第三章_化学纤维(3-5)

合集下载

《化学纤维》教学大纲

《化学纤维》教学大纲

《化学纤维》教学大纲一、课程基本信息课程名称(中、英文):《化学纤维》(CHEMICAL FIBER)课程号(代码):300024030课程类别:专业选修课学时:48 学分:3二、教学目的及要求化学纤维是高分子材料的一大类型,与人们的生产生活及国民经济的发展息息相关。

本课程针对化学纤维发展现状和趋势,主要讲授熔融法、湿法、干法、凝胶纺丝、干湿法纺丝等各种纺丝成形方法的基本原理,成纤聚合物在纺丝过程中纤维中大分子取向、结晶和形态结构的形成过程,成形工艺条件-结构-性能之间的相互关系。

结合纺丝技术,分别介绍各种纺丝方法生产的相应的化学纤维品种。

根据成纤聚合物的性能,选择满足其要求且合理可行的纺丝方法,并介绍近期研究发展起来的纺丝成型新技术。

使学生掌握化学纤维的基本概念、主要成型过程及原理等基础理论知识,同时掌握化学纤维的成型条件、结构与性能三者之间的关系,以及化学纤维领域相关的测试表征手段,了解化学纤维前沿发展现状和趋势,最终使学生能够应用化学纤维基础课程及相关基础理论知识,识别、表达、并通过文献研究分析化学纤维及相关领域复杂工程问题,以获得有效结论。

对毕业要求及其分指标点支撑情况:(1)毕业要求 1,分指标点1.4;(2)毕业要求2,分指标点2.5;(3)毕业要求3,分指标点3.2;三、教学内容(含各章节主要内容、学时分配,并红字方式注明重点难点)第一章绪论(1学时)简要介绍化学纤维的国内外发展历史,化学纤维的定义、分类、应用及发展方向等内容,介绍本课程的学习目的、方法及要求。

要点:化学纤维作为三大高分子材料之一在结构与性能上的显著特点。

化学纤维的定义及分类按原料来源或加工方法对于化学纤维进行分类第二章化学纤维的基本概念及质量指标(2学时)介绍长丝、短纤、丝束、牵切纱、预取向丝、变形纱、异形纤维、复合纤维、超细纤维、差别化纤维、特种纤维、高性能纤维、功能纤维、智能纤维等化学纤维领域的基本概念,对纤维线密度、强伸度、弹性、燃烧性能、吸湿性能、染色性能、卷曲性等化学纤维常见质量指标进行讲解,并介绍相关测试方法。

化学纤维

化学纤维

七、氯纶—聚氯乙烯纤维(polyvinyl chloride)缩写PVC 1、纤维来源: 2、性能 1)吸湿性差( WK=0),染色困难。 2)电绝缘性好 3)弹性较好。 4)阻燃性好 5)耐热性差。 氯纶在工业上应用很广。
复合纤维截面图
异形纤维截面和喷丝孔板形
熔体纺丝工艺流程图
湿法纺丝法纺丝
涤纶纤维可塑性和可变性大,所以可对涤纶进行改性加工,生 出差别化涤纶纤维。如运用超细旦技术,多元差别化技术,聚 合物改性技术,复合纺丝技术等生产新一代涤纶纤维。 如:异形纤维,复合纤维,超细纤维等。
二、锦纶—聚酰胺纤维(Polyamide) 缩写PA 1,纤维来源: 1939年在美国开发成功命名为尼龙(Nylon)。我国将其命名为 锦纶。 2,纤维形态: 普通的锦纶纤维纵向平直光滑,截面为圆形。
第二节 化学纤维的制造 一、化学纤维的制造 (一)纺丝熔体或纺丝溶液的制备。 1、分解温度高于熔点的高分子物质,可直接将聚合体熔化 成熔体,然后进行纺丝;也可以溶解在适当的溶剂中进行溶 液纺丝。涤纶、锦纶、丙纶采用此法。 2、分解温度低于熔点的高分子化合物或非熔性的物质,必 须选择适当的溶剂把高聚物溶解成为纺丝溶液,然后进行纺 丝。粘胶、维纶、腈纶等采用此法纺丝。 (二)、化学纤维的纺丝成形 1、熔体纺丝:将高聚物加热至熔点以上适当温度制备熔体, 熔体经螺杆挤压机由计量泵压出喷丝孔,在空气中经冷凝而 成为细条。如图
2、湿法纺丝:将高聚物溶解在适当的溶剂中配成纺丝溶液, 将纺丝溶液从喷丝孔中压出后射入凝固液中凝固成丝条。如图 3、干法纺丝:将高聚物溶解在适当的溶剂中配成纺丝溶液, 将纺丝溶液从喷丝孔中压出后射入热空气中溶剂挥发,聚合体 凝固成丝条。如图 4、有色纺丝:采用纺前着色,可加工有色纤维。 5、异形纤维纺丝:改变喷丝孔形状可生产不同截面形状的纤 维。如图 6、复合纤维纺丝:纺丝时将两种不同成分的高聚物熔体或溶 液先后分别进入复合纺丝帽,使两种聚合体在分配板中彼此分 离,互不混合,直到进入纺丝孔时才接触,通过喷丝孔的挤压 凝固成一跟丝条。如图 7、超细纤维纺丝:用高速气流喷吹,在纤维形成的同时进行 拉伸,制备细度在0.044tex的超细纤维。也可用剥离等方式加 工不同形状和粗细的超细纤维。

