lingo与建模

合集下载

数学建模中的优秀软件——LINGO

数学建模中的优秀软件——LINGO

第9卷第3期2007年6月黄山学院学报JOurnal0fHuangshanUniVefsityVo】.9.NO.3Jun.2007数学建模中的优秀软件——LINGO周甄川(黄山学院数学系,安徽黄山245041)摘要:介绍了数学建模的相关概念、数学建模竞赛概况,探讨了LINGo系统的功能与特点,以及它在数学建模中的应用。

关键词:数学模型;数学建模;LlNGo系统中图分类号:TP319:0141.4文献标识码:A文章编号:1672—447x(2007)03—0112—03在对自然科学与社会科学许多课题的研究中,科学工作者常将事物的变化规律用特定的数学表达式的形式加以描述。

将寻求这种确定事物变化规律的过程称为“数学建模”。

而在数学建模以及全国大学生数学建模竞赛中,最常碰到的是一类决策问题,即在一系列限制条件下,寻求使某个或多个指标达到最大或最小,这种决策问题通常称为最优化问题【1】。

最优化理论是近几十年发展和形成的一门新兴的应用性学科。

它主要解决最优生产计划、最优分配、最优设计、最优决策、最佳管理等最优化问题。

主要研究方法是定量化、系统化和模型化方法,特别是运用各种数学模型和技术来解决问题。

它主要由决策变量、目标函数、约束条件三个要素组成。

当遇到的实际问题时即使建立了模型,找到了解的方法,对于较大的计算量也是望而却步,LINGo系列优化软件包就给我们提供了理想的选择。

1什么是数学建模数学建模(MatheImticalModelin曲‘11顾名思义就是建立数学模型以解决实际问题的过程。

它利用数学和计算机对实际问题进行分析研究,抽象出反映事物内在活动规律的数学关系表达式,通过对这些数学关系表达式的求解和反复验证,最终解决实际问题。

数学是所有自然科学的基础,随着计算机软硬件技术的迅速发展,数学建模和与之相伴的计算已逐渐成为工程设计的关键工具,并在人类社会实践活动中的众多领域内发挥着越来越重要的作用。

那么,什么是数学模型?如何建立数学模型?如何用数学模型解决实际问题呢?模型就是对事物的一种抽象。

优化建模与lingo优化软件

优化建模与lingo优化软件

Teaching Plan on Optimization in Lingo
• 2007年: (A)中国人口增长预测问题 (B)“乘公交,看奥运”问题 (C)“手机套餐”优惠几何问题 (D)体能测试时间的安排问题
Teaching Plan on Optimization in Lingo
• 2008年: (A) 数码相机定位
Teaching Plan on Optimization in Lingo
• 1998年: (A)投资的收益和风险问题 (B)灾情的巡视路线问题(社会问题 即时性)
• 1999年: (A)自动化机床控制管理问题 (B)地质堪探钻井布局问题 (C)煤矸石堆积问题 (D)钻井布局
Teaching Plan on Optimization in Lingo
2003年A题再次体现关注社会热点 问题
Teaching Plan on Optimization in Lingo
• 2004年: (A)奥运会临时超市网点设计问题 (B)电力市场的输电阻塞管理问题 (C)酒后开车问题 (D)公务员的招聘问题 • 2004年5月在上海召开的命题工 作会议
Teaching Plan on Optimization in Lingo
• 2005年: (A)长江水质的评价与预测问题 (B)DVD在线租赁问题 (C) 雨量预报方法的评价问题 (D) DVD在线租赁
Teaching Plan on Optimization in Lingo
• 2006年: (A)出版社的资源管理问题 (B)艾滋病疗法的评价及预测问题 (C)易拉罐形状和尺寸的设计问题 (D)煤矿瓦斯和煤尘的监测与控制 问题
• 重要新闻、重大事件与赛题设计: 2000年6月26日各国新闻机构发布人类 基因组草图绘就的重要消息。顺应这 一世纪科学大事,当年7月组委会构造 与此相关赛题,引导学生关注世界科 技热点,投身科学重大问题的研究, 培养应用能力。

