎫=-⎪⎝⎭一条对称轴4πx =-,故(4)正确; 故答案为:(1)(2)(4).【点睛】本题解题关键是掌握整体法求正弦函数图象的对称中心和对称轴的方法,考查了分析能力和计算能力,属于中档题.16.(k ∈Z)【分析】解不等式2cosx -1≥0即得函数的定义域【详解】∵2cosx -1≥0∴cosx≥由三角函数线画出x 满足条件的终边的范围(如图阴影所示)∴x ∈(k ∈Z)故答案为(k ∈Z)【点睛】(解析: (k ∈Z)【分析】解不等式2cos x -1≥0即得函数的定义域. 【详解】∵2cos x -1≥0,∴cos x≥.由三角函数线画出x 满足条件的终边的范围(如图阴影所示).∴x ∈ (k ∈Z). 故答案为 (k ∈Z)【点睛】(1)本题主要考查三角函数线和解三角不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)三角函数线是解三角不等式较好的工具,要理解掌握并灵活运用.17.③⑤【分析】①利用三角函数的奇偶性判断真假;②解三角方程来判断真假;③利用代入法判断真假;④利用单调性的知识判断真假;⑤根据的有关概念判断真假【详解】①依题意令则所以①错误②由得当即时但所以②错误③解析:③⑤ 【分析】①利用三角函数的奇偶性判断真假;②解三角方程来判断真假;③利用代入法判断真假;④利用单调性的知识判断真假;⑤根据()sin y A ωx φ=+的有关概念判断真假. 【详解】 ①,依题意4474sin 24sin 24sin 233333y f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,令()4sin 23g x x π⎛⎫+ ⎝=⎪⎭,则()4sin 24sin 233g x x x ππ⎛⎫⎛⎫-=-+≠+ ⎪ ⎪⎝⎭⎝⎭,所以①错误.②,由()4sin 223f x x π⎛⎫=-= ⎪⎝⎭得1sin 232x π⎛⎫-= ⎪⎝⎭.当5236x ππ-=,即712x π=时,1sin 232x π⎛⎫-= ⎪⎝⎭,但7,124x x x k k Z πππ⎧⎫=∉=+∈⎨⎬⎩⎭,所以②错误.③,()24sin 4sin 0333f ππππ⎛⎫⎛⎫-=--=-= ⎪ ⎪⎝⎭⎝⎭,所以()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭对称,即③正确. ④,由于5104sin 4sin 30333f ππππ⎛⎫⎛⎫=-==⎪⎪⎝⎭⎝⎭,()24sin 44sin 4332f ππππ⎛⎛⎫⎛⎫=-=-=⨯-=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭所以11,212ππ⎡⎤⎢⎥⎣⎦不是()f x 的增区间,所以④错误. ⑤,()y f x =的振幅为4,周期22T ππ==,频率为11T π=,初相为3π-,所以⑤正确. 故答案为:③⑤ 【点睛】本小题主要考查三角函数的奇偶性、对称性、单调性、和三角函数的概念,属于中档题.18.【分析】利用二倍角公式可得由函数的最大值可求出由相邻两条对称轴间的距离可求出周期再利用周期公式可求出将点代入解析式可求出从而可得函数的解析式即可求出的值【详解】因为函数的最大值为所以所以由函数相邻两 解析:3【分析】利用二倍角公式可得()cos(22)122A Af x ωx φ=+++,由函数的最大值可求出A ,由相邻两条对称轴间的距离可求出周期,再利用周期公式可求出ω,将点(0,2)代入解析式可求出ϕ,从而可得函数的解析式,即可求出(1)(2)f f +的值. 【详解】21cos(22)()cos ()11cos(22)1222ωx φA Af x A ωx φA ωx φ++=++=⋅+=+++,因为函数()f x 的最大值为3,所以1322A A++=,所以2A =, 由函数()f x 相邻两条对称轴间的距离为2,可得周期4T =,所以222T ππω==,所以4πω=, 所以()cos(2)22πf x x φ=++,又()f x 的图象与y 轴的交点坐标为(0,2),所以cos 222ϕ+=,所以cos20ϕ=,又02πϕ<<,所以=4πϕ, 所以()cos()2sin 2222πππf x x x =++=-+, 所以(1)(2)sin 2sin 2120232πf f π+=-+-+=-+-+=. 故答案为:3 【点睛】本题主要考查求三角函数的图象与性质,二倍角的余弦公式,诱导公式,属于中档题.19.【分析】作出函数的图像结合图像可得即从而可得四个不同的实数根进而可得代入即可求解【详解】当时函数在区间和上是增函数在区间上是减函数的极大值为极小值为作出函数当时的图像如图函数函数是R 上的偶函数当时的 解析:22-【分析】作出函数()y f x =的图像,结合图像可得1m =,即1y =,从而可得四个不同的实数根,进而可得34πα=,代入即可求解. 【详解】当0x ≥时,函数在区间0,4π⎡⎫⎪⎢⎣⎭和,2π⎡⎫+∞⎪⎢⎣⎭上是增函数, 在区间,42ππ⎡⎫⎪⎢⎣⎭上是减函数,()f x 的极大值为24f π⎛⎫= ⎪⎝⎭极小值为02f ⎛⎫=⎪⎝⎭π, 作出函数当0x ≥时的图像如图, 函数函数()y f x =是R 上的偶函数,∴当0x <时()y f x =的图像与当0x ≥时的图像关于y 轴对称,故函数x ∈R 的图像如图所示,将()()f x m m R =∈进行平移,可得当1m =时, 两图像有且仅有四个不同的实数根, 令1y =,可得12,44x x ππ=-=,334x π=-,434x π=, 所以34πα=,3sin()cos cos 24ππαα∴+===故答案为:2- 【点睛】本题考查了三角函数的图像以及根据方程根的个数求参数值、特殊角的三角函数值,考查了数形结合的思想,属于中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+, 将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ. 故答案为:6π.【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.条件选择见解析;(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)12x π=-时,函数f (x )取得最小值,最小值为2-. 【分析】(1)由相邻中心距离得周期,从而可得ω,选择①,写出平移后解析式,由对称性得新函数为偶函数,结合诱导公式求得ϕ, 选择②,求出6y f x π⎛⎫=+ ⎪⎝⎭,由函数为奇函数,结合诱导公式求得ϕ, 选择③,求出()6y f x π=-,代入712x π=,结合正弦函数最大值可得ω, 从而得函数解析式; (2)()2sin 23f x x π⎛⎫=- ⎪⎝⎭由,求得23x π-的范围,然后由正弦函数性质得最小值.【详解】(1)因为函数f (x )=2sin(ωx +φ)的图象相邻的对称中心之间的距离为2π, 所以周期22T π=,即T =π,所以22Tπω==. 若选择①,因为函数f (x )图象向右平移12π个单位所得图象关于y 轴对称,所以()2sin 22sin 2126g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象关于y 轴对称,所以62k ππϕπ-=+,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择②,因为2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦是奇函数,所以3k πϕπ+=,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择③,2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=-=⨯-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,由题设,当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值,所以当722()1232k k Z πππϕπ⨯-+=+∈,即2()3k k Z πϕπ=-∈, 因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.(2)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,所以422,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当232x ππ-=-,即12x π=-时,函数f (x )取得最小值,最小值为2-.【点睛】关键点点睛:本题考查由三角函数的图象与性质求解析式,解题关键是掌握正弦函数的图象与性质,解题时注意“五点法”和整体思想的应用.对于奇偶性问题注意诱导公式的应用,由此计算比较方便. 22.(1)ω=2,6π=ϕ;(2)5,6ππ⎡⎤--⎢⎥⎣⎦,,36ππ⎡⎤-⎢⎥⎣⎦,2π,π3;.(3)最小值为12,最大值为1716. 