第三章 纤维素纤维的结构和性能

第三章 纤维素纤维的结构和性能

第三章纤维素纤维的结构和性能天然纤维素纤维(棉、麻)纤维素纤维再生纤维素纤维(粘胶纤维、铜氨纤维、醋酯纤维)§3.1纤维素纤维的形态结构一棉纤维的形态结构棉纤维是种子纤维,其主要成分为纤维素、果胶、蜡质、灰分、含氮物质。

外形:上端尖而封闭,下端粗而敞口,细长的扁平带子状,有螺旋状扭曲,截面呈腰子形,中间干瘪空腔。

最外层:初生胞壁从外到里分三层:中间:次生胞壁内部:胞腔1 初生胞壁决定棉纤维的表面性质,它又分为三层,最外层为果胶物质和蜡质所组成的皮层。

因而具有拒水性,在棉生长过程中起保护作用。

但在染整加工中不利。

2 次生胞壁纤维素沉积最后的一层,是构成纤维的主体部分,纤维素含量很高,其组成和结构决定棉纤维的主要性能。

3 胞腔输送养料和水分的通道,蛋白质、色素等物质的残渣沉积胞壁上,胞腔是棉纤维内最大的空隙,是染色和化学处理时重要的通道。

二麻纤维的形态结构麻纤维主要有:苎麻、亚麻是属于韧皮纤维,以纤维束形式存在单根纤维是一个厚壁、两端封闭、内有狭窄胞壁的长细胞苎麻两端呈锤头形或分支亚麻两端稍细呈纺锤形纵向有竖纹和横节主要化学组成和棉纤维一样是纤维素,但含量低。

§3.2纤维素大分子的分子结构纤维素是一种多糖物质,其大分子是由很多葡萄糖剩基连接而成,分子式为(C6H10O5)n复杂的同系物混合物,n为聚合度,棉聚合度为2500~ 10000,麻聚合度为10000~ 15000,粘胶纤维聚合度为250~ 500纤维素大分子的化学结构是由β-d-葡萄糖剩基彼此以1,4-甙键连接而成,结构如下每隔两环有周期性重复,两环为一个基本链节,链节数为(n-2)/2,n为葡萄糖剩基数,即纤维的聚合度,葡糖糖剩基上有三个自由存在的羟基,其中2,3位上是仲羟基,6位上伯羟基§3.3棉纤维的超分子结构超分子结构也称为微结构,主要指棉纤维中次生胞壁纤维素大分子的聚集态结构,纤维素大分子的排列状态,排列方向,聚集紧密程度等。

