PSK的调制解调

合集下载

PSK(DPSK)调制与解调资料讲解

PSK(DPSK)调制与解调资料讲解

P S K(D P S K)调制与解调实验题目——PSK(DPSK)调制与解调一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。

2、掌握产生PSK(DPSK)信号的方法。

3、掌握PSK(DPSK)信号的频谱特性。

二、实验内容1、观察绝对码和相对码的波形。

2、观察PSK(DPSK)信号波形。

3、观察PSK(DPSK)信号频谱。

4、观察PSK(DPSK)相干解调器各点波形。

三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、20M双踪示波器5、导线若干四、实验原理1、2PSK(2DPSK)调制原理2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。

2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。

如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。

这种现象常称为2PSK 的“倒π”现象,因此,实际中一般不采用2PSK 方式,而采用差分移相(2DPSK )方式。

2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。

如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。

0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形DPSK 波形相对码从图中可以看出,2DPSK 信号波形与2PSK 的不同。

2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。

这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。

只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。

PSK(DPSK)及QPSK-调制解调实验报告

PSK(DPSK)及QPSK-调制解调实验报告

实验4 PSK(DPSK)及QPSK 调制解调实验配置一:PSK(DPSK)模块一、实验目的1. 掌握二相绝对码与相对码的码变换方法;2. 掌握二相相位键控调制解调的工作原理及性能测试;3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器1.时钟与基带数据发生模块,位号:G2.PSK 调制模块,位号A3.PSK 解调模块,位号C4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M 双踪示波器1 台7.小平口螺丝刀1 只8.频率计1 台(选用)9.信号连接线4 根三、实验原理相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。

在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。

本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。

相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。

(一) PSK 调制电路工作原理二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。

相位键控调制解调电原理框图,如图6-1 所示。

1.载波倒相器模拟信号的倒相通常采用运放来实现。

来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。

为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。

2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。

0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。

PSK的调制解调

PSK的调制解调
图2 2PSK信号的解调原理框图
2.24PSK调制解调的基本原理
4PSK即四进制移向键控,又叫QPSK。4PSK是英文QuadraturePhase Shift Keying的简称,意为正交相移键控,是一种数字调制方式。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
图1 数字通信系统模型
其中,信源编码有两个基本功能:一是提高信息传输的有效性,即设法减少码元数目和降低码元速率。二是完成数/模转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,信源译码是信源编码的逆过程。信道编码的目的是增强数字信号的抗干扰能力,信道译码是信道编码的逆过程。加密和解密是为了保证所传信息的安全。数字调制就是将数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。图1为数字通信系统的一般化模型,实际的数字通信系统不一定包含图中的所有环节。模拟信号经过数字编码后也可以在数字通信系统中传输。
近年来,随着半导体技术和信号处理技术的不断发展,用户对信道资源要求不断提高,移动性能用户也不断增加。卫星通信技术的发展,军用制导通信技术和深空探测技术的不断发展使高速率的调制技术成为可能。随着软件无线电技术的加速发展,Doppler频差影响不断加大,数字调制技术将能适应复杂干扰环境下通信方式和更高频段的通信。
2.2.2 4PSK的解调原理
4PSK信号是两个载波正交的2PSK信号的合成。所以,可以仿照2PSK相干解调法,用两个正交的相干载波分别检测两个分量a和b,然后还原成二进制双比特串行数字信号。这种方法称为极性比较法,其原理框图5所示。
图5 4PSK信号解调器原理方图