【分析】(1)先由函数图象,先得到周期,求出ω,再由最大值点,求出ϕ;(2)由(1)的结果,确定函数解析式,利用正弦函数的单调性,求出函数增区间,再由给定区间,即可得出结果;(3)先化简得到()sin 23x x πϕ⎛⎫=- ⎪⎝⎭,根据函数()g x 在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,得到222sin 23sin 2133ππa x x ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭在,62ππ⎡⎤⎢⎥⎣⎦上有解,令sin 23t x π⎛⎫=- ⎪⎝⎭,由正弦函数性质,求出,62x ππ⎡⎤⎢⎥⎣⎦时,[]0,1t ∈,再结合二次函数的性质,得到2231y t t =-++的范围,即可得出结果.【详解】 (1)由图象可知:22362T πππ=-=,T π=,则22Tπω==,又22,62k k Z ππϕπ⨯+=+∈得26k πϕπ=+,又2πϕ<,所以6π=ϕ, (2)()sin 26f x x π⎛⎫+⎝=⎪⎭,由222,262k x k k Z πππππ-≤+≤+∈得,,36k x k k Z ππππ-≤≤+∈,令1k =-,得4536x ππ-≤≤-,因x ππ-≤≤,则56x ππ-≤≤-, 令0k =,得36x ππ-≤≤,令1k =,得2736x ππ≤≤,因x ππ-≤≤,则2ππ3x ,所以()f x 在[,]-ππ上的单调递增区间为5,6ππ⎡⎤--⎢⎥⎣⎦,,36ππ⎡⎤-⎢⎥⎣⎦,2π,π3;. (3)()sin 2sin 21212126126x f x f x x x ππππππϕ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+=-+-++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1sin 2sin 2sin 22sin 2323x x x x x ππ⎛⎫⎛⎫=-+==- ⎪ ⎪⎝⎭⎝⎭,2()2sin 23sin 22133g x x x a ππ⎛⎫⎛⎫=---+- ⎪ ⎪⎝⎭⎝⎭,由函数()g x 在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,则222sin 23sin 2133ππa x x ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭在,62ππ⎡⎤⎢⎥⎣⎦上有解, 令sin 23t x π⎛⎫=-⎪⎝⎭,由,62x ππ⎡⎤∈⎢⎥⎣⎦,则220,33x ππ⎡⎤-∈⎢⎥⎣⎦,即[]0,1t ∈,则223171723121,488y t t t ⎛⎫⎡⎤=-++=--+∈ ⎪⎢⎥⎝⎭⎣⎦, 所以17128a ≤≤,即117216a ≤≤, 故a 的最小值为12,最大值为1716. 【点睛】 思路点睛:求解含三角函数的二次式在给定区间上的最值时,一般需要用换元法,将三角函数换成t 来表示,得到关于t 的二次函数,由三角函数的性质,得到t 的范围,再结合二次函数的性质,即可求解.23.(1)见解析(2)见解析 【分析】(1)由题意可知2,3A πϕ==,选择条件①,由正弦函数的对称性求出ω,进而得出解析式;选择条件②,由正弦函数的对称性求出ω,进而得出解析式;选择条件③,由正弦函数的性质求出ω,进而得出解析式;(2)由[],0x π∈-,求出x ωϕ+的范围,再结合正弦函数的性质求出最值. 【详解】(1)由题意可知2,3A πϕ==选择条件①因为()f x 的图象关于直线3x π=对称,所以332k πππωπ+=+,解得13,2k k Z ω=+∈ 由21321302k k k Zππ⎧≥⎪+⎪⎪⎨⎪+>⎪⎪∈⎩,解得0k =,即12ω=故1()2sin 23f x x π⎛⎫=+ ⎪⎝⎭选择条件②因为()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,所以,26,63k k k Z ππωπω-+==-∈由226260kk k Zππ⎧≥⎪-⎪⎨->⎪⎪∈⎩,解得0k =,即2ω=故()2sin 23f x x π⎛⎫=+ ⎪⎝⎭选择条件③因为()f x 的图象上最高点中,有一个点的横坐标为6π,所以2,632k k Z πππωπ+=+∈,解得112,k k Z ω=+∈由21121120kk k Zππ⎧≥⎪+⎪⎨+>⎪⎪∈⎩,解得0k =,即1ω= 故()2sin 3f x x π⎛⎫=+ ⎪⎝⎭(2)选择条件①1,2363x πππ⎡⎤+∈-⎢⎥⎣⎦当1236x ππ+=-,即x π=-时,min ()2sin 16f x π⎛⎫=-=- ⎪⎝⎭当1233x ππ+=,即0x =时,max ()2sin 3f x π==选择条件②52,333x πππ⎡⎤+∈-⎢⎥⎣⎦当5233x ππ+=-或233x ππ+=,即x π=-或0x =时,max ()2sin 3f x π==当232x ππ+=-,即512x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭选择条件③2,333x πππ⎡⎤+∈-⎢⎥⎣⎦当33x ππ+=,即0x =时,max ()2sin3f x π==当32x ππ+=-,即65x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭【点睛】关键点睛:解决本题的关键是将正弦型函数的问题转化为正弦函数的性质进行求解,利用已知知识解决未知问题. 24.(1)70m ;(2)0.5min . 【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos 3t π<. 【详解】(1)依题意,40A =,50h =,3T =,由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-. 所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥⎪⎝⎭, 所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+=⎪⎝⎭.即2020t =时点P 距离地面的高度为70m . (2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌. 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题.25.(1)()f x 的值域为[]1,2-,单调减区间为62ππ⎡⎤⎢⎥⎣⎦, ;(2)56πϕ=【分析】(1)由条件可得72666x πππ⎡⎤+∈⎢⎥⎣⎦,,则1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,可得值域,由3222,262k x k k Z πππππ+≤+≤+∈可得答案. (2)由()f x 关于3x π=对称,则2,32k k Z ππϕπ+=+∈⨯可得答案.【详解】 (1)当6π=ϕ时,()2sin(2)6f x x π=+ 当0,2x π⎡⎤∈⎢⎥⎣⎦时,72666x πππ⎡⎤+∈⎢⎥⎣⎦,,则1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以[]()1,2f x ∈- 由3222,262k x k k Z πππππ+≤+≤+∈ 4222,33k x k k Z ππππ+≤≤+∈ 所以2,63k x k k Z ππππ+≤≤+∈ 由0,2x π⎡⎤∈⎢⎥⎣⎦,则0k =时,263x ππ⎡⎤∈⎢⎥⎣⎦,,即此时减区间为62ππ⎡⎤⎢⎥⎣⎦, 所以当,0,62x ππϕ⎡⎤=∈⎢⎥⎣⎦时,()f x 的值域为[]1,2-,单调减区间为62ππ⎡⎤⎢⎥⎣⎦,; (2)由()f x 关于3x π=对称,则2,32k k Z ππϕπ+=+∈⨯即,6k k Z πϕπ=-∈,又(0,)ϕπ∈,所以56πϕ=【点睛】关键点睛:本题考查三角函数的值域、单调性和对称性等性质,解答本题的关键是由72666x πππ⎡⎤+∈⎢⎥⎣⎦,,得出1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,,根据()f x 关于3x π=对称,得到2,32k k Z ππϕπ+=+∈⨯,属于中档题.26.(1)3tan 4α=;(2)3sin 3sin 3cos 25ααα=--.【分析】(1)利用诱导公式可得出12cos sin 25αα=,根据题意可得出关于cos α、sin α的值,求出cos α、sin α的值,利用同角三角函数的商数关系可求得tan α的值;(2)将所求代数式变形为()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+,在分式的分子和分母中同时除以3cos α,利用弦化切可求得所求代数式的值. 【详解】 (1)712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,由诱导公式可得123sin cos cos sin 2522ππαααα⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,。
北师大版高中数学必修四第一章《三角函数》检测卷(答案解析)