纺织物理 第三章 纤维的力学性质

纺织物理  第三章 纤维的力学性质

亚麻 苎麻 棉 涤纶 锦纶 锦纶 蚕丝 腈纶 粘胶 醋酯 羊毛 应变 醋酯
以纤维的断裂强力和断裂伸长率的对比关系来分,拉伸曲线可分为三类: 1. 强力高、伸长率很小的拉伸曲线,如棉、麻等天然纤维。 2. 强力不高、伸长率很大的拉伸曲线,如羊毛、醋酯等。 3. 强力与伸长率介于一、二类之间的拉伸曲线,如蚕丝、锦纶、涤纶等。
• 断裂功指标 a. 断裂功W:是指拉伸纤维至断裂时外力所作的功,即负荷-伸长曲线下 的面积,表示材料抵抗外力破坏所具有的能量 。 b.断裂比功:是指拉断单位体积纤维或单位重量纤维所需作的功。实际应 用中,断裂比功用拉断单位线密度,1cm长纤维所需的功(N· cm)表示, 即断裂比功=断裂功/(线密度×夹持长度),其中断裂比功单位: N/tex; 断裂功单位: N· cm;线密度单位:tex;夹持长度单位:cm
聚乙烯(Polyethylene,PE)结晶度和性能的关系
结晶度% 密度kg· -3 软化点k 断伸率% m 65 75 85 95 0.92 0.94 0.96 0.97 373 383 393 403 500 300 100 20 冲击强度J· -1 抗张强度MPa m 854 427 214 160 137 157 245 392
五、纤维的结构不匀对拉伸性能的影响
• 纺织纤维存在不均匀性,如纤维与纤维之间,以及在同一纤维的 长度方向上,其大分子链排列的聚集态结构和横截面面积的变异 很大,纤维内部的结晶和无定形区的尺寸大小,结晶的完整程度 千差万别。 • 单纤维的断裂强力是由这根纤维的最弱截面处的强力决定的,试 样长度越长,最弱截面(弱环)出现的概率越大,纤维的强力也 越低。 • 1926年皮尔斯提出“弱环定律”:试样长度与断裂强力的理论关 系。
(3)分子链堆砌的紧密程度、结晶度

纺织材料学第三章

纺织材料学第三章
粗细不同;同一根棉纤维两端细、中段粗并截面形态 变化。 • 同一毛包的毛纤维,不仅纤维间因在羊体上的生长部 位不同而粗细不同(粗细差异达20~35%),而且单 纤维因生长季节和营养的影响也会有明显的粗细差异 (粗细差异可达3~10%),并且有截面形态的变化。
纺织材料学第三章
• 蚕丝本身粗细差异在总长度上较为明显, 茧外层和内层的丝较细,中间主茧层的丝 相比较粗,由于缫丝的合并,均匀性较好。
棉结、短纤维。
纺织材料学第三章
第三节 纤维的卷曲
• 一、纤维卷曲产生的原因 • 1.羊毛 • 自然卷曲。是由于内部结构中的正、偏皮质细
胞呈双边结构或偏皮芯结构或不均匀的混杂结构 所致。
• 卷曲形态差异较大,无规律性明显。 • 根据羊毛纤维卷曲的深浅(即波高),以及长
短(即波宽)不同,卷曲形状可以分为三类,
纺织材料学第三章
• 3、品质长度(右半部平均长度)Lp:比主 体长度长的那部分纤维的平均长度(是棉 纺工艺中决定罗拉隔距的重要参数)
• 4、短绒率P:长度在某一界限以下的纤维 所占的百分率(表示长度整齐度的指标)。
• 界限Ls:细绒棉 16mm、长绒棉 20mm ; 毛30mm ;苎麻 40mm
纺织材料学第三章
纺织材料学第三章
• 3、显微镜投影法

——常用于羊毛细度和截面为圆形纤
维的纵向投影直径的测量。

投影放大倍数一般为500倍,用放大
500倍的锲形卡尺测量纤维直径。

通常用分组计数法,计算出纤维的平
均直径和直径变异系数。
• 4 、其它方法
• 激光纤维直径测量法; 振动测量法; OFDA 法 .(P73-76)
纺织材料学第三章
二 . 表示纤维卷曲性能的指标

纺织材料学 第三章 纤维形态的表征

纺织材料学   第三章 纤维形态的表征

C
最大长度点
L
交叉点
上 4 分位长 下 4 分位长
L2 L4
L5
A
L1 L3
O
B2 B4
B5
B1 B3
B
•可得到最大长度、有效长度、
图3-2 拜氏图的意义及长度求法
短纤维百分率、长度差异率等
指标。
2020/6/28
11
(2)Almeter测量
(毛)
显示
计算机
打印
检测
A/D
一端齐试样
电容器
导杆
控制
3、纤维长度整齐度和短绒率与成纱强度、条干的关系
当纤维长度整齐度差,短绒率大时,成纱条干 变差,强度下降。 生产高档产品时,需经过精梳以去除短纤维。
2020/6/28
34
总结:纤维长度与成纱质量的关系
➢ 与成纱强度的关系
➢ 纤维长度越长,成纱强度越高
➢ 与成纱毛羽的关系
➢ 纤维长度长,毛羽少
➢ 纤维长度及其整齐度与成纱条干的关系
以纤维根数加权平均长度简称 根数(加权)平均长度,是将 对应某一纤维长度的根数与该 长度l(mm)积的和的平均值 Ln。即
N; W; S
n(l); w(l); s(l)
dl
连续函数 n(l); w(l); s(l)
分组直方图
N;W; S
l
Ln
N 1 N N
lmax 0
N l
dl
图3-1 纤维长度分布示意图
W
0
f
LdL
式中,W为最长纤维的长度
2020/6/28
24
四、纤维长度分布及其相互关系
1、纤维的长度分布
➢ 最常用的是:纤维长度的频率(百分率)直方图 ➢ 最多采用的是:重量加权和根数加权长度分布 ➢ 最为准确和实用的是:根数加权长度分布

