有理数专题讲解及其训练
有理数的概念教案例题习题

有理数的概念-教案例题习题教案章节:一、有理数的定义与分类二、有理数的加法与减法三、有理数的乘法与除法四、有理数的乘方五、有理数的混合运算一、有理数的定义与分类1. 概念讲解:有理数是可以表示为两个整数比例的数,其中分子和分母都是整数,分母不为零。
2. 案例分析:分析几个具体的有理数案例,如2/3, -5/4等,解释它们是有理数的原因。
3. 习题练习:b. 找出下列有理数的相反数:2/5, -7/8二、有理数的加法与减法1. 概念讲解:有理数的加法是将两个有理数的分子相加,分母保持不变;有理数的减法则是将减数的分子取相反数后相加。
2. 案例分析:分析几个具体的有理数加法和减法案例,如2/3 + 1/4, -5/6 2/3等,解释运算过程。
3. 习题练习:三、有理数的乘法与除法1. 概念讲解:有理数的乘法是将两个有理数的分子相乘,分母相乘;有理数的除法则是将除数的分子乘以倒数,再与被除数的分子相乘,分母相乘。
2. 案例分析:分析几个具体的有理数乘法和除法案例,如2/3 ×4/5, -5/6 ÷2/3等,解释运算过程。
3. 习题练习:四、有理数的乘方1. 概念讲解:有理数的乘方是指将一个有理数自乘若干次,其中指数表示自乘的次数。
2. 案例分析:分析几个具体的有理数乘方案例,如2^3, (-3/4)^2等,解释运算过程。
3. 习题练习:五、有理数的混合运算1. 概念讲解:有理数的混合运算是指在一个表达式中包含有理数的加减乘除和乘方等运算。
2. 案例分析:分析几个具体的混合运算案例,如2/3 + 1/2 ×3/4, -5/6 ÷(-2/3) ×(-1/2)^2等,解释运算过程。
3. 习题练习:六、有理数的应用-比例与比例尺1. 概念讲解:比例是两个有理数的比较,比例尺是地图上距离与实际距离的比。
2. 案例分析:通过实际案例,如购物时打折的比例计算,地图上的距离与实际距离的换算等,解释比例和比例尺的计算方法。
专题01 有理数(专题详解)(解析版)

专题01 有理数专题详解专题01 有理数专题详解 (1)1.1正数和负数 (5)知识框架 (5)一、基础知识点 (5)知识点1 负数的产生 (5)知识点2 相反意义的量的表示方式 (5)知识点3 正数、负数及0的意义 (6)二、典型题型 (7)题型1 平均数与正负数 (7)题型2 用正负数表示误差范围 (8)题型3 正负数规律探究 (8)1.2有理数 (10)1.2.1有理数 (10)知识框架 (10)一、基础知识点 (10)知识点1 有理数及相关概念 (10)知识点2 小数分类补充 (11)知识点3 有理数的分类 (11)知识点4 常用数学概念的含义 (12)二、典型题型 (12)题型1 数集问题 (13)题型2 规律探究 (14)1.2.2数轴 (16)知识框架 (16)一、基础知识点 (16)知识点1 数轴的概念 (16)知识点2 数轴的读数与画法 (16)知识点3 数轴上的点与有理数之间的关系(数形结合) (17)知识点4 数轴与数的大小 (18)二、典型题型 (18)题型1 利用数轴求两点间距离 (18)题型2 数轴上点的运动 (19)1.2.3相反数 (21)知识框架 (21)一、基础知识点 (21)知识点1 相反数的概念 (21)知识点2 相反数的意义 (21)知识点3 多重符号的化简 (22)二、典型题型 (23)题型1 相反数的性质与求法 (23)题型2 相反数与数轴相结合 (24)1.2.4绝对值 (25)知识框架 (25)一、基础知识点 (25)知识点1 绝对值的意义 (25)知识点2 绝对值的性质 (25)知识点3 绝对值与数的大小 (26)二、典型题型 (27)题型1 由数求绝对值,由绝对值求数 (27)题型2 比较有理数大小的方法 (28)题型3 含有字母的绝对值的化简求值 (29)题型4 绝对值非负性的应用 (30)三、难点题型 (31)题型1 求绝对值的值 (31)题型2 含字母绝对值的化简(复杂) (32)题型3 借助数轴解绝对值问题 (33)1.3有理数的加减法 (35)知识框架 (35)知识点1 有理数的加法 (35)知识点2 有理数的加法运算律 (36)知识点3 运用运算律简化计算 (36)知识点4 有理数减法的意义 (36)知识点5 有理数的加减混合运算 (37)二、典型题型 (38)题型1 有理数加法的应用 (38)题型2 加法运算定律的应用 (38)题型3 有理数减法的应用 (39)题型4 运用作差法比较有理数的大小 (40)三、难点题型 (40)题型1 有理数与数轴、相反数、绝对值等知识的综合 (40)题型2 定义新运算 (41)1.4有理数的乘除法 (42)知识框架 (42)一、基础知识点 (42)知识点1 有理数的乘法法则 (42)知识点2 有理数乘法的运算律 (42)知识点3 倒数的概念 (43)知识点4 有理数的除法法则 (44)知识点5 有理数四则混合运算 (45)知识点6 正负数的表示方法 (46)二、典型题型 (48)题型1 有理数乘除法与绝对值的综合应用 (48)三、难点题型 (49)题型1 ±1赋值问题 (49)题型2 定义新运算 (49)1.5有理数的乘方 (51)知识框架 (51)知识点1 乘方的意义 (51)知识点2 乘方运算法则 (52)知识点3 科学记数法的概念 (53)知识点4 近似数与准确数 (54)知识点5 理解精确度 (55)二、典型题型 (55)题型1 有理数的混合运算 (55)题型2 乘方的简便计算 (56)题型3 确定末位数字 (57)题型4 由近似数估算准确数的取值范围 (58)三、难点题型 (58)题型1 乘方在实际问题中的应用 (58)题型2实际问题中的近似数 (59)1.1正数和负数知识框架一、基础知识点知识点1 负数的产生1)负数:规定一种意义的量为正数,与之意义相反的量规定为负数。
