正多边形和圆课件

合集下载

《正多边形和圆》-完整版课件

《正多边形和圆》-完整版课件

所以AD=2OD=10.
△ACD中,根据勾股定理,得
A C A D 2 C D 21 0 0 2 5 53 .
即 A D 、 A C 的 长 分 别 为 1 0 和 53 .
再见!
· 中心角 半径R O 边心距r
活动3
例 有一个亭子,它的地基半径为4m的正六边形,求地基
的周长和面所以它的中心角等于
360 6
60,
△OBC是等边三角形,从而正六边形的边长等于它的半径.
因此,亭子地基的周长 l =4×6=24(m). 在Rt△OPC中,OC=4, PC= BC 4 2,
22 利用勾股定理,可得边心距
r 42 22 2 3.
亭子地基的面积
A
S 1 lr 1 24 2 3 41.6(m2 ). 22
F
E
O D
rR
BP
C
练习如图,正六边形ABCDEF的边长为5,
求对角线AD、AC的长.
解:连接BE,交AD于点O.
由正六边形性质知:△DOE为等边
O
三角形,△ACD为直角三角形.
证明:∵⌒AB=B⌒C=C⌒D=D⌒E=E⌒A ∴A⌒B=BC⌒=CD=⌒DE=EA
∵BCE=CDA=3AB ∴∠1=∠2
A
1
B2
同理∠2=∠3=∠4=∠5
3
又∵顶点A、B、C、D、E都在⊙O上, C
∴五边形ABCDE是⊙O的内接五边形.
5E
4
D
我们把一个正多边形的外接圆的圆心叫做这个正多边 形的中心. 外接圆的半径叫做正多边形的半径. 正多边形每一边所对的圆心角叫做正多边形的中心角. 中心到正多边形的距离叫做正多边形的边心距.
活动1

正多边形和圆PPT课件

正多边形和圆PPT课件

一共吃了多少只虫子?
易错辨析(选题源于《典中点》)
4.填表。
加数 加数

23 36 40 50
63 86
59 30 20 27
79 57
辨析:求和用加法,求加数用和减另一个加数。
小试牛刀(源于《典中点》) 1.想一想,填一填。
32+40= 72 先算:30 +40 = 70 再算:2 + =70 72
感悟新知
知2-练
1 (西宁)一元钱硬币的直径约为24 mm,则用它能
完全覆盖住的正六边形的边长最大不能超过( A )
A.12 mm
B.12 3 mm
C.6 mm
D.6 3 mm
感悟新知
知识点 3 正多边形的作图
正多边形和圆有什么关系? 你能借助圆画一个正多边形吗?
知3-讲
感悟新知
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 知3-讲
作OP⊥BC,垂足为P.
在Rt△OPC中,OC=4 m,
PC=
BC 2
4 2
=2(m),利用勾股定理,
可得边心距r= 42 22 2 3(m).
亭子地基的面积S= 1 lr 1 24 2 3 41.6(m2 ). 22
感悟新知
知2-讲
正n边形的一个内角的度数是多少?中心角呢? 正多边形的中心角与外角的大小有什么关系?
第二十四章 圆
24.3 正多边形和圆
24.3 正多边形和圆
学习目标
1 课时讲解 2 课时流程
正多边形的有关概念 正多边形的有关计算 正多边形的作图
逐点 导讲练
课堂 小结
作业 提升
课时导入
观察下列图形他们有什么特点?
感悟新知

正多边形和圆.ppt经典实用

正多边形和圆.ppt经典实用
•24.3正多边形和圆.ppt
【例题】【例2】有一个亭子,它的地基是半径为4m的正六
边形,求地基的周长和面积(精确到0.1m2).
【解析】如图,正六边形ABCDEF的中心角为60°,△OBC 是等边三角形,从而正六边形的边长等于它的半径.
因此,亭子地基的周长 l =4×6=24(m).
在Rt△OPC中,OC=4,PC=2.利用勾股定理, F
QR=RS=ST=TP=2PA, ∵五边形PQRST的各边都与⊙O相切, ∴五边形PQRST是⊙O的外切正五边形.
•24.3正多边形和圆.ppt
【定理】
把圆分成n(n≥3)等份: 依次连接各分点所得的多边形是这个圆的内接正n边 形;经过各分点作圆的切线,以相邻切线的交点为 顶点的多边形是这个圆的外切正n边形. 一个正多边形是否一定有外接圆和内切圆?
•24.3正多边形和圆.ppt
5.正多边形都是轴对称图形,如果边数是偶数那么 它还是中心对称图形. 6.正n边形的中心角和它的每个外角都等于360°/n, 每个内角都等于(n-2)·180°/n . 7.边数相同的正多边形相似,周长比、边长比、半 径比、边心距比、对应对角线比都等于相似比,面 积比等于相似比的平方.
6.正n边形的一个外角度数与它的__中__心__角的度数相等.
7.将一个正五边形绕它的中心旋转,至少要旋转 72 度, 才能与原来的图形位置重合.
•24.3正多边形和圆.ppt
五、课堂小结
通过本课时的学习,需要我们掌握: 1.正多边形和圆的有关概念:正多边形的中心,正多 边形的半径, 正多边形的中心角,正多边形的边心 距. 2.正多边形的半径、正多边形的中心角、边长,正多 边形的边心距之间的等量关系.
(2)连接OA,OB,OC,则 ∠OAB=∠OBA=∠OBC=∠OCB. ∵TP,PQ,QR分别是以A,B,C 为切点的⊙O的切线, ∴∠OAP=∠OBP=∠OBQ=∠OCQ. ∴∠PAB=∠PBA=∠QBC=∠QCB.

