历年中考数学易错题汇编-二次函数练习题及详细答案

历年中考数学易错题汇编-二次函数练习题及详细答案
历年中考数学易错题汇编-二次函数练习题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题)

1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.

(1)求抛物线的解析式;

(2)求点P在运动的过程中线段PD长度的最大值;

(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.

【答案】(1)y=x2﹣4x+3;(2)9

4

;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣

3).

【解析】

试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;

(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;

(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;

(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.

试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),

930

10

b c

b c

++=

?

?

++=

?

,解得

4

3

b

c

=-

?

?

=

?

,∴抛物线解析式为y=x2﹣4x+3;

(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣

(x﹣3

2

)2+

9

4

.∵a=﹣1<0,∴当x=

3

2

时,线段PD的长度有最大值

9

4

(3)①∠APD 是直角时,点P 与点B 重合,此时,点P (1,0),②∵y =x 2﹣4x +3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A (3,0),∴点P 为在抛物线顶点时,∠PAD =45°+45°=90°,此时,点P (2,﹣1).

综上所述:点P (1,0)或(2,﹣1)时,△APD 能构成直角三角形;

(4)由抛物线的对称性,对称轴垂直平分AB ,∴MA =MB ,由三角形的三边关系,|MA ﹣MC |<BC ,∴当M 、B 、C 三点共线时,|MA ﹣MC |最大,为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),则03k b b +=??

=?,解得:3

3

k b =-??=?,∴直线BC 的解析式为y =﹣

3x +3.∵抛物线y =x 2﹣4x +3的对称轴为直线x =2,∴当x =2时,y =﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M (2,﹣3),使|MA ﹣MC |最大.

点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD 的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M 的位置是解题的关键.

2.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:

(1)房间每天的入住量y (间)关于x (元)的函数关系式; (2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;

(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?

【答案】(1)y=60-10

x

;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房

间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】

试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;

(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;

(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10

x

),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:

y =60﹣

10

x (2)p =(200+x )(60﹣

10x )=﹣

2

110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10

x ) =﹣2

110

x +42x +10800 =﹣

1

10

(x ﹣210)2+15210 当x =210时,w 有最大值.

此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.

点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.

3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。

(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;

(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式; (Ⅲ)若11,

0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。

【答案】(Ⅰ)()0,3A ,(1,4)E ;(Ⅱ)2

1

4

y x x =-++;(Ⅲ)3b = 【解析】 【分析】

(Ⅰ)将(-1,0),(3,0)代入抛物线的解析式求得b 、c 的值,确定解析式,从而求出抛物线与y 轴交于点A 的坐标,运用配方求出顶点E 的坐标即可;

(Ⅱ)先运用配方求出顶点E 的坐标,再根据顶点E 在直线y x =上得出吧b 与c 的关系,利用二次函数的性质得出当b=1时,点A 位置最高,从而确定抛物线的解析式; (Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E 的坐标得出E 点关于x 轴的对称点E '的坐标,然后根据A 、P 两点坐标求出直线AP 的解析式,再根据点在直线AP 上,此时PA PE +值最小,从而求出b 的值. 【详解】

解:(Ⅰ)把点(-1,0)和(3,0)代入函数2

y x bx c =-++,

有10930

b c b c --+=??-++=?。解得2,3b c == 2223(1)4y x x x ∴=-++=--+ (0,3),(1,4)A E ∴

(Ⅱ)由2

22

424b c b y x bx c x +??=-++=--+ ???,得24,24b c b E ??+ ???

∵点E 在直线y x =上,2

424

b c b

+∴=

221111

(1)4244c b b b ∴=-+=--+

2110,(1)44A b ?

?∴--+ ??

?

当1b =时,点A 是最高点此时,2

1

4

y x x =-++

(Ⅲ):抛物线经过点(1,0)-,有10b c --+=

1c b ∴=+

24,,(0,)2

4b c b E A c ??+ ???

2(2),,(0,1)2

4b b E A b ??

+∴+ ???

∴E 关于x 轴的对称点E '为2

(2)

,24b b ??+- ???

设过点A ,P 的直线为y kx t =+.把(0,1),(1,0)A b P +代入y kx t =+,得

(1)(1)y b x =-+-

把点2(2),2

4b b E '

??

+- ???代入(1)(1)y b x =-+-.

2(2)(1)142b b b +??

=-+- ???

,即2680b b --=

解得,3b =

0,3b b >∴=.