植物纤维化学

植物纤维化学

第三章纤维素一、一次结构1.近程结构:链结构单元的组成和链接方式2.远程结构:分子的大小、形态、链的柔顺性和构象3.构象:构型一定的分子,在其键允许的限度内各基团绕单键内旋转形成聚合物的不同形态(分子热运动)4.构型:分子中的原子和基团由化学键所固定的空间几何排列。

(化学键断裂)5.纤维素大分子化学结构特点:⏹基本结构单元是D-吡喃式葡萄糖⏹纤维素大分子葡萄糖基都是β-苷键链接⏹纤维素大分子每个基环具有三个醇羟基-(2、3仲醇羟基,6伯醇羟基)⏹纤维素大分子的两个末端基性质不同(C1位还原性醛基,C4位隐形醛基非还原性),不同分子链具有极性和方向性6.纤维素链构象:⏹葡萄糖环的构象:4C1椅式构象(会画)⏹纤维素大分子链的构象:葡萄糖单元成椅式构象,每个单元上C2位羟基,C3位羟基和位取代基均处于水平位置C6⏹C5位羟甲基构象:tg构象⏹配糖角:β-1-4苷键的键角扭转角:葡萄糖苷键绕C1-O键形成夹角键形成夹角:葡萄糖苷键绕O-C4纤维素分子模型:伸直链模型弯曲链模型二、二次结构1.聚集态结构(超分子结构):处于平衡态时纤维素大分子链相互间几何排列特征2.聚集态结构研究:结晶结构(晶区和非晶区、晶胞大小及形式、分子链在晶胞内的堆砌形式)、取向结构(分子链和微晶取向)、原纤结构3.纤维素晶体:c键直立,a键前后(氢键),b轴位于左右方向4.辨认不同晶胞结构:X射线衍射、红外光谱、正交极化/幻角旋转13C核磁共振谱5.纤维素ⅠMeyer-Misch模型的特点:⏹纤维素分子链占据晶胞的4个角和中轴⏹四角上的链为4个相邻晶胞所共有,每个晶胞只含有两个分子链⏹晶胞中间链的走向和角上链的走向相反——反平行链排列;在轴向高度彼此半个葡萄糖基⏹b轴长度正好为纤维素二塘的长度。

分子链葡萄糖基团绕纵轴扭转180°(纤维二糖为基本结构单元)6.纤维素ⅡBlackwell 模型特点⏹纤维素分子链占据晶胞的4个角和中轴⏹晶胞中间链的走向和角上链的走向相同——同向平行链;在轴向高度彼此半个葡萄糖基⏹分子链平行于ac 面,-CH 2OH 均为-tg 构象;(1,4苷键键角为114.8°)⏹a 轴方向分子间氢键(020面,O(3)-H...O(6’);分子内氢键O(3)-H...O(5’)、O(2’)-H...O(6),晶胞对角线无氢键)7.纤维素Ⅱ结晶结构特点⏹存在两条空间群为P21的分子链,具有二次螺旋对称,角上链和中心链为反向平行链⏹中心链—-CH 2OH 具有-tg 构象,角上链-CH 2OH 具有-gt 构象⏹中心链和角上链在高度上相差半个葡萄糖基⏹分子链投影与ac 面有偏角(30°),与110面方向一致在020面【O(3)-H...O(5’)、O(2’)-H...O(6)】和110面O(2)-H...O(2’)内形成氢键。