正多边形和圆ppt课件

正多边形和圆ppt课件

2.(5分·推理直观、运算能力)如图,已知正五边形ABCDE内接于☉O,连结BD,
则∠CDB的度数是( C )
A.72°
B.54°
C.36°
D.30°
19
3.(5分·推理能力、运算能力)如图,正八边形ABCDEFGH内接于☉O,对角线AE
22.5°
为☉O的直径,连结HE,则∠AEH的度数为__________.
则∠BAE-∠COD=( D )
A.60°
B.54°
C.48°
D.36°
8
9
【举一反三】
(2024·济南模拟)如图,正六边形ABCDEF内接于☉O,若DE=2,则阴影部分的


面积为______.
10
重点2 正多边形的性质、判定及画法(运算能力、推理能力、应用意识)
【典例2】(教材再开发·P66例变式)如图1,正五边形ABCDE内接于☉O,阅读以下
12
【自主解答】(1)∵五边形ABCDE是正五边形,
(−)×°
∴∠ABC=
=108°,

即∠ABC=108°;
13
(2)△AMN是正三角形,
理由:连结ON,NF,如图,
由题意可得,FN=ON=OF,
∴△FON是等边三角形,
∴∠NFA=60°,
∴∠NMA=60°,
同理可得:∠ANM=60°,






∴=====,
∴∠BAF=∠ABC=∠BCD=∠CDE=∠DEF=∠EFA,
∴六边形ABCDEF是正六边形.
素养 当堂测评
18
1.(5分·运算能力)一个圆的内接正多边形中,一条边所对的圆心角为72°,则该

人教版数学九年级上册第二十四章《24.3 正多边形和圆》课件(共19张PPT)

人教版数学九年级上册第二十四章《24.3  正多边形和圆》课件(共19张PPT)

对于一些特殊的正多边形,还可以用圆规和直尺来作图. 再如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作 出正方形.
用尺规等分圆: 用尺规作图的方法等分圆周,然后依次连接圆上各分点得到正多边形,这 种方法有局限性,不是任意正多边形都能用此法作图,这种方法从理论上 讲是一种准确方法.
2.如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
归纳新知
正多边形 的画法
用量角器等分圆 用尺规等分圆
此方法可将圆任意n等分,所以用 该方法可作出任意正多边形,但边 数很大时,容易产生较大的误差.
度量法③:
用圆规在⊙O 上顺次截取6条长度等于半径(2 cm)的弦,连接其中的 AB, BC,CA 即可.
B
O
A
C
对于一些特殊的正多边形,还可以用圆规和直尺来作图. 例如,我们也可以这样来作正六边形.由于正六边形的边长等于半径,所以 在半径为R的圆上依次截取等于R的弦,就可以把圆六等分,顺次连接各分 点即可得到半径为R的正六边形.
课堂练习
1.画一个半径为2 cm的正五边形,再作出这个正五边形的各条对角线,画 出一个五角星.
2.面积相等的正三角形与正六边形的边长之比为
.
中考实题
1.已知⊙O如图所示. (1) 求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2) 若⊙O的半径为4,求它的内接正方形的边长.
此方法是一种比较准确的等分圆的方 法,但有局限性,不能将圆任意等分.
再见
合作探究
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法①: 用量角器或 30°角的三角板度量,使∠BAO=∠CAO=30°.