3b ∴=+【点睛】

本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次的解析式、最短距离,数形结合思想及待定系数法的应用是解题的关键,属于中考压轴题.

4.如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.

(1)求抛物线的表达式;

(2)直接写出点C的坐标,并求出△ABC的面积;

(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;

(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.

【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);

(4)5

2

或5.

【解析】

试题分析:(1)利用待定系数法进行求解即可;

(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;

(3)利用三角形的面积以及点P所处象限的特点即可求;

(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.

试题解析:(1)将A(4,0),B(1,3)代入到y=ax2+bx中,得

1640

3

a b

a b

+=

?

?

+=

?

,解

1

4

a

b

=-

?

?

=

?

∴抛物线的表达式为y=-x2+4x.

(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.

又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=1

2

×2×3=3.

(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.

∵S△ABP+S△BPQ=S△ABH+S梯形AHQP

∴6+1

2×(m-1)×(3+m2-4m)=

1

2

×3×3+

1

2

×(3+m-1)(m2-4m)

整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).

(4)5

2

或5.

提示:①当以M为直角顶点,则S△CMN=5

2

②当以N为直角顶点,S△CMN=5;

③当以C为直角顶点时,此种情况不存在.

【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.

5.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y =x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F

(1)求抛物线的解析式;

(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E 的坐标;若没有,请说明理由;

(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.

【答案】(1)抛物线的解析式为y=1

3

x2+

2

3

x﹣1;(2)

49

12

,(

1

2

7

2

);(3)点G的坐标为(2,

1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).

【解析】 【分析】

(1)利用待定系数法确定函数关系式;

(2)由函数图象上点的坐标特征:可设点E 的坐标为(m ,m +3),点F 的坐标为(m ,

13m 2+23m ﹣1),由此得到EF =﹣13m 2+1

3

m +4,根据二次函数最值的求法解答即可; (3)分三种情形①如图1中,当EG 为菱形对角线时.②如图2、3中,当EC 为菱形的对角线时,③如图4中,当ED 为菱形的对角线时,分别求解即可. 【详解】

解:(1)将y =0代入y =x +3,得x =﹣3. ∴点A 的坐标为(﹣3,0).

设抛物线的解析式为y =a (x ﹣x 1)(x ﹣x 2),点A 的坐标为(﹣3,0),点B 的坐标为(1,0), ∴y =a (x +3)(x ﹣1). ∵点C 的坐标为(0,﹣1), ∴﹣3a =﹣1,得a =

1

3

, ∴抛物线的解析式为y =

13x 2+2

3

x ﹣1; (2)设点E 的坐标为(m ,m +3),线段EF 的长度为y , 则点F 的坐标为(m ,13m 2+2

3

m ﹣1) ∴y =(m +3)﹣( 13m 2+23m ﹣1)=﹣13m 2+1

3

m +4 即y =-

13(m ﹣12

) 2+4912, 此时点E 的坐标为(

12,7

2

);

(3)点G 的坐标为(2,1),(﹣,﹣﹣1),,﹣1),(﹣4,3). 理由:①如图1,当四边形CGDE 为菱形时. ∴EG 垂直平分CD ∴点E 的纵坐标y =

13

2

-+=1, 将y =1带入y =x +3,得x =﹣2. ∵EG 关于y 轴对称, ∴点G 的坐标为(2,1);

②如图2,当四边形CDEG 为菱形时,以点D 为圆心,DC 的长为半径作圆,交AD 于点E ,可得DC =DE ,构造菱形CDEG 设点E 的坐标为(n ,n +3), 点D 的坐标为(0,3)

∴DE =22(33)n n ++-=22n ∵DE =DC =4, ∴

22n =4,解得n 1=﹣22,n 2=22.

∴点E 的坐标为(﹣22,﹣22+3)或(22,22+3) 将点E 向下平移4个单位长度可得点G ,

点G 的坐标为(﹣22,﹣22﹣1)(如图2)或(22,22﹣1)(如图3)

③如图4,“四边形CDGE 为菱形时,以点C 为圆心,以CD 的长为半径作圆,交直线AD 于点E ,

设点E 的坐标为(k ,k +3),点C 的坐标为(0,﹣1). ∴EC =22(0)(31)k k -+++=22816k k ++. ∵EC =CD =4, ∴2k 2+8k +16=16, 解得k 1=0(舍去),k 2=﹣4. ∴点E 的坐标为(﹣4,﹣1) 将点E 上移1个单位长度得点G . ∴点G 的坐标为(﹣4,3).