初中化学教案纤维

初中化学教案纤维

初中化学教案纤维一、教学目标:1. 了解纤维的定义及分类。

2. 掌握常见纤维的特点和用途。

3. 了解纤维在日常生活中的重要性。

二、教学重点和难点:1. 纤维的定义和分类。

2. 纤维的特点和用途。

三、教学内容:1. 纤维的定义:纤维是指天然或合成的纺织用原料,主要用于制作纺织品。

根据来源的不同,纤维分为天然纤维和合成纤维。

2. 纤维的分类:(1)天然纤维:包括植物纤维(如棉、麻、亚麻等)和动物纤维(如丝、羊毛等)。

(2)合成纤维:包括人造纤维(如人造纤维、锦纶等)和合成纤维(如涤纶、尼龙等)。

3. 常见纤维的特点和用途:(1)棉纤维:质地柔软,透气性好,吸湿性强,适合制作夏季服装。

(2)丝绸:光泽柔滑,质地细腻,适合制作高档服装。

(3)涤纶:弹性好,耐磨性高,适合制作运动服装和户外用品。

四、教学方法:1. 讲授法:介绍纤维的定义、分类、特点和用途。

2. 实验法:展示不同纤维的特点和性能。

五、教学过程安排:1. 导入:通过展示不同纤维制品,引导学生讨论纤维在生活中的应用。

2. 讲解:介绍纤维的定义和分类,重点讲解各种纤维的特点和用途。

3. 实验:让学生观察不同纤维的特点,比较它们的性能。

4. 总结:总结纤维在日常生活中的重要性,强调选购纺织品时的注意事项。

六、作业布置:1. 完成纤维相关的作业题目。

2. 收集不同纤维制品,了解其原料和制作工艺。

七、板书设计:纤维- 定义:纺织用原料- 分类:天然纤维、合成纤维- 特点和用途八、教学反思:通过本节课的教学,学生应该能够了解纤维的定义、分类、特点和应用,增加对纤维的认识和了解。

在今后的生活中,可以更好地选择适合自己的纺织品,保护好纤维资源,提高纤维利用率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。









液 柱 高 度
11
混合液要求: 1. 按一定比例配制轻、重混合液 2. 两种混合液不发生化学反应 3. 混和液不与纤维发生化学反应 4. 粘度低 5. 不吸湿
12
五、卷曲
1.加卷曲的目的 增加纤维抱合力,提高可纺性、改善服用性。
2.加卷曲的途径 ⑴永久卷曲:利用纤维结构的不对称性,进行