psk解调算法

psk解调算法

相位偏移键控(PSK)是一种常见的数字调制方案,它利用载波的相位偏移表示数据。

解调这些信号需要使用适当的解调算法。

以下是一种可能的解调算法:
1. 相位差检测:首先,需要测量接收到的信号的相位与一个参考相位之间的差异。

这个参考相位可以是未调制的载波信号,也可以是另一个已调制的PSK信号。

2. 查找表查找:然后,使用查找表或计算方法来确定发送的数据。

在BPSK中,0和π相位分别表示二进制0和1。

因此,可以使用简单的查找表来将相位偏移映射到相应的二进制值。

3. 判决和错误纠正:最后,根据查找表或计算结果进行判决,将解调出的二进制数据传输到下一级处理单元。

同时,可以进行错误纠正,例如使用奇偶校验或循环冗余校验(CRC)等算法来检测和纠正传输过程中的错误。

需要注意的是,具体的解调算法可能会因不同的应用场景和不同的调制方案而有所不同。

以上是一种基本的解调算法,适用于BPSK 等简单的PSK调制方案。

对于更复杂的调制方案,可能需要使用更复杂的解调算法和信号处理技术。

实验10、PSK调制解调

实验10、PSK调制解调

实验 10 PSK 调制解调一、实验目的1.掌握 PSK 调制解调的工作原理及性能要求;2.进行 PSK 调制、解调实验,掌握相干解调原理和载波同步方法;3.理解 PSK 相位模糊的成因,思考解决办法。

二、实验原理1.1 2PSK 调制原理2PSK(二进制相移键控,Phase Shift Keying)信号是用载波相位的变化表征被传输信息状态的,通常规定0 相位载波和π 相位载波分别代表传“1”和传“0”。

1 1 0 0 1NRZ输入PSK调制信号图 10-1 2PSK 调制信号波形PSK 调制由“信道编码与频带调制-A4”模块完成,该模块基于 FPGA 和 DA 芯片,采用软件无线电的方式实现频带调制。

图 10-2 PSK 调制电路原理框图上图中,基带数据和时钟,通过 2P6 和 2TP8 两个铆孔输入到 FPGA 中,FPGA 软件完成PSK 的调制后,再经 DA 数模转换即可输出相位键控信号,调制后的信号从 4TP2 输出。

2.2PSK 解调原理实验中 2PSK 信号的解调采用相干解调法,首先要从调制信号中提取相干载波,在实验中采用数字 costas 环提取相干载波,二相 PSK(DPSK)解调器采用数字科斯塔斯环(Constas 环)解调,其原理如下图所示。

图 10-3 数字科斯塔斯特环原理图设已调信号表达式为 s (t ) = A 1 ⨯cos(ωt +ϕ(t ))(A 1 为调制信号的幅值),经过乘法器与载波信号 A 2 cos ωt (A2 为载波的幅值)相乘,得:e (t ) = 1A A [cos(2ωt + ϕ(t )) + cos ϕ(t )] 02 1 21可知,相乘后包括二倍频分量 2A 1 A 2 cos(2ωt + ϕ(t )) 和cos ϕ(t ) 分量(ϕ(t ) 为时间的函数)。

因此,需经低通滤波器除去高频成分cos(2ωt +ϕ(t )) ,得到包含基带信号的低频信号,然后同向端和正交端两路信号相乘,其差值作为环路滤波器的输入,然后控制 VCO 载波频率和相位,得到和调制信号同频同相的本地载波。

PSK(DPSK)调制与解调

PSK(DPSK)调制与解调

实验题目——PSK (DPSK)调制与解调一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。

2、掌握产生PSK (DPSK )信号的方法.3、掌握PSK (DPSK )信号的频谱特性。

二、实验内容1、观察绝对码和相对码的波形。

2、观察PSK(DPSK)信号波形。

3、观察PSK (DPSK)信号频谱。

4、观察PSK(DPSK )相干解调器各点波形。

三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、20M 双踪示波器5、导线若干四、实验原理1、2PSK(2DPSK)调制原理2PSK 信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。

2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。

如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复.这种现象常称为2PSK 的“倒π"现象,因此,实际中一般不采用2PSK 方式,而采用差分移相(2DPSK )方式。

2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。

如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形.0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形DPSK 波形相对码从图中可以看出,2DPSK信号波形与2PSK的不同。

2DPSK波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。

这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值.只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK方式中的“倒π”现象发生。

同时我们也可以看到,单纯从波形上看,2PSK与2DPSK信号是无法分辨的.这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。

PSK调制解调实验报告

PSK调制解调实验报告

PSK调制解调实验报告PSK调制解调实验报告一、实验目的1. 了解与掌握PSK调制解调的基本原理及特点。

2. 了解PSK调制解调的硬件实现过程。

二、实验原理1. PSK调制PSK调制是在载波的相位上进行调制的一种方法,使用一定数量的离散相位值来体现调制数据。

其调制信号可以表示为s(t)=Acos(ωt+φ)其中,A为振幅,ω为角频率,φ是相位值,即φ=2πfct+2πφm(t)2. PSK解调在接收端,需要对接收信号进行解调。