Lingo软件与数学建模

Lingo软件与数学建模
我们给于以下解释:
变量数目:变量总数 (Total)、非线型变量 数(Nonlinear)、整数 变量数(Integer)
约束变量:约束总数 ( Total )、非线性约束 个数(Nonlinear)
非线性系数数量:总数 ( Total )、非线性项的 系数个数(Nonlinear)
内存使用量:单位为千字节
数据多,咋办?
value=1,1.2,0.9,1.1;
enddata
max=@sum(goods:weight*value);
@for(goods:@bin(x));
end
游泳
四名同学的混合泳接 力赛的四种成绩如左 表所示,确定如何分 配使成绩最佳。
蛙蝶自仰 泳泳由泳

甲 99 60 59 73
线性规划
二次规划
非线性规划
LINGO软件的基本操作
双击快捷方式 即可计入程序编辑界面
Lingo软件介绍
➢解决一个简单的线性规划(LP)问题
max z 2x 3y 4x 3y 10
s.t. 3x 5y 12 x, y 0
LINGO软件介绍
点击图标
运行,屏幕上显示运行状态窗口如下: 对于LINGO运行状态窗口,
基 @EXP(X):指数函数(以自然对数e为底),返回eX的值
本 数 学
@ LOG(X):自然对数函数,返回X的自然对数值; @POW(X,Y):指数函数,返回XY的值;
函 @SQR(X):平方函数,返回X2的值;
数 @SQRT( X ):平方根函数,返回X的平方根;
@FLOOR(X):取整函数,返回X的整数部分(向靠近0 的方向取);
@GIN(X):限制X为整数.
0-1规划(线性规划)

优化建模与LINGO第07章

优化建模与LINGO第07章
Global optimal solution found at iteration: 6 Objective value: 161.0000 Variable Value Reduced Cost X( 1, 1) 2.000000 0.000000 X( 1, 2) 17.00000 0.000000 X( 1, 3) 1.000000 0.000000 X( 2, 1) 13.00000 0.000000 X( 2, 4) 12.00000 0.000000 X( 3, 3) 21.00000 0.000000 Row Slack or Surplus Dual Price OBJ 161.0000 -1.000000 SUP( 1) 10.00000 0.000000
MODEL: 1]! 3 Warehouse, 4 Customer Transportation Problem; 2]sets: 3] Warehouse /1..3/: a; 4] Customer /1..4/: b;
优化建模
5] Routes( Warehouse, Customer) : c, x; 6]endsets 7]! Here are the parameters; 8]data: 9] a = 30, 25, 21 10] b = 15, 17, 22, 12; 11] c = 6, 2, 6, 7, 12] 4, 9, 5, 3, 13] 8, 8, 1, 5; 14]enddata 15]! The objective; 16][OBJ] min = @sum( Routes: c * x);
优化建模
LINDO软件虽然给出最优解,但上述模型还存在 软件虽然给出最优解, 软件虽然给出最优解 着缺点,例如,上述方法不便于推广的一般情况, 着缺点,例如,上述方法不便于推广的一般情况,特 别是当产地和销地的个数较多时,情况更为突出. 别是当产地和销地的个数较多时,情况更为突出 下面写出求解该问题的LINGO程序,并在程序中 程序, 下面写出求解该问题的 程序 用到在第三章介绍的集与数据段, 用到在第三章介绍的集与数据段,以及相关的循环函 数. 写出相应的LINGO程序,程序名: exam0702.lg4 程序, 写出相应的 程序 程序名:

数学建模-(货机装运Lingo)