有理数的概念教案例题习题

有理数的概念-教案例题习题第一章:有理数的概念与分类1.1 教学目标:了解有理数的定义及特点掌握有理数的分类方法能够正确识别各种有理数1.2 教学内容:有理数的定义及特点有理数的分类:整数、分数整数的分类:正整数、零、负整数分数的分类:正分数、负分数1.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学1.4 教学步骤:1. 引入话题:讨论日常生活中遇到的数,如身高、体重、温度等,引出有理数的概念2. 讲解有理数的定义及特点,如有限小数、无限循环小数等3. 讲解有理数的分类方法,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数的理解和分类方法5. 通过习题练习,巩固学生对有理数概念的理解1.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数概念的理解程度第二章:有理数的运算2.1 教学目标:掌握有理数的加、减、乘、除运算方法能够正确进行有理数的混合运算2.2 教学内容:有理数的加法、减法、乘法、除法运算方法有理数的混合运算顺序及运算法则2.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学2.4 教学步骤:1. 复习有理数的概念和分类,引出有理数的运算2. 讲解有理数的加、减、乘、除运算方法,并通过案例分析让学生理解并掌握3. 讲解有理数的混合运算顺序及运算法则,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数运算的理解和方法5. 通过习题练习,巩固学生对有理数运算的掌握程度2.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数运算的理解程度第三章:有理数的性质3.1 教学目标:掌握有理数的性质,如相反数、倒数、绝对值等能够运用有理数的性质解决实际问题3.2 教学内容:有理数的性质:相反数、倒数、绝对值、乘方等3.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学3.4 教学步骤:1. 复习有理数的概念、分类和运算,引出有理数的性质2. 讲解有理数的相反数、倒数、绝对值等性质,并通过案例分析让学生理解并掌握3. 讲解有理数的乘方运算方法,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数性质的理解和运用方法5. 通过习题练习,巩固学生对有理数性质的掌握程度3.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数性质的理解程度第四章:有理数的应用4.1 教学目标:能够运用有理数解决实际问题,如长度、面积、体积等计算能够运用有理数进行简单的金融计算,如利息、折扣等4.2 教学内容:有理数在实际问题中的应用,如长度、面积、体积等计算有理数在金融计算中的应用,如利息、折扣等计算4.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学4.4 教学步骤:1. 复习有理数的概念、分类、运算和性质,引出有理数的应用2. 讲解有理数在实际问题中的应用方法,如长度、面积、体积等计算,并通过案例分析让学生理解并掌握3. 讲解有理数在金融计算中的应用方法,如利息、折扣等计算,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数应用的理解和运用方法5. 通过习题练习,巩固学生对有理数应用的掌握程度4.5 教学评价:通过课堂提问、习第五章:有理数的综合练习5.1 教学目标:巩固对有理数的概念、分类、运算、性质的理解提高解决实际问题的能力5.2 教学内容:综合练习题,涵盖有理数的概念、分类、运算、性质等知识点5.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学5.4 教学步骤:1. 复习有理数的概念、分类、运算、性质,强调重点和难点2. 发放综合练习题,让学生独立完成3. 讲解练习题,解答学生的疑问4. 进行小组讨论,让学生分享自己的解题思路和方法5. 通过习题练习,巩固学生对有理数的综合掌握程度5.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数的综合理解程度第六章:有理数与无理数的区别6.1 教学目标:理解有理数和无理数的概念掌握有理数和无理数的区别6.2 教学内容:有理数和无理数的定义有理数和无理数的性质有理数和无理数的区别6.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学6.4 教学步骤:1. 引入有理数和无理数的概念,让学生了解它们的存在2. 