对于PSK信号,解调过程由相位鉴别器实现。

相位鉴别器输入PSK信号,输出一串数字流,序列反映的是PSK锁定在给定的离散相位之一的时间。

三、实验器材及工具1. 端口配置:操作系统:Windows 7Python:3.5.3Matplotlib:2.0.0Scipy:0.18.1Numpy:1.11.3PyAudio:0.2.72. 设备及电路:信号发生器功率放大器变频器射频滤波器相位锁定环路示波器四、实验步骤1. 使用Python编程语言进行PSK调制解调的设计和实现。

2. 编写一个实时的模拟接收器程序,进行PSK解调并显示结果图像。

3. 装置实验所需的设备及电路,包括信号发生器、功率放大器、变频器、射频滤波器和相位锁定环路。

4. 调节各设备参数,使其符合实验要求,并采集数据。

5. 对采集到的数据进行处理和分析,得出实验结果。

五、实验结果1. 绘制出PSK调制解调的数据流图。

2. 根据所得的实验数据,进一步验证了PSK调制解调技术的正确性和可靠性。

通过反复调节设备参数,在正确的相位值处实现了准确的脉冲恢复。

3. 在相位鉴别器的设计中,应做到准确、高速,同时尽可能的降低误码率和噪声。

六、实验结论本次实验主要使用Python语言对PSK调制解调进行了模拟试验,并通过实验数据验证了PSK调制解调技术的正确性和可靠性。

同时也对相位鉴别器的设计略为进行了概述。

在实际应用中,需要根据具体需求进行优化和处理,以适应各种复杂的情况和环境。

实验4PSK(DPSK)调制解调实验分析

实验4PSK(DPSK)调制解调实验分析

班级通信1403 学号201409732 姓名裴振启指导教师邵军花日期实验4 PSK(DPSK)调制解调实验一、实验目的1. 掌握PSK 调制解调的工作原理及性能要求;2. 进行PSK 调制、解调实验,掌握电路调整测试方法;3. 掌握二相绝对码与相对码的码变换方法。

二、实验仪器1.PSK QPSK调制模块,位号A2.PSK QPSK解调模块,位号C3.时钟与基带数据发生模块,位号:G4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M双踪示波器1台7.小平口螺丝刀1只8.频率计1台(选用)9.信号连接线4根三、实验原理PSK QPSK调制/解调模块,除能完成上述PSK(DPSK)调制/解调全部实验外还能进行QPSK、ASK调制/解调等实验。

不同调制方式的转換是通过开关4SW02及插塞37K01、37K02、四、PSK(DPSK)调制/解调实验进行PSK(DPSK)调制时,工作状态预置开关4SW02置于00001, 37K01、37K02①和②位挿入挿塞,38K01、38K02均处于1,2位相连(挿塞挿左边)。

相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。

在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。

本实验箱采用相位选择法实现二进制相位调制,绝对移相键控(CPSK或简称PSK)是用输入的基带信号(绝对码)直接控制选择开关通断,从而选择不同相位的载波来实现。

相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。

1.PSK调制电路工作原理二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s伪随机码、及其相对码、32KHz 方波、外加数字信号等。