综上所述,点G 的坐标为(2,1),(﹣22,﹣22﹣1),(22,22﹣1),(﹣4,3).

【点睛】

本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.

6.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.

(1)求抛物线的解析式;

(2)当何值时,的面积最大?并求最大值的立方根;

(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理

由.

【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,

最大值的立方根为=;(3)存在满足条件的点P,t的值为1或

【解析】

试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;

(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;

(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.

试题解析:(1)由题意可得,解得,

∴抛物线解析式为y=﹣x2+2x+3;

(2)∵A(0,3),D(2,3),

∴BC=AD=2,

∵B(﹣1,0),

∴C(1,0),

∴线段AC的中点为(,),

∵直线l将平行四边形ABCD分割为面积相等两部分,

∴直线l过平行四边形的对称中心,

∵A、D关于对称轴对称,

∴抛物线对称轴为x=1,

∴E(3,0),

设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,

∴直线l的解析式为y=﹣x+,

联立直线l和抛物线解析式可得,解得或,

∴F(﹣,),

如图1,作PH⊥x轴,交l于点M,作FN⊥PH,

∵P点横坐标为t,

∴P(t,﹣t2+2t+3),M(t,﹣t+),

∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,

∴S△PEF=S△PFM+S△PEM=PM?FN+PM?EH=PM?(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,

∴当t=时,△PEF的面积最大,其最大值为×,

∴最大值的立方根为=;

(3)由图可知∠PEA≠90°,

∴只能有∠PAE=90°或∠APE=90°,

①当∠PAE=90°时,如图2,作PG⊥y轴,

∵OA=OE,

∴∠OAE=∠OEA=45°,

∴∠PAG=∠APG=45°,

∴PG=AG,

∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),

②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,

则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,

∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,

∴∠PAQ=∠KPE,且∠PKE=∠PQA,

∴△PKE∽△AQP,

∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),

综上可知存在满足条件的点P,t的值为1或.

考点:二次函数综合题

7.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;

(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;

(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.

【答案】(1)2

23y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;

(3)点M 的坐标为()1,1、()1,2、81,3?? ???或21,3??- ???

. 【解析】 【分析】

()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;

()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐

标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;

()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=

-+-,

()22AC [01](30)10=--+-=()22AM [11](m 0)=--+-AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】

解:()1将()1,0A -、()0,3C 代入2

y x bx c =-++中,

得:{

10

3b c c --+==,解得:{

2

3b c ==,

∴抛物线的解析式为223y x x =-++.

()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.

当0y =时,有2230x x -++=, 解得:11x =-,23x =,

∴点B 的坐标为()3,0.

抛物线的解析式为2223(1)4y x x x =-++=--+,

∴抛物线的对称轴为直线1x =.

设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{

30

3k d d +==,解得:{

1

3k d =-=,

∴直线BC 的解析式为3y x =-+.

当1x =时,32y x =-+=,

∴当PA PC +的值最小时,点P 的坐标为()1,2.

()3设点M 的坐标为()1,m ,

则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=()22[11](0)AM m =--+-

分三种情况考虑:

①当90AMC ∠=时,有222AC AM CM =+,即22101(3)4m m =+-++,

解得:11m =,22m =,

∴点M 的坐标为()1,1或()1,2;

②当90ACM ∠=时,有222AM AC CM =+,即224101(3)m m +=++-,

解得:83

m =

, ∴点M 的坐标为81,3??

???

③当90CAM ∠=时,有222CM AM AC =+,即221(3)410m m +-=++,

解得:23

m =-

∴点M 的坐标为21,.3?

?- ??

?

综上所述:当MAC 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3??

???或21,.3??- ???

【点睛】

本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,列出关于m 的方程.

8.温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅,包装后直接销售,包装成本为1万元/吨,它的平均销售价格y (单位:万元/吨)与销售数量x (2≤x ≤10,单位:吨)之间的函数关系如图所示.

(1)若杨梅的销售量为6吨时,它的平均销售价格是每吨多少万元?

(2)当销售数量为多少时,该经营这批杨梅所获得的毛利润(w )最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)

(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y (单位:万元)与加工数量x (单位:吨)之间的函数关系是y =1

2

x +3(2≤x ≤10).

①当该公司买入杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样? ②该公司买入杨梅吨数在 范围时,采用深加工方式比直接包装销售获得毛利润大些?