讲解有理数和无理数的性质,并通过案例分析让学生理解并掌握3. 讲解有理数和无理数的区别,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对有理数和无理数区别的理解5. 通过习题练习,巩固学生对有理数和无理数的掌握程度6.5 教学评价:通过课堂提问、习题练习等方式评估学生对有理数和无理数的理解程度第七章:无理数的概念与性质理解无理数的概念掌握无理数的性质7.2 教学内容:无理数的定义无理数的性质无理数的应用7.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学7.4 教学步骤:1. 引入无理数的概念,让学生了解无理数的存在2. 讲解无理数的性质,并通过案例分析让学生理解并掌握3. 讲解无理数的应用,如圆的周长、面积等,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对无理数性质的理解和运用方法5. 通过习题练习,巩固学生对无理数的掌握程度7.5 教学评价:通过课堂提问、习题练习等方式评估学生对无理数的理解程度第八章:无理数的运算8.1 教学目标:掌握无理数的运算方法能够正确进行无理数的混合运算无理数的加法、减法、乘法、除法运算方法无理数的混合运算顺序及运算法则8.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学8.4 教学步骤:1. 复习无理数的概念和性质,引出无理数的运算2. 讲解无理数的加法、减法、乘法、除法运算方法,并通过案例分析让学生理解并掌握3. 讲解无理数的混合运算顺序及运算法则,并通过案例分析让学生理解并掌握4. 进行小组讨论,让学生分享自己对无理数运算的理解和方法5. 通过习题练习,巩固学生对无理数运算的掌握程度8.5 教学评价:通过课堂提问、习题练习等方式评估学生对无理数运算的理解程度第九章:无理数在实际中的应用9.1 教学目标:能够运用无理数解决实际问题,如圆的周长、面积等计算9.2 教学内容:无理数在实际问题中的应用,如圆的周长、面积等计算9.3 教学方法:采用讲解、案例分析、小组讨论等方式进行教学9.4 教学步骤:1. 复习无理数的概念和性质重点和难点解析1. 有理数的概念与分类:理解有理数的定义及特点,掌握有理数的分类方法。
完整版)有理数专题训练

完整版)有理数专题训练专题一有理数的概念及其应用例1:已知a,b互为相反数,c,d互为倒数,x的绝对值是2,求(a+b+c*d)*m-cd的值。
解:根据题意可得a=-b,c=1/d,|x|=2,代入原式得:a+b+c*d)*m-cd=(0+c*d)*m-cd=cd*(m-1)练:已知a,b互为相反数,c,d互为倒数,|x|=3,求代数式a+b-cdx+x/3的值。
解:根据题意可得a=-b,c=1/d,|x|=3,代入原式得:a+b-cdx+x/3=-2b-cd*x+x/3=-2b-cd*3+x/3=-2b-3c+x/3巩固:已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x^2-cd*x+(a+b)*2010-cd*2009的值。
解:根据题意可得a=-b,c=1/d,x^2=4,代入原式得:x^2-cd*x+(a+b)*2010-cd*2009=4-cd*x-2b+2010c-2009cd=2010c-2b-3cd专题二非负数的性质例2:若x+1+(y-2)^2=0,求xy的值。
解:由非负数的性质可知,(y-2)^2>=0,所以x+1<=0,即x<=-1.又因为x+1+(y-2)^2=0,所以(y-2)^2=-(x+1)<=0,所以y=2.因此,xy=-2.练:已知有理数满足a-1+b+3+3c-1=0,求(a*b*c)^(1/7)*2011的值。
解:整理得a+b+3c=1,代入原式得:a*b*c)^(1/7)*2011=(a*b*c)^(1/7)*(a+b+3c)^2011=(a*b*c)^(1/7)巩固:若x-1与(y+2)^2互为相反数,求x^2015+y^3的值。
解:由非负数的性质可知,(y+2)^2>=0,所以x-1<=0,即x<=1.又因为x-1=-(y+2)^2,所以(y+2)^2=1-x<=2,所以y<=sqrt(2)-2.因此,x^2015+y^3<=1+(sqrt(2)-2)^3,具体值需要进一步计算。
完整版)有理数培优专题

完整版)有理数培优专题
有理数培优专题
简介
本文档将详细介绍有理数的基本概念、性质和运算规则,以及一些与有理数相关的常见问题和解法。
内容
1.有理数的定义
有理数是可以表示为两个整数的比值的数,包括正有理数、负有理数和零。
有理数可以用分数的形式表示,例如1/2、-3/4等。
2.有理数的四则运算
加法:有理数之间的加法可以通过分数的加法规则进行计算,即分子相加,分母保持不变。
减法:有理数之间的减法可以通过分数的减法规则进行计算,即分子相减,分母保持不变。
乘法:有理数之间的乘法可以通过分数的乘法规则进行计算,即分子相乘,分母相乘。
除法:有理数之间的除法可以通过分数的除法规则进行计算,即将一个有理数乘以另一个有理数的倒数。
3.有理数的性质
有理数的加法满足交换律、结合律和分配律。
有理数的乘法满足交换律、结合律和分配律。
有理数的加法和乘法满足分数的相应性质。
有理数的乘法满足0的性质,即任何有理数乘以0的结果都是0.