一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3πC .23π D .56π 3.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .454.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+ ⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 5.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-6.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .3-D .3 7.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.假设在水流量稳定的情况下,简车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O 的半径为4米,盛水筒M 从点0P 处开始运动,0OP 与水平面的所成角为30,且每分钟恰好转动1圈,则盛水筒M 距离水面的高度H (单位;m )与时间t (单位:s )之间的函数关系式的图象可能是( )A .B .C .D .8.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数y =是奇函数C .函数tan 6y ax π⎛⎫=+⎪⎝⎭的最小正周期是a π D .函数cos(sin )y x =是奇函数9.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向左平移π6个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭对称 B .关于点π,012⎛⎫-⎪⎝⎭对称 C .关于直线π12x =对称 D .关于直线π12x =-对称 10.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于011.已知()f x 是定义在R 上的奇函数,()1f x +也是奇函数,当(]0,1x ∈时,()11f x x=-.若函数()()sin F x f x x π=+,则()F x 在区间[]1949,2021上的零点个数是( ) A .108B .109C .144D .14512.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6πB .6π-C .3πD .3π-二、填空题13.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.14.已知函数273(0)()323(0)x x f x xx x ⎧+≤⎪=⎨⎪-++>⎩,()3sin cos 4g x x x =++,若对任意[3,3]t ∈-,总存在0,2s π⎡⎤∈⎢⎥⎣⎦,使得()()f t a g s +≤成立,则实数a 的取值范围为__________.15.某地区每年各个月份的月平均最高气温近似地满足周期性规律,因此第n 个月的月平均最高气温()G n 可近似地用函数()()cos G n A n k ωϕ=++来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,n 和k 是正整数,0>ω,()0,πϕ∈.统计发现,该地区每年各个月份的月平均最高气温有以下规律:①该地区月平均最高气温最高的7月份与最低的1月份相差30摄氏度; ②1月份该地区月平均最高气温为3摄氏度,随后逐月递增直到7月份达到最高; ③每年相同的月份,该地区月平均最高气温基本相同. 根据已知信息,得到()G n 的表达式是______. 16.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 17.已知sin 78a =︒,cos10b =︒,tan 55c =︒,则a ,b ,c 的大小关系为______.18.将函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的所有交点从左到右依次记为125,,...,A A A ,若P 点坐标为()0,3,则125...PA PA PA +++=____.19.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上,若国歌长度约为50秒,升旗手应以__________(米 /秒)的速度匀速升旗.20.已知函数()sin 2sin 23f x x x π⎛⎫=++⎪⎝⎭,将其图象向左平移(0)ϕϕ>个单位长度后,得到的图象为偶函数,则ϕ的最小值是_______三、解答题21.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式; (2)当113,33x ⎡⎤∈-⎢⎥⎣⎦时,试由实数m 的取值讨论函数()()2g x f x m =-的零点个数. 22.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围. 23.已知函数21()sin 3cos 2f x x x x =+. (1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域; (2)若关于x 的方程()2()1()0f x m f x m -++=在区间0,2π⎡⎤⎢⎥⎣⎦上恰有三个不同的实根,求实数m 的取值范围.24.已知函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭,函数12y f x π⎛⎫=- ⎪⎝⎭为奇函数.(1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象,证明:当0,4x π⎡⎤∈⎢⎥⎣⎦时,22()()10g x g x --≤.25.设函数()3sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,且以23π为最小正周期. (1)求函数()f x 的单调递减区间; (2)当,32x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 26.已知函数()()sin f x A x =+ωϕ(0A >,0>ω)的图像是由3y x πω⎛⎫=+ ⎪⎝⎭的图像向右平移3π个单位得到的.(1)若()f x 的最小正周期为π,求()f x 的与y 轴距离最近的对称轴方程; (2)若()f x 在,2ππ⎡⎤⎢⎥⎣⎦上仅有一个零点,求ω的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.A解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.3.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 4.B解析:B 【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B 的纵坐标满足的关系式,则吊舱到底面的距离为点B 的纵坐标减2. 【详解】如图所示,以点M 为坐标原点,以水平方向为x 轴,以OM 所在直线为y 轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.5.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题.6.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.7.D解析:D 【分析】先根据题意建立坐标系,写出盛水筒M 距离水面的高度H 与时间t 之间的函数关系式,再根据关系式即可判断. 【详解】解:以O 为圆心,过点O 的水平直线为x 轴,建立如图所示的平面直角坐标系:0306xOP π∠==,OP ∴在()ts 内转过的角为:26030t t ππ=, ∴以x 轴正半轴为始边,以OP 为终边的角为:306t ππ-,P ∴点的纵坐标为:4sin 306t ππ⎛⎫-⎪⎝⎭, H ∴与t 之间的函数关系式为:4sin 2306H t ππ⎛⎫=-+ ⎪⎝⎭,当sin 1306t ππ⎛⎫-=⎪⎝⎭时,max 426H =+=, 当sin 1306t ππ⎛⎫-=- ⎪⎝⎭时,max 422H =-+=-,对A ,B ,由图像易知max min H H =-,故A ,B 错误; 对C ,max min H H <-,故C 错误; 对D ,max min H H >-,故D 正确. 故选:D. 【点睛】关键点点睛:本题解题的关键是理解题意,根据题意写出H 与t 之间的函数关系式.8.B解析:B 【分析】根据函数的奇偶性与周期性判断各个选项. 【详解】sin y x =是偶函数,但不是周期函数,A 错误;对函数()f x =0>得tan x <<,33k x k k Z ππππ-<<+∈,定义域关于原点对称,()()f x f x -==-=-,函数是奇函数,B 正确;tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π,C 错误;记()g x cos(sin )x =,定义域是R ,()()cos sin cos(sin )cos(sin )()g x x x x f x -=-=-==⎡⎤⎣⎦,()f x 是偶函数,D 错误.