异形纤维截面周长组成圆之面积
A P2
4A
P2
4
表面系数= 异形纤维截面周长 = P
纤度(旦)
D
8
异形度=1
4A
d 2
100
%
中空度(%)=
空腔面积 截面面积
100 %
实际生产和检验中主要测这两个指标。
9
四、纤维密度的测定
密度是化纤物理性能的重要参数之一,纤维的 密度随分子结构或超分子结构的变化而变化。 用途:
个别化纤的特殊性能: 氨纶:弹性非常大 粘胶: 干湿强差异大
16
特点:是鉴别天然纤维与个别化纤品种的简便 方法之一,但其准确性较差。尤其是难以鉴别化 学纤维中的具体品种。
应用:用于呈散纤维状态的原料。
17
二、燃烧法
原理:纤维的化学组成不同,燃烧特征也不同。 步骤:
①接近火焰,②火焰中,③离开火焰的燃烧特 征,④气味及燃烧后残留物的辨别。将常用纤维 分成三类,即纤维素纤维、蛋白质纤维及合成纤 维。 适用范围: ➢ 适用于单一成分的纤维、纱线和织物; ➢ 不适用于混合成分的纤维、纱线和织物,或经
熔融燃烧
继续燃烧
硬块
各种特殊气 味
19
三、显微镜观察法
原理:根据各种纤维的纵、横向形态特征来鉴别 纤维。是最广泛采用的一种方法。如,
➢有天然转曲的是棉; ➢有鳞片的是毛; ➢有横节、纵向裂纹的是麻; ➢合成纤维一般纵向呈光滑棒状,有的还可见到 呈颗粒状无规分布的二氧化钛消光剂。
20
优点:不限于纯纺(由一种纤维构成)、混纺 (由两种或多种纤维的构成)和交织(经纬纱用不同 的原料)产品的鉴别,能正确地将天然纤维和化 学纤维区分开; 缺点:不能确定合成纤维的具体品种。 注意事项:
过防火、防燃及其他整理的纤维和纺织品。
18
三大类纤维燃烧特征
纤维类别 接近火焰 火焰中 离开火焰 残留物形态 气味
纤维素纤维 (棉、麻、粘 不熔不缩 迅速燃烧 继续燃烧 细腻灰白色 烧纸味
纤等)
蛋白质纤维 (丝、毛等)
收缩
渐渐燃烧 不易延烧 松脆黑灰 烧毛发臭味
合成纤维 (涤纶、锦纶
、丙纶)
收缩、熔 融
第三章 化学纤维
(chemical fiber)
第三节 化纤的形态尺寸与检验
一、长度和细度的选择 化纤分为短纤维和长丝,短纤维有棉型(等长)、
毛型(等长或异长)、中长型(等长或异长)。
尺寸
毛型 粗梳毛纺 精梳毛纺
长度(mm) 64-76 76-114
棉型 33-38
中长型 51-76
细度(tex) 0.33-0.55 0.33-0.55 0.13-0.18 0.22-0.33
研究纤维内部大分子的排列状况;纤维的结晶 情况;化纤制造工艺是否正常及对纤维结构的影 响;用于鉴别纤维和分析混纺产品的混纺比。
各纤维的密度见P217表3-8(注意“干燥”两字) 熟记最轻、最重的纤维。
10
密度测定:液体浮力法、比重瓶法、气体容积 法和密度梯度法等。密度梯度法应用广,原理:
由两种密度不同但能无限混溶的液体(如CCl4、二 甲苯)混和形成均匀的密度梯度液,平衡后,用标 准密度小球来标定深度,绘制密度梯度图。把所测 得纤维做成与标准小球大小一致的球投入到梯度液 里,平衡后测深度,可得纤维密度。
➢ 考虑化纤中的异形纤维(如三角形截面)。 ➢ 显微镜初步鉴定后要进一步验证。
1.等长纤维 中段切断称重法:采用切断称重法测定,指
标有平均长度、短纤维、超长纤维率。 (P211) 2.不等长纤维
采用排图法或电容式长度测定仪测试。
4
三、细度指标与检验
1. 细度指标 特、分特、直径、旦数。
复丝细度表示:“总特数/单丝根数”。如,
16.5tex/30f,即复丝总细度16.5tex,由30根单
热松弛而产生卷曲,如粘胶的皮芯结构、复合纤 维内部的不对称性。
⑵暂时卷曲:利用热塑性通过机械挤压而成, 如:丙纶、锦纶。
13
第四节 纺织纤维的鉴别
一、手感目测法 二、燃烧法 三、显微镜观察法 四、药品着色法 五、化学溶解法 六、熔点测定法 七、密度梯度法 八、荧光法 九、鉴别纤维的新技术
14
一、手感目测法
丝组成。
指标换算:
d 11.284
N dte x
d 11.894 Nden
d 1128.4 1
Nm 式中:d—纤维直径(μm);γ—纤维密度(g/cm3)
5
2.测量方法 ➢ 中段切断称重法 ➢ 气流仪 ➢ 显微镜投影法(圆形截面的化纤) ➢ 振动法
6
振动法: 纤维两端夹持,由仪器在纤维上施加一横
2
一般的纺纱工艺,化纤长度和细度之比可根 据经验公式:
长细度度((英旦寸))=1 2.1(5(4tecxm)) 23

细 长度 度( (tcemx) )
9 23
如:棉型涤纶,1.5D粗细的涤纶纤维切成 38mm长,即 1.5英寸/1.5旦=1 。常表示为,
1.5D×38mm
3
二、长度指标与检验
通过看(长短、色泽含杂等)、抓捏(弹性、 硬挺度、冷暖感等)、耳听(丝鸣等),来判 断天然纤维或化学纤维。
天然纤维与化学纤维手感目测比较
纤维类别 观察内容
天然纤维
化学纤维
长度、细度 差异很大
相同品种比较均匀
含杂
附有各种杂质 几乎没有
色泽
柔和但欠均一
近似雪白、均匀,有 的有金属般光泽
15
各种天然纤维手感目测比较
纤维品种 棉
观察内容
苎麻
羊毛
蚕丝
手感
柔软
粗硬
弹性好, 柔软、光滑, 有暖感 有冷感
长度(mm)
15~40, 离散大
60~250, 20~200, 离散大 离散大
很长
细度(μm) 10~25
20~80 10~40 10~30
含杂类型
碎 僵 等叶片、、硬软籽籽、麻 叶屑、枝
草屑、粪 尿、汗渍、 清洁、发亮 油脂等
向振动,当纤维振幅最大时,有如下公式:
N
P 4l 2 f
2
式中,N-纤维线密度(g/cm); P-张力(cN);l-纤维长度(cm);
f-共振频率(Hz)。 优点:速度快、不受纤维截面形状的影响。
7
3.异形纤维异形度指标
圆系数
异形纤维截面积 = 异形纤维截面外接圆面积
A
d 2
4
周长系数=
异形纤维截面积
相关文档
最新文档