4.有理数的应用
有理数在日常生活中的应用非常广泛,例如计算物品的价格、测量长度和温度等。
有理数在代数学中也有重要的应用,例如解方程、求解不等式等。
5.有理数的解题技巧
解有理数的运算题可以借助分数运算的规则,如化简分数、通
分等。
解有理数的应用题可以将问题转化为数学模型,然后进行计算。
结论
有理数作为数学的重要分支之一,具有广泛的应用领域以及丰
富的运算规则和性质。
通过研究有理数的定义、运算规则和应用,
可以提高我们的数学思维能力,并且在实际问题解决中发挥重要作用。
有理数(归纳与讲解)(解析版)

专题01 有理数【专题目录】技巧1绝对值的八种常见应用技巧2 有理数中的六种易错类型【题型】一、有理数概念理解【题型】二、用数轴上的点表示有理数【题型】三、求一个数的相反数【题型】四、求一个数的绝对值【题型】五、有理数的加减乘除混合运算【题型】六、科学记数法【考纲要求】1、了解有理数的概念,知道有理数与数轴上的点一一对应.2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.【考点总结】一、有理数【注意】数轴1、数轴的三要素:原点、正方向、单位长度(重点)2、任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
3、数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.【考点总结】二、有理数四则运算【注意】1、有理数的加减混合运算规则:运用减法法则将加减混合运算统一为加法进行运算步骤:(1)减法化加法;(2)省略括号和加号;(3)运用加法运算律使计算简便; (4)运用有理数加法法则进行计算。
注:运用加法运算律时,可按如下几点进行: (1)同号的先结合;(2)同分母的分数或者比较容易通分的分数相结合; (3)互为相反数的两数相结合; (4)能凑成整数的两数相结合;(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加。
2、多个有理数相乘的法则及规律:(1) 几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数。
确定符号后,把各个因数的绝对值相乘。
(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0. 注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘。
【技巧归纳】技巧1:绝对值的六种常见应用【类型】一、已知一个数求这个数的绝对值 1.化简:(1)|-(+7)|; (2)-|-8|;【类型】二、已知一个数的绝对值求这个数 2.若|a|=2,则a =________.3.若|x|=|y|,且x =-3,则y =________. 【类型】三、 绝对值在求字母的取值范围中的应用 4.若|x|=-x ,则x 的取值范围是________. 5.若|x -2|=2-x ,则x 的取值范围是________. 【类型】四、绝对值在比较大小中的应用6.把-(-1),-23,-⎪⎪⎪⎪-45,0,用“>”连接正确的是( ) A .0>-(-1)>-⎪⎪⎪⎪-45>-23 B .0>-(-1)>-23>-⎪⎪⎪⎪-45 C .-(-1)>0>-23>-⎪⎪⎪⎪-45 D .-(-1)>0>-⎪⎪⎪⎪-45>-23【类型】五、绝对值的非负性在求字母值中的运用 7.若⎪⎪⎪⎪a -12+⎪⎪⎪⎪b -13+⎪⎪⎪⎪c -14=0,求a +b -c 的值. 【类型】六、绝对值的非负性在求最值中的应用 8.根据|a|≥0这条性质,解答下列问题:(1)当a =________时,|a -4|有最小值,此时最小值为________; 参考答案1.解:(1)原式=7. (2)原式=-8. 2.±2 3.±3 4.x≤0 5.x≤2 6.C7.解:由题意知a =12,b =13,c =14,所以a +b -c =12+13-14=712.8.解:(1)4;0(2)因为a ,b 互为相反数,所以b =-a.又因为a <0,b >0. 所以|a -b|+2a +|b|=|2a|+2a +|b|=-2a +2a +b =b. 技巧2: 有理数中的六种易错类型【类型】一、对有理数有关概念理解不清造成错误 1.下列说法正确的是( ) A .最小的正整数是0 B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a【类型】二、 误认为|a|=a ,忽略对字母a 分情况讨论 2.如果一个数的绝对值等于它本身,那么这个数一定是( ) A .负数 B .负数或零 C .正数或零D .正数【类型】三、对括号使用不当导致错误 3.计算:2-⎝⎛⎭⎫-15+14-12. 【类型】四、忽略或不清楚运算顺序4.计算:-5-(-5)×110÷110×(-5).【类型】五、乘法运算中确定符号与加法运算中的符号规律相混淆5.计算:-36×⎝⎛⎭⎫712-56-1. 【类型】六、除法没有分配律6.计算:24÷⎝⎛⎭⎫13-18-16. 参考答案 1.D 2.C3.解:原式=2+15-14+12=2920.4.解:原式=-5-(-5)×110×10×(-5)=-30.5.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36 =45.6.解:原式=24÷⎝⎛⎭⎫824-324-424 =24÷124=576.方法指导:解本题时往往会出现将乘法分配律运用到除法运算中的错误,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.【题型讲解】【题型】一、有理数概念理解例1、在下列实数:2π227、﹣0.0010001中,有理数有( )A .1个B .2个C .3个D .4个【答案】D【提示】由题意根据有理数的定义:整数与分数统称有理数,进行提示即可判断. 【详解】解:34,227,﹣0.0010001是有理数,其它的是无理数.有理数有4个. 故选:D .【题型】二、用数轴上的点表示有理数例2、如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .3【答案】C【提示】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择. 【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3。