故选:B . 【点睛】关键点点睛:本题考查函数的奇偶性与周期性.判断奇偶性一般用奇偶性的定义进行判断.tan y x ω=的最小正周期是T πω=,sin()y x ωϕ=+的最小正周期是2πω.9.B解析:B 【分析】由相邻两条对称轴之间的距离为2π,可知22T π=,从而可求出2ω=,再由()y f x =的图像向左平移6π个单位后,得到的图象关于y 轴对称,可得sin 13πϕ⎛⎫+=± ⎪⎝⎭,从而可求出ϕ的值,然后逐个分析各个选项即可 【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=.设将()f x 的图像向左平移6π单位后,所得图像对应的解析式为()g x , 则()sin 23g x x πϕ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故(0)1g =±, 所以sin 13πϕ⎛⎫+=± ⎪⎝⎭,,32k k Z ππϕπ+=+∈,所以,6k k Z πϕπ=+∈, 因||2ϕπ<,所以6π=ϕ. 又()sin 26f x x π⎛⎫=+⎪⎝⎭,令2,62x k k Z πππ+=+∈,故对称轴为直线,26k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k ππ+=∈Z ,故,212k x k Z ππ=-∈,所以对称中心为,0,212k k Z ππ⎛⎫-∈⎪⎝⎭,所以A 错误,B 正确. 故选:B 【点睛】此题考查了三角函数的图像变换和三角函数的图像和性质,属于基础题.10.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
新北师大版高中数学必修四第一章《三角函数》测试卷(有答案解析)(1)

一、选择题1.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的个数是( ) ①()f x 的最小值为2-; ②点,012π⎛⎫⎪⎝⎭是()f x 的图象的一个对称中心; ③()f x 的最小正周期为π; ④()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. A .1B .2C .3D .42.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)3.函数()()2sin f x x ωϕ=+(0>ω,2πϕ<)的部分图象如图所示,则()fπ=( )A .3-B .3C 3D 34.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断: ①该函数的解析式为2sin 210y x π⎛⎫=+ ⎪⎝⎭; ②该函数图象关于点,02π⎛⎫⎪⎝⎭对称;③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增; ④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增. 其中,正确判断的序号是( ) A .②③B .①②C .②④D .③④5.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( ) A .4149,66⎡⎫⎪⎢⎣⎭ B .4953,66⎡⎫⎪⎢⎣⎭ C .3741,66⎡⎫⎪⎢⎣⎭ D .[8,9)6.设函数()2sin cos f x x x x =+,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称 ③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③7.下列结论正确的是( ) A .sin1cos1<B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭8.已知函数()sin 213f x x π⎛⎫=++ ⎪⎝⎭,下列说法错误的是( )A .3π是函数()f x 的一个周期B .函数()f x 的图象关于,13π⎛⎫⎪⎝⎭成中心对称 C .函数的一条对称轴为712x π= D .函数图象向左平移6π个单位后关于y 轴对称9.设()sin 24f x x π⎛⎫=+⎪⎝⎭,90,8x π⎡⎤∈⎢⎥⎣⎦,若函数()y f x a =-恰好有三个不同的零点,分别为1x 、2x 、()3123x x x x <<,则1232x x x ++的值为( ) A .πB .34π C .32π D .74π 10.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B .151+ C .1916D .3411.已知()f x 是定义在R 上的奇函数,()1f x +也是奇函数,当(]0,1x ∈时,()11f x x=-.若函数()()sin F x f x x π=+,则()F x 在区间[]1949,2021上的零点个数是( ) A .108B .109C .144D .14512.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④二、填空题13.函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,则ω的范围__________.14.函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下说法: (1)其中最小正周期为23π; (2)图象关于点(,0)4π对称;(3)由2sin3y x =的图象向右平移34π个单位长度可以得到图象C ; (4)直线4πx =-是其图象的其中一条对称轴. 其中正确命题的序号是__________.15.已知5tan22α=,则sin()2πα+=_______. 16.已知函数()()()sin 0,πf x x ωϕωϕ=+><的图像如图所示,则ϕ=__________.17.如图所示为函数()sin 2y A x ωϕ=++,()ϕπ<的图像的一部分,它的解析式为________.18.定义在R 上的偶函数()f x 满足()()3f x f x +=-,且()12019f -=,则()2020f =______.19.已知函数()3sin(2)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭.(1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程. 22.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围. 23.已知()()πsin 0,0,02f x A x A ωϕωϕ⎛⎫=+>><<⎪⎝⎭的部分图象如图所示,5,212⎫⎛- ⎪⎝⎭πM 是函数()f x 图象上的一个最低点,π12-是函数()f x 的一个零点.(1)求函数()f x 的解析式;(2)当113636⎡⎤∈-⎢⎥⎣⎦,ππx 时,求函数()f x 的值域. 24.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(50203)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.25.已知函数()23,4f x x x R π⎛⎫=+∈ ⎪⎝⎭.(1)求f (x )的最小正周期;(2)求f (x )的单调递增区间和单调递减区间; (3)当0,2x π⎡⎤∈⎢⎥⎣⎦,求f (x )值域. 26.已知函数()()sin f x A x =+ωϕ(0A >,0>ω)的图像是由23y x πω⎛⎫=+ ⎪⎝⎭的图像向右平移3π个单位得到的.(1)若()f x 的最小正周期为π,求()f x 的与y 轴距离最近的对称轴方程; (2)若()f x 在,2ππ⎡⎤⎢⎥⎣⎦上仅有一个零点,求ω的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出()min f x 可判断①的正误;利用正弦型函数的对称性可判断②的正误;求出()f x 的最小正周期可判断③的正误;利用正弦型函数的单调性可判断④的正误. 【详解】 对于①,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,()()min 212f x ∴=⨯-=-,①正确;对于②,2sin 22sin 20121232f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以,点,012π⎛⎫⎪⎝⎭不是()f x 的图象的一个对称中心,②错误; 对于③,函数()f x 的最小正周期为22T ππ==,③正确; 对于④,当,06x π⎛⎫∈- ⎪⎝⎭时,2666x πππ-<+<,所以,函数()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. ④正确.因此,正确命题的序号为①③④. 故选:C. 【点睛】关键点点睛:对于正弦型函数基本性质的判断问题,一般将函数解析式化为()sin y A x b ωϕ=++或()cos y A x b ωϕ=++,将x ωϕ+视为一个整体,利用正弦函数或余弦函数的基本性质来求解.2.