【答案】(1)杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;(2)当x =8时,此时W 最大值=40万元;(3)①该公司买入杨梅3吨;②3<x ≤8. 【解析】 【分析】

(1)设其解析式为y =kx +b ,由图象经过点(2,12),(8,9)两点,得方程组,即可得到结论;

(2)根据题意得,w =(y ﹣4)x =(﹣12x +13﹣4)x =﹣1

2

x 2+9x ,根据二次函数的性质即可得到结论;

(3)①根据题意列方程,即可得到结论;②根据题意即可得到结论. 【详解】

(1)由图象可知,y 是关于x 的一次函数. ∴设其解析式为y =kx +b ,

∵图象经过点(2,12),(8,9)两点, ∴212

89

k b k b +=??

+=?,

解得k =﹣

1

2

,b =13, ∴一次函数的解析式为y =﹣1

2

x +13, 当x =6时,y =10,

答:若杨梅的销售量为6吨时,它的平均销售价格是每吨10万元; (2)根据题意得,w =(y ﹣4)x =(﹣12x +13﹣4)x =﹣1

2

x 2+9x , 当x =﹣

2b

a

=9时,x =9不在取值范围内, ∴当x =8时,此时W 最大值=﹣12

x 2

+9x =40万元; (3)①由题意得:﹣

12x 2+9x =9x ﹣(1

2

x +3) 解得x =﹣2(舍去),x =3, 答该公司买入杨梅3吨;

②当该公司买入杨梅吨数在 3<x ≤8范围时,采用深加工方式比直接包装销售获得毛利润大些.

故答案为:3<x ≤8. 【点睛】

本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.

9.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4

m.按照图中所示的直角坐标系,抛物线可以用y=1 6

-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为

17

2

m.

(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

【答案】(1)抛物线的函数关系式为y=

1

6

-x2+2x+4,拱顶D到地面OA的距离为10 m;

(2)两排灯的水平距离最小是3.

【解析】

【详解】

试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.

试题解析:(1)由题知点

17

(0,4),3,

2

B C

??

?

??

在抛物线上

所以

4

171

93

26

c

b c

=

?

?

?

=-?++

??

,解得

2

4

b

c

=

?

?

=

?

,所以2

1

24

6

y x x

=-++

所以,当6

2

b

x

a

=-=时,10

t

y=

答:2

1

24

6

y x x

=-++,拱顶D到地面OA的距离为10米

(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))

当x=2或x=10时,22

63

y =>,所以可以通过 (3)令8y =,即2

12486

x x -

++=,可得212240x x -+=,解得12623,623x x =+=- 1243x x -=

答:两排灯的水平距离最小是43 考点:二次函数的实际应用.

10.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线

y=kx+

2

3

分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式;

(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;

(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.

【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣22

33

x +;(2)t 的值为

49、151296

±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣3

2,﹣5

4

),213 【解析】

分析:(1)利用待定系数法求解可得;

(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;

(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,

1680

20

a c

a c

-+=

?

?

++=

?

解得:

2

3

8

3 a

c

?

=

??

?

?

=-

??

∴抛物线解析式为:y=2

28

2

33

x x

+-,

∵过点B的直线y=kx+2

3

∴代入(1,0),得:k=﹣2

3

∴BD解析式为y=﹣22

33

x+;

(2)由

2

28

2

33

22

33

y x x

y x

?

=+-

??

?

?=+

??

得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,

当P1D⊥P1C时,△P1DC为直角三角形,

则△DEP1∽△P1OC,

∴DE

PO

=

PE

OC

,即

4

t

=

5

2

3

t-

解得

15129

±

当P2D⊥DC于点D时,△P2DC为直角三角形

由△P2DB∽△DEB得

DB

EB

=2

P B

DB

52=

52

6

解得:t=

23

3

当P3C⊥DC时,△DFC∽△COP3,

∴DF

OC

=

3

CF

P O,即

5

2

3

=

10

3

t

解得:t=

4

9

∴t的值为4

9

15129

±

23

3

(3)由已知直线EF解析式为:y=﹣

2

3

x﹣

10

3

在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M

过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.

则△EOF∽△NHD′

设点N坐标为(a,﹣

210

33

a-),

∴OE

NH

=

OF

HD'

,即

5

210

4()

33

a

---=

10

3

2a

-

解得:a=﹣2,

则N点坐标为(﹣2,﹣2),

求得直线ND′的解析式为y=

3

2

x+1,

当x=﹣

3

2

时,y=﹣

5

4

∴M点坐标为(﹣3

2

,﹣

5

4

),

此时,DM+MN22

D H NH

'+22

46

+13

点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.

相关主题
相关文档
最新文档