数学建模-(货机装运Lingo)
成本。
约束条件
在货机装运问题中,通常需要考虑 多个约束条件,如货机的载重限制、 货物的体积限制、货物的装卸顺序 等。
优化目标
优化目标可以是最大化货机的装载 量、最小化装载成本、最大化利润 等。
数据分析与预处理
数据收集
数据清洗
收集与货机装运问题相关的数据,包括货 物的重量、体积、价值等信息,以及货机 的载重、容积等限制条件。
数据输入输出
介绍如何使用Lingo进行数据输入和 结果输出,包括数据文件的读写、图 形化界面的使用等。
Lingo在货机装运问题中的应用
问题描述
阐述货机装运问题的背景和实际意义,明确问题的目标和约束条件。
建模过程
详细讲解如何使用Lingo对货机装运问题进行数学建模,包括定义变 量、建立目标函数和约束条件等步骤。
货机装运是物流领域的重要问题,涉 及到如何有效利用货机容量,将不同 规格、重量的货物进行合理搭配,以 达到最优的装载方案。
提高运输效率
通过数学建模对货机装运问题进行优 化,可以提高货物的运输效率,减少 运输成本,为企业带来经济效益。
建模的重要性和应用
重要性
数学建模是一种将实际问题抽象化、形式化的方法,通过建立数学模型,可以对问题进行深入分析,找出问题的 本质和规律,为解决问题提供科学依据。
应用
数学建模在物流、交通、金融、工程等领域有着广泛的应用。在货机装运问题中,数学建模可以帮助企业制定最 优的装载方案,提高运输效率,降低成本。同时,数学建模也可以应用于其他类似的问题,如车辆路径问题、背 包问题等。
02 问题描述与数据分析
02 问题描述与数据分析
货机装运问题描述
货机装运问题
货机装运问题是一个经典的优化 问题,涉及到如何有效地将货物 装入货机以最大化利润或最小化

数学建模lingo作业-习题讲解

数学建模lingo作业-习题讲解

基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。

根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。

生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。

每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。

厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。

其次要求满意销售额达到或者尽量接近275000元。

最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。

同时注意到增加生产时间要比包装时间困难得多。

试为该节能灯具厂制定生产计划。

解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。

第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。

在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。

(1) 关于生产数量的目标约束。

用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。

用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。

因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。

优化建模与LINGO第05章

优化建模与LINGO第05章

优化建模
§5.1.3 求解模型
3种解法
的采购量x分解为三个量 第1种解法 将原油 的采购量 分解为三个量,即用 1, 种解法 将原油A的采购量 分解为三个量,即用x x2,x3分别表示以价格 、8、6千元 吨采购的原油 的吨 分别表示以价格10、 、 千元 吨采购的原油A的吨 千元/吨采购的原油 总支出为c(x) = 10x1+8x2+6x3,且 数,总支出为 x = x1 + x2 + x3 (9) 这时目标函数(2)变为线性函数: 这时目标函数( )变为线性函数:
500 y 2 ≤ x1 ≤ 500 y1
500 y 3 ≤ x 2 ≤ 500 y 2 x3 ≤ 500 y 3
(14) (15) (16) (17)
y1,y2,y3 =0或1 或
优化建模
(3)~(10),(13)~(17)构成混合整数线性 10),(13) ),(13 17) 规划模型,将它输入LINDO软件: LINDO软件 规划模型,将它输入LINDO软件:
优化建模
优化建模与LINDO/LINGO软件 优化建模与LINDO/LINGO软件 LINDO/LINGO
第5 章 生产与服务运作管理中的优化问题
优化建模
内容提要
§5.1 生产与销售计划问题 §5.2 有瓶颈设备的多级生产计划问题 §5.3 下料问题 §5.4 面试顺序与消防车调度问题 §5.5 飞机定位和飞行计划问题
优化建模
第2种解法: 种解法: 引入0 变量将(11) 12) 引入0-1变量将(11)和(12)转化为线性约束 分别表示以10千元 令y1=1,y2=1,y3=1分别表示以 千元 吨、8千元 , , 分别表示以 千元/吨 千元 /吨、6千元 吨的价格采购原油 ,则约束(11) 千元/吨的价格采购原油 吨 千元 吨的价格采购原油A,则约束( ) 和(12)可以替换为 )