初中七年级数学辅导讲义:《有理数》知识点总结及经典题型精讲

七年级数学辅导讲义数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
有理数专项训练及解析答案

有理数专项训练及解析答案一、选择题1.如图数轴所示,下列结论正确的是()A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.16的绝对值是( )A.﹣6 B.6 C.﹣16D.16【答案】D【解析】【分析】利用绝对值的定义解答即可.【详解】1 6的绝对值是16,故选D.【点睛】本题考查了绝对值得定义,理解定义是解题的关键.4.如果a是实数,下列说法正确的是()A.2a和a都是正数B.(-a+2,2a)可能在x轴上C.a的倒数是1aD.a的相反数的绝对值是它本身【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2,2a)在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.5.在数轴上,实数a,b对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】 由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.若︱2a ︱=-2a ,则a 一定是( )A .正数B .负数C .正数或零D .负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a 一定是一个负数或0.故选D7.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .8.下列各数中,比-4小的数是( )A . 2.5-B .5-C .0D .2 【答案】B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |. 由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b <【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.11.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.12.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .b >aB .ab >0C .a >bD .|a |>|b |【答案】C【解析】【分析】本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析.A 、∵b <﹣1<0<a <1,∴b <a ,故选项A 错误;B 、∵b <﹣1<0<a <1,∴ab <0,故选项B 错误;C 、∵b <﹣1<0<a <1,∴a >b ,故选项C 正确;D 、∵b <﹣1<0<a <1,∴|b |>|a |,即|a |<|b |,故选项D 错误.故选C .【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .14.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.15.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.16.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.17.2-的相反数是()A.2-B.2 C.12D.12-【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .18.67-的绝对值是()A.67B.76-C.67-D.76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A.【点睛】本题考查了绝对值的定义.19.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.20.在数轴上,与原点的距离是2个单位长度的点所表示的数是()A.2 B.2-C.2±D.1 2±【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的五大概念知识导航:1、正数与负数;2、有理数;3、数轴;4、相反数;5、绝对值.方法技巧:熟练掌握有理数五大概念,依据定义解题.一、正数和负数定义:① 我们把其中一种意义的量规定为正,用正数表示;那么与它相反意义的量就可以用负数表示. ② 正数是比0大的数,负数是比0小的数; ③ 0既不是正数,也不是负数. 技方法巧:①确定规定为正的量以及零点;②区分“正负”与“加减”:它们虽然写法相同,但是实质却不同。
读正负,我们称之为性质称号;读加减,我们称之为运算符号. 知识点一 正数与负数的概念 1. 下列各数中为负数的是( ) A. 1B. -2018C. 0.2D.212. 下列结论中正确的是( ) A. 0既是正数也是负数 B. 0是最大的负数C. 0是最小的正数D. 0既不是正数,也不是负数3. 下列各数中:π--+-,,,,,3122.0031,负数一共有( ) A. 1个B. 2个C. 3个D. 4个4. 下列各数:.3.031232.18010236.0•-+--+-,,,,,,,%,,,π 正数有: ; 负数有: .知识点二 用正负数表示相反意义的量5. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思就是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上10℃记作+10℃,则-3℃表示气温为( ) A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃6. 