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=, 函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数,因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.A解析:A 【分析】由函数()f x 的部分图像得到函数()f x 的最小正周期,求出ω,代入5,212π⎛⎫⎪⎝⎭求出ϕ值,则函数()f x 的解析式可求,取x π=可得()f π的值.【详解】由图像可得函数()f x 的最小正周期为521212T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,则22T πω==.又5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则5sin 16⎛⎫+= ⎪⎝⎭πϕ,则5262k ϕπ=π+π+,k Z ∈,则23k πϕπ=-,k Z ∈,22ππϕ-<<,则0k =,3πϕ=-,则()2sin 23f x x π⎛⎫=-⎪⎝⎭, ()2sin 22sin 33f ππππ⎛⎫∴=-=-= ⎪⎝⎭故选:A. 【点睛】方法点睛:根据三角函数()()sin 0,0,2f x A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=;(3)取特殊点代入函数可求得ϕ的值.4.A解析:A 【分析】根据函数平移变换得sin 2y x =,再根据正弦函数的性质依次讨论即可得答案. 【详解】解:由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知: 将sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后 解析式为sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,选项①错误; 令2x k =π,k Z ∈,求得2k x =π,k Z ∈, 故函数的图象关于点,02k ⎛⎫⎪⎝⎭π对称, 令1k =,故函数的图象关于点,02π⎛⎫⎪⎝⎭对称,选项②正确; 则函数的单调递增区间满足:222()22k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项③正确,④错误. 故选:A. 【点睛】本题考查三角函数平移变换,正弦型函数的单调区间,对称中心等,考查运算求解能力,解题的易错点在于平移变换时,当1ω≠时,须将ω提出,平移只针对x 进行平移,具体的在本题中,sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,而不是sin 2sin 251010y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是中档题. 5.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=; 当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<. 故选:A6.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π+=+=+, 即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确; 令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.7.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.8.D解析:D 【分析】根据正弦函数性质周期,对称性,图象变换判断各选项. 【详解】函数()f x 的最小正周期为π,故3π是函数()f x 的一个周期,A 正确; 当3x π=时,sin 203x π⎛⎫+= ⎪⎝⎭,故B 正确;当712x π=时,函数()f x 取得最小值,712x π=为对称轴,C 正确; 函数图象向左平移6π个单位后函数解析式为sin 2163y x ππ⎡⎤⎛⎫=+++ ⎪⎢⎥⎝⎭⎣⎦,即2sin 213y x π⎛⎫=++ ⎪⎝⎭,不是偶函数,图象不关于y 轴对称,D 错误. 故选:D. 【点睛】本题考查正弦型函数的性质,考查周期的概念,对称轴与对称中心、奇偶性等性质,属于基础题.9.C解析:C 【分析】根据三角函数的对称性,先求出函数的对称轴,结合函数与方程的关系转化为两个函数的交点问题,利用数形结合进行求解即可. 【详解】 由()242x k k Z πππ+=+∈,得对称轴()28k x k ππ=+∈Z , 90,8x π⎡⎤∈⎢⎥⎣⎦,由90288k πππ≤+≤,解得124k -≤≤,当0k =时,对称轴8x π=,1k =时,对称轴58x π=. 由()0f x a -=得()f x a =,若函数()y f x a =-恰好有三个不同的零点,等价于函数()y f x =与y a =的图象有三个交点,作出函数()f x 的图象如图,得()20f =,则212a ≤<,由图象可知,点()()11,x f x 、()()22,x f x 关于直线8x π=对称,则124x x π+=, 点()()22,x f x 、()()33,x f x 关于直线58x π=对称,则2354x x π+=, 因此,1231223532442x x x x x x x πππ++=+++=+=. 故选:C . 【点睛】关键点点睛:本题考查正弦型函数的零点之和问题的求解,解题的关键就是分析出正弦型函数图象的对称轴,结合对称性求解.10.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫-⎪⎝⎭,然后再由平方关系和诱导公式计算.由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.D解析:D 【分析】由题可得()f x 是周期为2的函数,进而判断()F x 是周期为2的函数,可求得()0=0F ,102F ⎛⎫= ⎪⎝⎭,()10F =,利用周期性即可求出零点个数.【详解】()f x 是定义在R 上的奇函数,()1f x +也是奇函数,()00f ∴=,()()()111f x f x f x +=--+=-, ()f x ∴是周期为2的函数,sin y x π=的周期为2,∴()()sin F x f x x π=+是周期为2的函数,()()00sin00=F f ∴+=,11sin 0222F f π⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,()()11sin 0F f π=+=,则在区间[]1949,2021上,()()()111949194919501950202122F F F F F ⎛⎫⎛⎫=+==+== ⎪ ⎪⎝⎭⎝⎭,则()F x 在区间[]1949,2021上的零点个数是()2021194921145-⨯+=个.故选:D.本题考查函数奇偶性和周期性的应用,解题的关键是判断出()F x 是周期为2的函数,根据函数的周期性即可判断出零点的个数.12.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.二、填空题13.【分析】根据函数在区间上有50个最大值由第50个和第51个最大值满足求解【详解】因为函数在区间上有50个最大值第一个最大值为:第二个最大值为:第三个最大值为:…第50个最大值为:第51个最大值为:所解析:589601,120120ππ⎡⎫⎪⎢⎣⎭【分析】根据函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,由第50个和第51个最大值满足49220502232ππππωπ+⨯≤+<+⨯求解.【详解】因为函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值, 第一个最大值为: 32x ππω+=,第二个最大值为: 232x ππωπ+=+, 第三个最大值为: 432x ππωπ+=+,…第50个最大值为: 49232x ππωπ+=+⨯,第51个最大值为: 50232x ππωπ+=+⨯, 所以 49220502232ππππωπ+⨯≤+<+⨯,解得49512010120πππωπ+≤<+, 综上:ω的范围是589601,120120ππ⎡⎫⎪⎢⎣⎭. 故答案为:589601,120120ππ⎡⎫⎪⎢⎣⎭【点睛】易错点点睛:本题容易忽视第50个和第51个最大值要满足49220502232ππππωπ+⨯≤+<+⨯.14.(1)(2)(4)【分析】根据正弦型函数周期公式正弦型函数对称中心坐标正弦型函数对称轴等知识逐项验证即可求得答案【详解】对于(1)根据正弦型函数周期公式:可得:函数最小正周期为:故(1)正确;对于(解析:(1)(2)(4) 【分析】根据正弦型函数周期公式,正弦型函数对称中心坐标,正弦型函数对称轴等知识,逐项验证,即可求得答案. 