相位键控调制电原理框图,如图6-1所示。

图6-1 相位键控调制电原理框图1)滤波器、同相放大器和反相放大器从图6-1看出,1024KHZ 的方波经37R29加到由运放37UO4A 及周边元件组成的低通滤波器,其输出变为l024KHZ 正弦波,它通过37U05A 同相放大和37U05B 反相放大,从而得到l024KHZ 的同相和反相正弦载波,电位器37W01可调节反相放大器的增益,从而使同相载波与反相载波的幅度相等,然后同相和反相正弦载波被送到模拟开关乘法器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 数字通信的特点
目前,数字通信在不同的通信业务中都得到了广泛的应用,究其原因也是数字通信相较于模拟同通信具有以下的一些优点。
(1)数字通信系统抗干扰能力强,且噪声不积累。数字通信系统中传输的是离散取值的数字波形,接受端的目标不是精确的还原被传输的波形,而是从受噪声干扰的信号中判决出发送端所发送的事两个状态总的哪一个即可。
4PSK利用载波的四种不同相位来表示数字信息,由于每一种载波相位代表两个比特信息,因此每个四进制码元可以用两个二进制码元的组合来表示。下图为4PSK的相位矢量图。
图3 4PSK信号相位φn矢量图
在表示每个四进制码元的两个二进制码元中,前一比特用a表示,后一比特用b表示。则双比特ab与载波相位的关系入下表所示。
由上面两个图可以看出两个载波是幅度为3,频率为1Hz,采样时间为0.002s的反相信号。
2PSK调制各点波形为:
图9 2系统框图
2PSK解调的系统框图如下图所示。
其中,Sine Wave1与调制的参数设置相一致。AWGN Channel为信道中加入高斯白噪声,其信噪比的设置如图11所示。Error Rate Calculation用计算误码率。两个滤波器分别为带通滤波器和低通滤波器。Bipolar to Unipolar
图4 4PSK正交调制原理方框图
它可以看成是由两个载波正交的2PSK调制器构成的。图中输入的基带信号是二进制不归零双极性码元,它被“串/并变换”电路变成两路并行码元a和b,每个码元的的持续时间是输入码元的2倍。
然后分别调制到cosωct和sinωct两个载波上,两路相乘器输出的信号是相互正交的抑制载波的双边带调制(DSB)信号,其相位与各路码元的极性有关,分别由a和b码元决定。经相加电路后输出两路的合成波形,即是4PSK信号。图中两个乘法器,其中一个用于产生0o与180o两种相位状态,另一个用于产生90o与270o两种相位状态,相加后就可以得到45o,135o,225o,和315o四种相位。
2.2.2 4PSK的解调原理
4PSK信号是两个载波正交的2PSK信号的合成。所以,可以仿照2PSK相干解调法,用两个正交的相干载波分别检测两个分量a和b,然后还原成二进制双比特串行数字信号。这种方法称为极性比较法,其原理框图5所示。
图5 4PSK信号解调器原理方图
判决器是按极性来判决的,即正抽样值判为1,负抽样值判为0。两路抽样判决器输出a、b,经并/串变换器就可将并行数据恢复成串行数据如表2所示。
图1 数字通信系统模型
其中,信源编码有两个基本功能:一是提高信息传输的有效性,即设法减少码元数目和降低码元速率。二是完成数/模转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,信源译码是信源编码的逆过程。信道编码的目的是增强数字信号的抗干扰能力,信道译码是信道编码的逆过程。加密和解密是为了保证所传信息的安全。数字调制就是将数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。图1为数字通信系统的一般化模型,实际的数字通信系统不一定包含图中的所有环节。模拟信号经过数字编码后也可以在数字通信系统中传输。
图7 Unipolar to Bipolar Converter信号参数设置
Sine Wave和Sine Wave1是相位相差π的正弦载波信号。其中0相位的表示码元信号1,π相位表示码元信号0,它们的参数设置分别如图8和图9所示。
图8 Sin wave信号的参数设置
图8 Sin wave1信号的参数设置
图2 2PSK信号的解调原理框图
2.24PSK调制解调的基本原理
4PSK即四进制移向键控,又叫QPSK。4PSK是英文QuadraturePhase Shift Keying的简称,意为正交相移键控,是一种数字调制方式。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
表2 抽样判决器的判决准则
输入相位
的极性
的极性
判决器输出
+
+
1
1
_
+
0
1
_
_
0
0
+
_
1
0
3 PSK在MATLAB中的编译与仿真
3.1 MATLAB软件介绍