如果向东走2m 记为+2m ,则向西走3m 可记为( ) A. +3mB. +2mC. -3mD. -2m7. 陆地上最高处是珠穆朗玛峰顶,它高出海平面8848m ,记为 +8848m ;陆地上最低处是地处亚洲西部的死海,它低于海平面约415m ,记为( ) A. +415mB. -415mC. ±415mD. -8848m8. 下列不是具有相反意义的量是( ) A. 前进5米和后退5米 B. 收入30元和支出10元 C. 向东走10米和向北走10米D. 超出5克和不足2克9. 长江水位降了1.8m ,可以表示为( ) A. 1.8mB. -1.8mC. -1.8m 或1.8mD. 无法表示10. 如果+5℃表示比0℃高5℃,那么比0℃低7℃记作 ℃. 11. 如果-60元表示支出60元,那么+100元表示 .12. 长江水位高于正常水位7.6m 时记作+7.6m,那么低于正常水位5m,应记作 ;-8.2m 表示 ;0m 表示 . 真题训练:13. 在一次数学测验中,小明所在班级的平均分为83分,把高出平均分的部分若记作正数,则小明98分,应记为 分;小华记作-4分,他的实际得分为 分.14. 若规定海平面的高度为0米,且规定高出海平面的高度为正,一潜水艇在水面下40米处航行,一条鲨鱼在潜水艇上方10米处游动,用正负数分别表示潜水艇和鲨鱼的高度分别为 , ,鲨鱼比潜水艇高出 米.15. 通常高于海平面的地方,用正数表示它的高度,低于海平面的地方,用负数表示它的高度已知甲、乙、丙三地的海拔高度分别为+100米、10米和-80米,下列说法中不正确的是( ) A.甲地高出海平面100米 B.丙地最低C.乙地比甲地低90米D.乙地比丙地高70米16. 下列各数:8512073129.5,,,,,--+ 中,正数的个数是( ) A. 1个 B. 2个C. 3个D. 4个17. 大于4且小于3的所有整数有( ) A. 3个B. 4个C. 5个D. 6个18. 一条东西走向的跑道上,小虎先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( ) A. +2mB. -2mC. 10mD. -10m19. 某项科学研究需要以30分钟为一个时间单位,并将研究那天的上午10时记为0,10时以前记为负,10时以后记为正.例如那天的9:30记为1,10:30记为+1,等等,依此类推,那天上午7:30应记为( ) A. -2.5B. -5C. +5D. +2.520. 一艘潜水艇所在的海拔高度为-50m ,若一条鲨鱼在潜水艇下方10m 处,则鲨鱼所在的海拔高度为( ) A. -60mB. -40mC. 10mD. -10m21. 观察下面排列的一列,请写出后面的数:(1);,,,,,,,, 5413211--- (2);,,,,,,,, 6554433221-- 22. 某中学对七年级男生进行引体向上测试,8个为达标标准,超过的个数用正数表示,不足的个数用负数表示,其中10名男生的成绩分别为:2,-1,0,3,-2,1,3,-3,2,0. (1)这10名男生中有几名达到标准?达标率是多少? (2)他们共做了多少个引体向上?综合拓展:23. 下表给出了初一某班6名同学身高情况(其中空白和字母表示未知信息):(1)由表中信息可知a= ,b= ,c= ,d= ,f= ; (2)这六名学生中最高身高比最矮身高高 cm ; (3)求这六名学生的平均身高.二、有理数知识导航:有理数:整数和分数统称有理数.(形如pq这类的数,其中p 和q 为互质整数且p ≠0) 1.按定义分类 2.按性质分类 正整数 正整数整数0 正有理数负整数正分数 有理数 的有理数 0正分数 负整数分数 负有理数负分数负分数非负数:正数和0统称非负数; 非负整数:正整数和0统称非负整数; 非正数:负数和0统称非正数; 非正整数:负整数和0统称非正整数知识点一 有理数的概念1. 在41,-1,0,-3.2 这四个数中,属于负分数的是( ) A. 41 B. -1 C. 0D. -3.22. 下列说法错误的是( ) A. -3是负有理数B. 0不是整数C.32是正有理数 D. 0.15是负分数3. 下列各数中,既是分数又是正数的是( ) A. +2 B. 314C. 0D. -2.3知识点二有理数的分类4. 下列说法中,正确的是( ) A. 正数、负数统称为有理数 B. 3.14不是分数C. 正整数和负整数统称为整数D. 整数和分数统称为有理数5. 下列说法中不正确的是( ) A. -3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,是整数C. -2000既是负数,也是整数,但不是有理数D.0是非正数6. 给出下列说法:①0是整数;②312-是负分数;③4.2不是正数:④自然数一定是正数; ⑤负分数一定是负有理数. 其中正确的有( ) A. 1个B. 2个C. 3个D. 4个7. 把下列各数分别填在相应的横线上:2004168.013.23078932551321.01----,,,,,,,, 正数有: 分数有: 负数有: 正整数有: 非正数有: 负整数有: 非负数有:负分数有:真题训练:8. 下列关于“0”的叙述,不正确的是( ) A. 0是非负数,也是非正数 B. 0是整数C. 0是最小的有理数D. 0是最小的自然数 9. 下列语句:①所有整数都是正数;②分数是有理数;③所有的正数都是整数:④在有理数中,除了负数就是正数,其中正确的结论个数为( ) A. 1个B. 2个C. 3个D. 4个10. 下列各数中:05.0432.34,,,,--既不是正数,又不是分数的是 . 11. 在有理数中,是负数但不是分数的数是 . 12. 任意写出3个数(不能重复),同时满足下列三个条件: ①其中2个数是非正数; ②其中2个数是非负数;③3个数都是有理数.综合拓展:13. 15.将一组数列: 7654321----,,,,,,排列成下列形式-1 2 -3 4 -5 6 -7 8 -9 10-1112-1314-1516按照上述规律排下去:(1)第5行最中间的一个数是 ; (2)第10行从左边数第9个数是多少?三、数轴知识导航:数轴:规定了原点、正方向和单位长度的直线叫数轴。