【详解】对于(1),根据正弦型函数周期公式:2T ωπ=可得:函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭最小正周期为:2233T ππ==,故(1)正确; 对于(2),根据正弦函数sin ()y x x R =∈的图象的对称中心为(0),k π正弦型函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭∴令334,k Z x k ππ=∈-,解得4,3k k Z x ππ=+∈ ∴其对称中心坐标为(,0),34k k Z ππ+∈ 当0k =时,对称中心坐标为(,0)4π,故(2)正确;对于(3),将2sin3y x =的图象向右平移34π个单位长度 可得:392sin 32sin 344y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭92sin 322sin 344x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭∴将2sin3y x =的图象向右平移34π个单位长度不能得到图象C ,故(3)错误; 对于(4),根据正弦函数sin ()y x x R =∈的图象的对称轴方程为,2x k k Z ππ=+∈,正弦型函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭∴令,2334Z x k k πππ=+∈-,解得51,32k k x Z ππ=+∈ 当2k =-时,512342x πππ=+=--, ∴3()2sin 34f x x π⎛⎫=-⎪⎝⎭一条对称轴4πx =-,故(4)正确; 故答案为:(1)(2)(4).【点睛】本题解题关键是掌握整体法求正弦函数图象的对称中心和对称轴的方法,考查了分析能力和计算能力,属于中档题.15.【分析】先切化弦再诱导公式化简后运用余弦二倍角公式得解【详解】故答案为:【点睛】本题考查同角三角函数的基本关系诱导公式二倍角公式同角三角函数的基本关系本身是恒等式也可以看作是方程对于一些题可利用已知解析:19- 【分析】先切化弦,再诱导公式化简后,运用余弦二倍角公式得解. 【详解】2tan|cos |,|sin |2232ααα∴=∴== 22451sin()cos cos sin 222999παααα∴+==-=-=-故答案为:19-. 【点睛】本题考查同角三角函数的基本关系、诱导公式、二倍角公式.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的. 应用诱导公式化简求值的关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.16.【分析】结合函数图象由解得得到进而得到然后由函数图象过点求解【详解】由图可知:所以所以所以因为函数图象过点所以所以解得又因为解得故答案为:【点睛】本题主要考查三角函数的图象和性质还考查了数形结合的思 解析:9π10【分析】 结合函数图象由352244πππ=-=T ,解得52π=T ,得到45ω=,进而得到()45sin ϕ⎛⎫⎪=+⎝⎭f x x ,然后由函数图象过点()2,1π求解.【详解】 由图可知:352244πππ=-=T , 所以52π=T , 所以245πω==T , 所以()45sin ϕ⎛⎫ ⎪=+⎝⎭f x x ,因为函数图象过点()2,1π,所以sin 815πϕ⎛⎫= ⎪⎝⎭+, 所以2825ππϕπ+=+k , 解得11210ϕππ=-k , 又因为π<ϕ, 解得910πϕ=. 故答案为:9π10【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.17.【分析】由两最值点对应横坐标可求周期由波峰波谷可求将代入可求【详解】由图可知即将得即又当时故故答案为:【点睛】本题考查由三角函数图像求解具体解析式属于中档题解析:33sin 224y x π⎛⎫=-+⎪⎝⎭【分析】由两最值点对应横坐标可求周期,由波峰波谷可求,A 将,16π⎛⎫⎪⎝⎭代入可求ϕ【详解】 由图可知,522663T ππππ=-=,即43T π=,24332ππωω=⇒=, 3112A -==,将,16π⎛⎫⎪⎝⎭3sin 22y x ϕ⎛⎫=++ ⎪⎝⎭得2,42k k Z ππϕπ+=-+∈,即32,4k k Z πϕπ=-+∈,又ϕπ<,当0k =时,34πϕ=-,故33sin 224y x π⎛⎫=-+ ⎪⎝⎭ 故答案为:33sin 224y x π⎛⎫=-+ ⎪⎝⎭【点睛】本题考查由三角函数图像求解具体解析式,属于中档题18.【分析】根据题意分析可得有即函数是周期为6的周期函数进而可得结合函数的奇偶性分析可得答案【详解】根据题意函数满足则有则函数是周期为6的周期函数则又由为偶函数则故;故答案为:【点睛】本题主要考查函数的 解析:2019-【分析】根据题意,分析可得有()()()63f x f x f x +=-+=,即函数()f x 是周期为6的周期函数,进而可得()()()2020202222f f f =-=-,结合函数的奇偶性分析可得答案. 【详解】根据题意,函数()f x 满足()()3f x f x +=-, 则有()()()63f x f x f x +=-+=, 则函数()f x 是周期为6的周期函数, 则()()()2020202222f f f =-=-,又由()f x 为偶函数,则()()()2212019f f f -==--=-, 故()20202019f =-; 故答案为:2019-.【点睛】本题主要考查函数的奇偶性与周期性的应用,注意分析函数的周期性,属于中档题.19.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.20.①③【分析】分别利用余弦函数的对称性正切函数的单调性正弦定理三角函数图象变换等知识对各个命题判断【详解】①令是函数的一个对称中心①正确;②若它们为第一象限角且但②错;③在中内角所对的边分别为若∵∴∴解析:①③ 【分析】分别利用余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识对各个命题判断. 【详解】 ①,令55()4cos()4cos()012632f ππππ-=-+=-=,5,012π⎛⎫- ⎪⎝⎭是函数()4cos 23f x x π⎛⎫=+ ⎪⎝⎭的一个对称中心,①正确;②若136απ=,3πβ=,它们为第一象限角,且αβ>,但tan tan αβ=<=②错;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,sin sin 2sin 251a BA b==︒<,∵b a <,∴B A <,∴A 可能为锐角,也可能为钝角,则ABC ∆有两解,③正确; ④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)42y x x ππ=+=+的图象,④错. 故答案为:①③. 【点睛】本题考查命题的真假判断,掌握三角函数的图象与性质是解题关键.本题需要掌握余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识,属于中档题.三、解答题21.(1)答案见解析;(2)34k x ππ=+,k Z ∈. 【分析】(1)分别令x 等于0、6π、512π、23π、1112π、π,求得对应的纵坐标,确定点的坐标,列表、描点、作图即可;(2)利用放缩变换与平移变换法则可得到()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭,再令5462x k k Z πππ-=+∈,可得答案. 【详解】(1)由题意可得表格如下:(2)将()y f x =的图象向上平移1个单位得到1sin 2126y x π⎛⎫=++ ⎪⎝⎭的图象,再横坐标缩短为原来的12可得到1sin 4126y x π⎛⎫=++ ⎪⎝⎭的图象,再向右平移4π个单位可得115sin 41sin 412626y x x πππ⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎝⎭⎝⎭的图象, 即()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭, 令5462x k πππ-=+,解得34k x k Z ππ=+∈,, 所以()g x 的对称轴方程是34k x ππ=+,k Z ∈. 【点睛】方法点睛:“五点法”作一个周期上的图象,主要把握三处主要位置点:1、区间端点;2、最值点;3、零点.22.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞. 【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论; (2)由,04x π⎛⎫∈-⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围.【详解】(1)对于函数()1tan ln1tan x f x x -=+,有1tan 01tan x x->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数; (2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x e x x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x xa x x x +-===-<+++, 所以,实数a 的取值范围是(),0-∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 23.