MATLAB软件是美国MathWorks公司的产品,MATLAB是英文Matrix Laboratory(矩阵实验室)的缩写。
MATLAB软件系列产品是一套高效强大的工程技术数值运算和系统仿真软件,广泛应用于当今的航空航天、汽车制造、半导体制造、电子通信、医学研究、财经研究和高等教育等领域,被誉为“巨人肩膀上的工具”。研发人员借助MATLAB软件能迅速测试设想构想,综合评测系统性能,快速设计更好方案来确保更高技术要求。同时MATLAB也是国家教委重点提倡的一种计算工具。
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
表1 双比特ab与载波相位的关系
双比特码元
载波相位(φn)
a
b
A方式
B方式
0
0
0o
225o
1
0
90o
315o
1
1
180o
45o
0
1
270o
135o
四进制信号可等效为两个正交载波进行双边带调制所得信号之和。
2.2.1 4PSK的调制原理
4PSK的调制方法有正交调制方式(双路二相调制合成法或直接调相法)、相位选择法、插入脉冲法等。本文中采用的是正交调制方式。下图是正交调制的原理框图。
1 引言
通信按照传统的理解就是信息的传输。在当今高度信息化的社会,信息和通信已成为现代社会的命脉。信息作为一种资源,只有通过广泛的传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。而通信作为传输信息的手段或方式,与传感技术,计算机技术相互融合,已为21世纪国际社会和世界经济发展的强大推动力。
MATLAB的编程非常简单,它有着比其他任何计算机高级语言更高的编程效率、更好的代码可读性和移植性,以致被誉为“第四代”计算机语言,MATLAB是所有MathWorks公司产品的数值分析和图形基础环境。此外MATLAB还拥有强大的2D和3D甚至动态图形的绘制功能,这样用户可以更直观、更迅速的进行多种算法的比较,从中找出最好的方案。
Simulink是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI),这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
(4)
其中
(5)
这里,g(t)是脉宽为 的单个矩形脉冲,而 的统计特性为
(6)
即发送二进制符号“0”时( 取+1), 取0相位;发送二进制符号“1”时( 取-1),取π相位。这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制绝对相移方式。调制方法有模拟调制和键控法,解调方法通常采用的是相干解调法。下面是2PSK的调制解调原理框图。
Simulink的每一个模块实际上都是一个系统、一个典型的Simulink模块包括输入、状态和输出三个部分:
(1) 输入模块,即信号源模块,包括常数信号源、函数信号发生器和用户自定义信号;
(2) 状态模块,即被模拟的系统模块,它是Simulink的中心模块,是系统建模的核心和主要部分;
(3) 输出模块,即信号显示模块,它能够以图形方式、文件格式进行显示, 也可以在MATLAB的工作空间显示,输出模块主要集中在Sinks库
1.1 数字通信系统的模型
按照信道中传输的是模拟信号还是数字信号,相应的将通信系统分为模拟通信系统和数字通信系统。模拟通信系统是利用模拟信号来传递信息的通信系统,模拟信号有时也称连续信号。而数字通信系统是利用数字信号来传递信息的通信系统。数字信号有时也称为离散信号。近年来数字通信的发展远远超过模拟通信,数字通信在各个领域的应用也越来越广泛。本文讨论的也是数字通信中调制解调原理。数字通信系统的一般模型如图1所示。
(2)数字通信系统传输差错可控。在数字通信系统中,可通过信道编码技术进行检错和纠正,降低误码率,提高传输质量。
(3)数字通信系统便于用现代数字信号处理技术对数字信息进行处理、变换、存储。这种数字处理的灵活性表现为可以将来自不同信源的信号综合到一起传输。
(4)数字通信系统易于集成,使通信设备微型化,重量轻。
(5)数字通信系统易于加密处理,且保密性好。
1.3 数字调制的现状及发展趋势
数字通信系统的优势明显,但同时也存在一些缺陷,需要较宽的传输带宽。在现代通信中,随着大容量和远距离数字通信技术的发展,信道的带宽限制和非线性对传输信号的影响越来越来重要。于是,新的数字调制方式逐渐出现。这些调制方式尽量减小信道对所传输信号的影响,以便在有限的带宽资源条件下获得更高的传输速率。多进制调制是提高谱利用率的有效方法,恒包络技术能适应信道的非线性,并保持较小的频带利用率。近些年来,新发展的数字调制技术有最小移频键控(MSK),高斯滤波最小移频键控(GMSK),正交幅度调制(QAM),正交频分复用调制(OFDM)等等。
相关文档
最新文档