(数轴三要素:原点、正方向、单位长度)①任何有理数都可以在数轴上用一个点表示出来;②数轴上表示的数,右边的数总比左边的数大(规定右边为正方向)知识点一数轴的定义及画法1.关于数轴,下列说法最准确的是()A. 一条直线B. 有原点、正方向的一条直线C. 有单位长度的一条直线D. 规定了原点、正方向、单位长度的直线2.下列数轴画法正确的是()A B C D知识点二数轴上的点与有理数的关系3.如图,点A表示;点B表示;点C表示;D点表示;4.如图,在数轴上点M表示的数可能是()A. 1.5B. -1.5C. -2.4D. 2.45.在数轴上,一个点从2开始向左移动3个单位长度后表示的数是()A. +5B. -1C. -5D. -26.在数轴上与原点的距离为4个单位长度的点表示的数为()A. +4B. -4C. 4或-4D. 0或47.在数轴上表示2的点与原点的距离等于()A. 2B. -2C. ±2D. 48.文具店、书店和玩具店依次坐落在一条南北走向的大街上,文具店在书店北边20米处,玩具店位于书店南边100米处,小花从书店沿街向南走了40米,接着又向南走了60米,此时小花在()A. 文具店 B. 玩具店 C. 文具店北边40米 D. 玩具店南边-60米9. 数轴上的点A 表示的数是1,将点A 向左移动4个单位长度后得到点B,则点B 表示的数是 ; 10. 在数轴上表示-4的点位于原点的 边,与原点的距离是 个单位长度. 11. 在数轴上,点A ,B 分别表示-5和2,则点A 与点B 的距离是 个单位长度. 12. 在数轴上表示出.213,4,0,5.2,5--真题训练:13. 点A 为数轴上表示-2的点,将点A 沿数轴移动4个单位长度到点B 时,点B 所表示的数是( ) A. 1B. -6C. 2或-6D. 不同于以上答案14. 不大于3的正整数有 .15. 数轴上与表示+2的点距离为3个单位长度的点有 个,它们分别表示的数是 . 16. 在数轴上与表示-1的点距离3个单位长度的点表示的数是 . 17. 在数轴上,点A 到原点的距离为3,点B 到原点的距离为5 (1)求点A 表示的数; (2)求点B 表示的数;(3)利用数轴求A ,B 两点间的距离为多少?画数轴说明综合拓展:18. 如图,数轴上标出的所有点中,相邻任意两点间的距离都相等,已知点A 表示-16,点G 表示8. (1)表示原点的是点 ,点C 表示的数是 .(2)若数轴上有两点M,N,点M 到点E 的距离为4,点N 到点E 的距离是3,求点M,N 之间的距离; (3)点P 为数轴上一点,且表示的数是整数,点P 到A 点的距离与P 到G 点的距离之和为24,则这样的P 点有 个.四、相反数知识导航:相反数:只有符号不同的两个数叫做互为相反数,其中一个数叫另一个数的相反数. 1. 若两个数互为相反数,则数轴上表示这两个数的点关于原点对称; 2. a 的相反数为-a ;0的相反数是0; 3. 若a ,b 互为相反数,则a+b=0 知识点一 根据相反数的定义求相反数1. (1)2.5的相反数是 ;-2的相反数是 ;73的相反数是 ; (2)a 的相反数为 ; 若a 的相反数为a ,则a= ; (3)一个数的相反数是它本身,则这个数是 .2. 在数轴上点A ,B 表示的数互为相反数,且两点间的距离是8,点A 在点B 的右边,则点A 表示的数为 ;B 表示的数为 .3. 下列说法中正确的是( ) A.正数和负数互为相反数 B.任何一个数的相反数都与它本身不相同 C.任何一个数都有它的相反数D 数轴上原点两旁的两个点表示的数互为相反数4. 如图,表示互为相反数的两个点是( ) A. A 和C B. A 和D C. B 和CD. B 和D知识点二根据相反数的几何意义比较数的大小 5. 数a ,b 在数轴上的对应点如图所示,则a ,b ,-a ,-b 的大小关系是( )A. -b<a<b<-aB. a<-b<-a<bC. a<-b<b<-aD. -a<b<-b<a知识点三根据相反数的定义化简6. 化简:-(+8) = ;-{-(-8) }= ; -{-[+(-7) ] }= ;7. -(+5)表示 的相反数,即-(+5) = ;(-5)表示 的相反数,即-(-8 ) = .8. 3若a 是-[- (-7) ]的相反数,则a = . 知识点四根据相反数的定义求未知数的值9. 若 7-2x 与 5-x 表示的数互为相反数,求x 的值真题训练:10.a表示有理数,则-a一定是()A. 负数B. 正数C. 正数或负数D. 以上都不对11.下列化简正确的是()A. -(-7) =-3B.-[+(-10)]=-10C. -(+5)=5D. -[-(+8) ]=-812.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A. 4B. -4C. -8D. 4或-813.a+3的相反数为.14.在数轴上,若点A和点B(A在B的右侧)表示互为相反数的两个数,并且这两点间的距离是9,则A,B两点所表示的数分别是、.15.将一个数在数轴上所对应的点向左移动10个单位,得到它的相反数对应的点,则这个数.16.数轴上A点表示-3,B、C两点表示的数互为相反数,点B在点A的左边,且点B到点A的距离是2,则点C表示的数应该是.17.a,b为有理数,它们表示的点在数轴上的位置如图所示,把-a,-b表示的点分别在数轴上表示出来并比较a与-b的大小.18.在数轴上点A表示的数为7,点B和点C表示的数互为相反数,且A与C之间的距离为2,请在数轴上画出点A,B,C的位置并求出B,C所表示的数.综合拓展:19.已知表示数a的点在数轴上的位置如图所示(1)在数轴上表示出a的相反数的位置;(2)若数a与其相反数相距20个单位长度,则a表示的数是多少?(3)在(2)的条件下,若数b表示的数与数a的相反数表示的点相距5个单位长度,b表示的数是多少?五、绝对值知识导航:1. 绝对值的几何意义:数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a| 2. 绝对值的代数意义(1)一个正数的绝对值是它本身; (2)一个负数的绝对值是它的相反数; (3)0的绝对值是0a(a ≥ 0)3. 