(1)()2sin 34x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,2-. 【分析】(1)由图知最大值可以求A 的值,由35412122T πππ⎛⎫=--= ⎪⎝⎭及2Tπω=可以求出ω的值,由()5332122k k Z ππϕπ⨯+=+∈结合02πϕ<<可以求出ϕ的值,进而可得()f x 的解析式; (2)由113636ππx -≤≤求出34x π+的范围,再由正弦函数的性质即可求解. 【详解】(1)由图知:2A =,35412122T πππ⎛⎫=--= ⎪⎝⎭,解得:23T π=,所以22323Tππωπ===,可得()()2sin 3f x x ϕ=+,因为5,212⎫⎛- ⎪⎝⎭πM 是函数()f x 图象上的一个最低点, 所以()5332122k k Z ππϕπ⨯+=+∈, 当0k =时,4πϕ=,所以()2sin 34x f x π⎛⎫=+⎪⎝⎭, (2)因为113636ππx -≤≤,所以π7π3646x π≤+≤, 所以1sin 3124x π⎛⎫-≤+≤ ⎪⎝⎭,12sin 324x π⎛⎫-≤+≤ ⎪⎝⎭所以函数()f x 的值域[]1,2-. 【点睛】关键点点睛:本题解题的关键点是由三角函数额的周期求出ω得值,再由三角函数的谷点求出ϕ得值.24.(1)70m ;(2)0.5min . 【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos 32t π<-,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-. 所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥⎪⎝⎭, 所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+= ⎪⎝⎭.即2020t =时点P 距离地面的高度为70m .(2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos 32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈,∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌. 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题. 25.(1)23π;(2)单调递增区间为22,,34312k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;单调递减区间为225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)⎡⎣. 【分析】 (1)由公式2T πω=求周期;(2)利用正弦函数的单调性求单调区间; (3)求出34x π+的范围,然后结合正弦函数的性质得值域.【详解】解:(1)由解析式得ω=3, 则函数的最小周期223T ππω==. (2)由232242k x k πππππ-≤+≤+,k ∈Z ,所以2234312k k x ππππ-≤≤+,k ∈Z , 即函数的单调递增区间为22,34312k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z , 由3232242k x k πππππ+≤+≤+k ∈Z , 得225312312k k x ππππ+≤≤+,k ∈Z , 即函数的单调递减区间为225,312312k k ππππ⎡⎤++⎢⎥⎣⎦ ,k ∈Z . (3)当x ∈[0,2π]时,73,444x πππ⎡⎤+∈⎢⎥⎣⎦,则当3x +4π=2π时,函数f (x )取得最大值,此时f (x 2π=,当3x +342ππ=时,函数f (x )取得最小值,此时f (x32π= 即f (x )值域为[. 【点睛】关键点点睛:本题考查正弦型三角函数的性质.对于()sin()f x A x ωϕ=+(0,0)A ω>>,最小正周期为2T πω=,利用正弦函数sin y x =的性质,把x ωϕ+作为一个整体替换sin x 中的x ,可得()f x 的性质. 26.(1)12x π=-;(2)512ω≤<. 【分析】(1)由函数的()f x 的最小正周期求得ω,再根据图象的平移得出函数()f x 的解析式,由正弦函数的性质可得答案;(2)由图象平移得出:()33f x x ππω⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,再由()f x 在,2ππ⎡⎤⎢⎥⎣⎦上仅有一个零点,建立不等式组,解之可得范围. 【详解】解:(1)因为()f x 的最小正周期为π,2ππω∴=,2ω∴=, ()f x的图像是由3y x πω⎛⎫=+ ⎪⎝⎭的图像向右平移3π个单位得到,()33f x x ππω⎡⎤⎛⎫∴=-+ ⎪⎢⎥⎝⎭⎣⎦,即()23f x x π⎛⎫=- ⎪⎝⎭,令232x k ππ-=π+,k Z ∈,得()f x 的对称轴方程为212k x π5π=+,k Z ∈, 要使直线212k x π5π=+(k Z ∈)与y 轴距离最近,则须5212k ππ+最小,1k ∴=-,此时对称轴方程为12x π=-,即所求对称轴方程为12x π=-.(2)由已知得:()33f x x ππω⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,令()0f x =得:33x k ππωωπ+-=,k Z ∈,即33k x πππωω+-=,k Z ∈,()f x 在,2ππ⎡⎤⎢⎥⎣⎦上仅有一个零点,()()3321332133k k k πππωππωπππωπωπππωπω⎧+-⎪≤≤⎪⎪⎪-+-⎪∴<⎨⎪⎪++-⎪>⎪⎪⎩,k Z ∈,0ω>, 3162268322k k k k ωωω-⎧≤≤-⎪⎪∴>-⎨⎪+⎪<⎩,0ω>,6203162232682k k k k k ⎧⎪->⎪-⎪∴≤-⎨⎪+⎪-<⎪⎩,解得:123k ≤<, k Z ∈,1k ∴=,512ω∴≤<. 【点睛】方法点睛:求解()()sin +f x A x ωϕ=的性质时,可采用将+x ωϕ整体看待,可求得函数的值域、对称轴、对称中心、单调性等性质以及求参数的范围.。
高中数学北师大版必修4《第一章三角函数》单元测试卷含试卷分析详解

所示,则当t =1100s 时,电流强度是( )A .-5 AB .5 AC .5 3 AD .10 A 答案:A解析:由图像知A =10,T 2=4300-1300=1100,∴T =150,∴ω=2πT=100π,∴I =10sin(100πt+φ).又⎝⎛⎭⎫1300,10在图像上,∴100π×1300+φ=π2+2k π,k ∈Z .又0<φ<π2,∴φ=π6 .∴I =10sin ⎝⎛⎭⎫100πt +π6,当t =1100 s 时,l =-5 A ,故选A. 7.下列四个命题:①函数y =tan x 在定义域内是增函数;②函数y =tan(2x +1)的最小正周期是π;③函数y =tan x 的图像关于点(π,0)成中心对称;④函数y =tan x 的图像关于点⎝⎛⎭⎫-π2,0成中心对称.其中正确命题的个数是( ) A .0 B .1 C .2 D .3 答案:C解析:对于①,函数y =tan x 仅在区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )内递增,如π4<5π4,但tan π4=tan 5π4,所以①不正确;对于②,其最小正周期是π2,所以②也不正确;观察正切曲线可知命题③④都正确.8.要得到函数y =sin2x 的图像,只需将函数y =cos(2x -π4)的图像( )A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位答案:B解析:将函数y =cos(2x -π4)向右平移π8个单位,得到y =cos ⎝⎛⎭⎫2⎝⎛⎭⎫x -π8-π4=cos ⎝⎛⎭⎫2x -π2=sin2x ,故选B.9.在△ABC 中,若sin A sin B cos C <0,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .锐角或钝角三角形 答案:C解析:正弦函数在区间(0,π)的函数值都为正,故cos C <0,角C 为钝角.10.已知定义在区间⎣⎡⎦⎤0,3π2上的函数y =f (x )的图像关于直线x =3π4对称,当x ≥3π4时,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章三角函数单元测试
一.选择题(60分) 1.将-300o
化为弧度为()
A .-
B .-
C .-
D .- 2.如果点位于第三象限,那么角所在象限是()
A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.下列选项中叙述正确的是()
A .三角形的内角是第一象限角或第二象限角
B .锐角是第一象限的角
C .第二象限的角比第一象限的角大
D .终边不同的角同一三角函数值不相等 4.下列函数中为偶函数的是()
A .