数学建模优化模型与Lingo Lindo软件

数学建模优化模型与Lingo Lindo软件


表二 :5名队员4中泳姿百米平均成绩
队员





蝶泳 66.8 57.2
78
70
67.4
仰泳 75.6
66
67.8
74.2
71
蛙泳
87
66.4 84.6
69.6
83.8
自由泳 58.6
53
59.4
57.2
62.4
线 性 规
·划
模 型
决策变量:引入0-1变量xij 若选择队员 i 参加泳姿 j
例-1 某服务部门一周中每天需要不同数目的
雇员:周一到周四每天至少需要50人,周五
需要80人,周六和周日需要90人。现规定应
聘者需连续工作5天,试确定聘用方案,即周
线
一到周日每天聘用多少人,是5在满足需要的 前况下聘用总人数最少?

优化模型

决策变量:记周一到周日每天聘用的人数分别为X1,

X2,X3,X4,X5,X6 ,X7,这就是问题的决策变量。
的比赛,记 xij=1,否则记 xij=0.这就是问题的决策变量, 共20个。
目标函数:当队员队员 i 入选泳姿 j 的比赛时,
cij xij表示他的成绩,否则cij xij=0。于是接力队的成绩
可以表示为:
45
f
cij xij
j1 i1
约束条件:根据组成接力队的要求, xij 应该满足下面
方案。显然这不是解决问题的最好方法,随着问题
线
规模的变大,穷举法的计算量是无法接受的。