去绝对值法则:|a| =-a (a ≤ 0) 4. 绝对值的性质:(1)绝对值的非负性:|a| ≥ 0; (2)若|a|+|b| = 0,则a = 0且b = 0 知识点一根据绝对值的代数意义计算1. (1)3的绝对值是 ;-3的绝对值是 ;0的绝对值是 ; (2)绝对值等于本身的数是 ; (3)|-5| = ;-|-5| = ;2. ;;;=---=-÷-=-+-5.55.636510 3. 下列式子中,正确的是( ) A. |-3| = -3B. -|-3| = -3C. -|3| = 3D. -|-3| = 34. 下列各组数中,互为相反数的是( ) A. 3553--和 B. 5353和-C. 3553和-D. 5353--和 5. 计算:(1);09105+---+- (2).2763+⨯---⨯-知识点二 根据绝对值的意义和数轴的性质比较数的大小6. 比较下列各组数中两个数的大小:(1);;322136--- (2);;2019201820192018---- 7. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,最小的数是( )A. aB. bC. cD. d8. 如图,a 与b 的大小关系是( )A. a < bB. b = 2aC. | b | > aD. a=b9. 先在数轴上表示下列各数,再把它们按从小到大的顺序用“ < ”连接起来()21145.1023------知识点三 根据绝对值的几何意义求值10. | x | = 5,则x ;| x | =| -3 |,则x ;| x -1 | =3 ,则x ;11. 一个有理数的绝对值为5,则这个数为( )A. 5B. -5C. 5或-5D. 012. 已知| x | =2,| y -1 | = 3,x < y ,求x ,y 的值知识点四 根据绝对值的非负性求值13. 若| x -1|+| y -x | = 0,则x = ;y = .14. 已知| a +b |+2| b -3 | = 0,求| a -b |的值真题训练:15.已知a = -5,| a |=| b |,则b的值为()A. 5B. -5C. 0D. ±516.一个数a在数轴上所对应的点在原点的左侧,且|a|=6,则a的值为()A. 6或-6B. 6C. -6D. 以上都不对17.一个数的绝对值最小,则这个数是()A. 1B. -1C. 0D. 不存在18.已知|a|=6,|b|=2,且a > 0,b < 0,则a+b的值为()A. 8B. -8C. 4D. -419.下列说法正确的是()A.-a的绝对值是aB.若|x| = -x,则x是负数C.a的绝对值是aD.若m = -n ,则|m| = |n|20.下列说法中正确的是()A.一个数的绝对值一定大于这个数的相反数B.若|a|=-a,则a ≤ 0C.绝对值等于3的数是-3D.绝对值不大于2的数是±2,±1,021.如图,数轴的单位长度为1,如果点P、Q表示的数互为相反数,那么图中的4个点中表示的数的绝对值最大的是()A. PB. RC. QD. T22.有理数a,b在数轴上对应的点的位置如图所示,则下列结论正确的是()A.|b| > -aB.|a| > -bC.b > aD.|a| > |b|23.下列各结论成立的是()A.若|m| = |n|,则m = nB.若m > n,则|m| > |n|C.若|m| > |n|,则m > nD.若m < n <0,则|m| > |n|24.下列结论:①若m = n,则|m| = |n|;②若m+n = 0,则|m| = |n|;③若|m| = |n|,则m = n;④若|m| = |n|,则m = n或m+n = 0.其中一定正确的是()A. ①②③④B. ①④C. ②③D. ①②④25. 已知a ,b 为有理数,下列说法:①若a ,b 互为相反数,则ba =-1;②若|a -4| > 1,则a > 5; ③若| a -b |+a -b = 0,则b > a ;④若| a | > | b |,则b<| a |.其中正确的结论有(A. 1个B. 2个C. 3个D. 4个26. |-3| = ;| 3-π| = ;绝对值大于1小于3的整数有 .27. 当a < 3时,| a -3 |= ; 当a > 3时,| 3-a |= ;28. (1)若a = 3,| b | = 2,且a > b ,则b = ;(2)若a = 2,|b|=3,且a < b ,则b = ;(3)若| a | = 3,| b | = 2,且a > b ,则a = ;b = ;(4)若| a | = 3,| b | = 2,且a < b ,则a = ;b = .29. 数a ,b 在数轴上的位置如图所示,试比较a ,-a ,b ,| b |,| a -b |的大小30. (1)若| 1-x |=5,则x = ;(2)若| a +1 | = 2,| b -1 | = 5,a > b ,求| a |+| b |的值31. 已知| x +2|与| y -5 |互为相反数,求2| x -y |的值32. 已知| x -4 |+|y -2| = 0,求 2x -|y| 的值33.已知| a | = 5,| b | = 2,且a > 0,b > 0,求a+b和a-b的值34.已知| x | = 6,|y| = 4,且x > y,求y的值.综合拓展:35.已知a,b,c在数轴上的对应点如图所示(1)a 0,b 0,c 0,| a | | c |;(2)在数轴上找出表示-b,-b,-c的点;(3)用“<”将a,-a,b,-b,c,-c,0 连起来.36.如图,我们知道,若点A,B在数轴上分别表示有理数a,b;A,B两点间的距离表示为AB,则AB = |a-b|.所以式子|x-3|的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.根据上述材料,解答下列问题:(1)若|x-3| = |x-1|,则x = ;(2)式子|x-3|+|x-1|的最小值为;(3)若|x-3|+|x-1| = 8,则x .37.有理数a,b,c在数轴上对应的点的位置如图所示,且|b| > |a| > |c|.(1)-a 0 ,-b 0 ,-c 0 (填“>”或“<”);(2)试比较a,-a,b,-b,c,-c的大小。