B .
C .
D .
5已知函数的一部分图象如右图所示,如果,则()
.
.
6.函数的单调递减区间()
43
π
;
53π;76π;74π;)cos 2,cos (sin θθθP θsin ||y x =2sin y x =sin y x =-sin 1y x =+sin()y A x B ωϕ=++0,0,||2
A π
ωϕ>>
<
4=A 1ω=6
π
ϕ=
4=B 3sin(2)6
y x π
=+
A B . C . D .
7.已知是三角形的一个内角,且,则这个三角形( ) A .锐角三角形 B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形 8.等于()
A .sin2-cos2
B .cos2-sin2
C .±(sin2-cos2)
D .sin2+cos2 9.若角的终边落在直线
y =2x 上,则sin 的值为()
A. B. C.
D. 10.函数y=cos 2
x –3cosx+2的最小值是()
A .2
B .0
C .
D .6 11.如果在第三象限,则
必定在() A .第一或第二象限B .第一或第三象限 C .第三或第四象限D .第二或第四象 12.已知函数在同一周期内,当时有最大值2,当x=0时有最小值-2,那么函数
的解析式为()
A .
B .
C .
D .
二.填空题(20分)
13、已知角α的终边经过点P(3,),则与α终边相同的角的集合是______ 14.、、的大小顺序是
5,12
12k k π
πππ⎡⎤-
+
⎢⎥⎣
⎦()k Z ∈511,1212k k ππππ⎡⎤++⎢⎥⎣⎦
()k Z ∈,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈2,63k k ππππ⎡⎤++⎢⎥⎣⎦
()k Z ∈α3
2
cos sin =
+αα)2cos()2sin(21++-ππαα15±12
±4
1
α2
α
)sin(φϖ+=x A y 3
π=x x y 23
sin
2=)23sin(2π+=x y )23sin(2π-=x y x y 3sin 2
1=31tan 2tan 3tan
15.函数的定义域是. 16.函数的单调递减区间是。
选择题(60分)
13__________ 14____________ 15__________ 16____________
17.(15分)已知角终边上一点P (-4,3),求的值
18(20分).已知函数y=Asin(ωx+φ)+b(A>0,|φ|<π,b 为常数)的一段图象(如图)所示. ①求函数的解析式; ②求这个函数的单调区间.
()lg 1tan y x =-sin(2)6
y x π=-+α)
2
9sin()211cos()
sin()2cos(απαπαπαπ
+---+
19.已知,求的值。
4
3tan -
=θθθθ2
cos cos sin 2-+
三、(20分)利用“五点法”画出函数在长度为一个周期的闭区间的简图
)6
2
1
sin(π
+
=x y
(2)并说明该函数图象可由y=sinx(x R)的图象经过怎样平移和伸缩变换得到的。
(8分)
参考答案
三角函数
13{x|x=2k π+
,k ∈Z} 14. tan1<tan2<tan3
15.
16
17(15分).∵角终边上一点P (-4,3) ∴
18(20分)(1)解、先列表,后描点并画图
6
π
(),24k k k ππππ⎛
⎫-+∈ ⎪⎝⎭Z [,
],6
3
k k k Z π
π
ππ-
++∈α4
3
tan -==
x y αcos()sin()
2119cos()sin()
22π
απαππαα+---+sin sin sin cos αα
αα
-⋅=
-⋅tan α=34
=-
y
1
-1
(2)把y=sinx 的图象上所有的点向左平移个单位长度,得到
的图象,再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到的图象。
或把y=sinx 的图象横坐标伸长到原来的2倍(纵坐标不变),得到的图象。
再把所得图象上所有的点向左平移
个单位长度,得到,即的图象。
19(15分) =
=
x 3π-
32π35π38π3
11π6
π
)6sin(π+=x y )6
2
1
sin(π
+
=x y x y 2
1
sin
=3
π
)3(21sin π+=x y )621sin(π+=x y θθθ
θθθθθθθ2
22222
cos sin cos cos sin )cos (sin 2cos cos sin 2+-++=-+θ
θθθθθθθθ222222tan 11
tan tan 2cos sin cos cos sin sin 2+++=+++252216
9114389)43(11
)43
()43(222=+
+-=-++-+-⨯
20.解: 1. 2.
是单调递增区间,]
,23)(21min max =-=
y y A 2
3.56,65)3(22===
--==b T 易知ωπππ
ωπ代入得将点)0,2(,23)56sin(23πφ++=
∴x y ,1,||)(10
112=<∈-=k Z k k 则又πφπ
πφ.2
3)109sin(23.109++=∴=
ππφx y +≤+-≤≤-⇒+≤+≤
-
x k k x k k x k 5
6
22.335673522109562
2ππππππππππ
π令令).(2
35335232109Z k k x k k ∈+≤≤-⇒+≤π
ππππππ)](2
35,6735[
Z k k k ∈+-∴ππππ.)](235,335[是单调递减区间Z k k k ∈+-π
πππ。