可以用0-1变量表示一个队员是否入选接力队, 从而建立这个问题的0-1规划模型.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学模型与lingo软件
需要掌握的几个重要方面 •掌握集合(SETS)的应用; •正确阅读求解报告; •正确理解求解状态窗口; •学会设置基本的求解选项(OPTIONS) ; •应用实例
LINGO 8.0有两种命令模式
Windows 模式, 通过下拉式菜单命令驱动LINGO 运行
命令行(Command-Line) 模式,仅在命令窗口下操作
• 状态行(最左边显 示“Ready”,表示 “准备就绪”)
• 当前时间
工具栏
File|Open (F3) 打开文件 File|Print (F7) 打印文件 Edit|Copy (Ctrl+C) 复制 Edit|Undo (Ctrl+Z) 取消操作 Edit|Find (Ctrl+F) 查找 Edit|Match Parenthesis (Ctrl+P) 匹配括号
与LINDO 相比,LINGO 软件主要具有两大优点
1、除具有LINDO 的全部功能外,还可用于求解非线性 规划问题,包括非线性整数规划问题 2、LINGO 包含了内置的建模语言,允许以简练、直观 的方式描述较大规模的优化问题,模型中所需的数据可 以以一定格式保存在独立的文件中
1. LINGO的主要功能特色: (1) 既能求解线性规划问题,也有较强的求解非线性规划 问题的能力; (2) 输入模型简练直观; (3) 运行速度快,计算能力强; (4) 内置建模语言,提供几十个内部函数,从而能以较少 语句,较直观的方式描述较大规模的优化模型; (5) 将集合的概念引入编程语言,很容易将实际问题转换 为LINGO模型; (6) 能方便地与Excel、数据库等其他软件交换数据;
注意事项:
max=98*x1+277*x2-x1^20.3*x1*x2-2*x2^2; x1+x2<100; x1<2*x2; @gin(x1);@gin(x2);
1) 变量和行名可以超过8 个 字符,但不能超过32 个字符, 且必须以字母开头 2) LINGO 已假定各变量非 负(除非用函数@free或 @sub 或@slb 另行说明) 3) 变量可以放在约束条件的 右端(同时数字也可放在约束 条件的左端)。但为了提高效 率,应尽可能采用线性表达式 定义目标和约束(如果可能)
Байду номын сангаас
Window|Send to Back (Ctrl+B) 窗口后置
• LINGO的语法规定: (1)求目标函数的最大值或最小值分别用MAX=…或 MIN=…来表示; (2)每个语句必须以分号“;”结束,每行可以有许多 语句,语句可以跨行; (3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9) 和下划线所组成,长度不超过32个字符,不区分大小写; (4)可以给语句加上标号,例如 [OBJ]MAX=200*X1+300*X2; (5)以惊叹号“!”开头,以分号“;”结束的语句是注 释语句; (6)如果对变量的取值范围没有作特殊说明,则默认所有 决策变量都非负; (7)LINGO模型以语句“MODEL:”开头,以“END” 结束,对于比较简单的模型,这两个语句可以省略。
LINGO|Options (Ctrl+I) 选项设置
Window|Close All (Alt+X) 关闭所有窗口 Help|Co ntents (F1) 在线帮 助
LINGO|Solution (Alt+O)显示解答
File|Save (F4) 保存文件
Edit|Paste (Ctrl+V) 粘贴 Edit|Redo (Ctrl+Y) 恢复操作
模型 • min或max f(x)
• •
要素:
S.T. G(x)≤或≥或=0 L ≤x≤U
1.变量 (符号)
2.常量(数据) 3.关系(函数、方程)
max 2 x 3 y s.t. 4 x 3 y 10 3x 5 y 12
Lingo: max=2*x+3*y; 4*x+3*y<10; 3*x+5*y<12;
Edit | Go To Line (Ctrl+T) 定位某行 LINGO|Solve (Ctrl+S) 求解模型
LINGO|Picture (Ctrl+K) 模型图示
Window|Tile (Alt+T) 平铺窗口 上下文 相关的 帮助
File|New (F2) 新建文件
Edit|Cut (Ctrl+X) 剪切
建模时需要注意的几个基本问题:
(1) 尽量使用实数优化模型,减少整数约束和整数变量的 个数;
(2) 尽量使用光滑优化模型,减少非光滑约束的个数; 如:尽量少地使用绝对值函数、符号函数、多个变量求最 大(或最小)值、四舍五入函数、取整函数等. (3) 尽量使用线性优化模型,减少非线性约束和非线性变 量的个数(如x/y < 5改为x < 5y) ;
(4) 合理设定变量的上下界,尽可能给出变量的初始值;
(5) 模型中使用的单位的数量级要适当(如小于103);
在LINGO中使用LINDO模型
LINGO的界面
• LINGO软件的主窗口(用 户界面),所有其他窗口 都在这个窗口之内。
• 当前光标 的位置 • 模型窗口(Model Window),用于输入 LINGO优化模型(即 LINGO程序)。
(1) 每个系数与变量间增加了运算符“*”(即 乘号不能省略)
(2) 模型结束标志“END”也被删除了(LINGO
中只有当模型以“MODEL:”开始时才能以 “END” 结束)。 这是LINGO 模型的最基本特征
用LINGO 来解二次规划问题
MAXz 98 x1 277 x2 x12 0.3 x1 x2 2 x2 2 s.t.x1 x2 100 x1 2 x2 x1 , x2 0为整数
Lingo的不同保存类型
“LG4”表示LINGO 格式的 模型文件,是一种特殊的二 进制格式文件,保存了我们 在模型窗口中所能够看到的 所有文本和其他对象及其格 式信息,只有LINGO 能读 出它,用其他系统打开这种 文件时会出现乱码 “LNG”表示LINGO文本文 件,以这个格式保存模型时 系统 将给出警告,因为模 型中的格式信息(如字体、 颜色等)将会丢失 “LDT”表示数据文件 “LTF”表示 命令脚本文件 “LGR”表示 报告文件
相关文档
最新文档