正多边形和圆-ppt课件

正多边形和圆-ppt课件

“各边相等,各内角相等”是正多边形的两
个基本特征,当边数n>3时,二者必须同时具备,
缺一不可,否则多边形就不是正多边形.
感悟新知
3. 正多边形的有关概念
知1-讲
(1)正多边形的中心: 一个正多边形的外接圆的圆心叫作正
多边形的中心 .
(2)正多边形的半径: 正多边形的外接圆的半径叫作正多边形
的半径 .
心,OA 为半径作⊙ O,直径 FC ∥ AB, AO, BO
的延长线交⊙ O 于点 D, E.
求证:六边形 ABCDEF 为圆内接
正六边形 .
感悟新知
知1-练
思路导引:
感悟新知
知1-练
证明: ∵三角形 AOB 是正三角形,
∴∠ AOB= ∠ OAB= ∠ OBA=60°, OB=OA.
∴点 B 在⊙ O 上 .
(1)作半径为 0.9 cm 的⊙ O;
(2)用量角器画∠ AOB = ∠ BOC=120°,其中 A, B,C
均为圆上的点;
(3)连接 AB, BC, CA,则△ ABC 为
所求作的正三角形 ,如图 24. 3-4所示.
感悟新知
作法二
(1)作半径为 0.9 cm 的⊙ O;
知3-练
(2)作⊙ O 的任一直径 AB;




︵ ︵
∴BDE-CDE=CDA-CDE,即BC=AE.∴BC=AE.
同理可证其余各边都相等,
∴五边形 ABCDE 是正五边形.
感悟新知
知识点 2 正多边形的有关计算
1. 正 n 边形的每个内角都等于
(-)· °
.

2. 正 n 边形的每个中心角都等于

24.3.正多边形和圆课件PPT(共22张)

24.3.正多边形和圆课件PPT(共22张)
24.3 正多边形(zhèngduōbiānxíng) 和圆
点击页面即可演示
第1页,共22页。
观察下列图形它们有什么(shén 特 me) 点?
第2页,共22页。
三条边相等,
四条边相等,四
正三 三个角相等 角形 (60°).
正方形 个角相等 (90°).
一、正多边形的定义
各边相等,各角也相等的多边形叫做(jiàozuò)正多边 形.
边形ABCDE的 内切圆的半径(bànjìng). D
7.∠AOB叫做正五边形
ABCDE的 中心角,
它的度数是 72°.
E
C
.O
AF
B
第12页,共22页。
8.图中正(zhōnɡ zhènɡ)六边形ABCDEF的中心角∠是AOB
它的度数是 60°
9.你发现正六边形
ABCDEF的半径
与边长具有什么
数量关系?
第5页,共22页。
A
D
B
C
弧相等
弦相等 (多边形的边相等 ) (xiāngděng)
(xiāngděng)
圆周角相等(多边形的角相等)
—多边形是正多边形
第6页,共22页。
A
E B
H D
G
C
弧相等
F
全等三角形
边相等
(xiāngděng)
角相等
多边形是正多边形
第7页,共22页。
定理:
把圆分成n(n≥3)等份: ⑴依次连接各分点所得(suǒ dé)的多边形是这个圆 的
相等
E F
D
.O
C
A
B
第13页,共22页。
判断题
①各边都相等的多边形是正多边形.( ) ×

25.8正多边形和圆 课件

25.8正多边形和圆   课件

P B
A
T E O S
Q
C R D
⌒⌒
又∵五边形PQRST的各边都与⊙O相切,
∴五边形PQRST的是O外切正五边形。
弧相等—弦切角相等—全等三角形

边相等 角相等
—多边形是正多边形
由于正多边形在生产、生活实际中有广泛 的应用性,所以会画正多边形
半径 3. OB叫正△ABC的________ ,它是正 △ABC的________圆的半径. 外接 边心距 4. OD叫作正△ABC的________ ,它是 A 正△ABC的________ 圆的半径。 内切
o
B D C
6. 正六边形ABCDEF外切于⊙O,⊙O 的半径为R,则该正六边形的周长和面积各是 解 : 如图, 设AB切 ⊙ O于M, 连结OA、 OB 多少?则OM AB于M , AM BM . OM ,
F
E O ·
A
D
B
C
说说作正多边形的方法有哪些?
归纳 (1)用量角器等分圆周作正n边形; (2)用尺规作正方形及由此扩展作正八 边形, 用尺规作正六边形及由此扩展作正 12边形、正三角形.
正多边形的性质
• 提出问题: • 我们学习了正多边形的定义,并且 知道只要n等分(n≥3)圆周就可以得到的 圆的内接正n边形和圆的外切正n边 形.反过来,是否每一个正多边形都有 一个外接圆和内切圆呢?
• 定理: • 任何正多边形都有一个 外接圆和一个内切圆, 这两个圆是同心圆.
正多边形及外接圆中的有关概念 中心: 一个正多边形的外接圆的圆心. 正多边形的半径: 外接圆的半径. 正多边形的中心角: 正多边形的每一条边 所对的圆心角.
E
中心角 半径R .边 . 心 距 r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档