高中数学函数的周期性练习

合集下载

高中数学函数的周期性与常考题(附经典例题与解析)

高中数学函数的周期性与常考题(附经典例题与解析)

函数的周期性与常考题【知识点分析】:函数的周期性设函数y=f(x),x∈D,如果存在非零常数T,使得对任意x∈D,都有f(x+T)=f(x),则称函数f(x)为周期函数,T为函数f(x)的一个周期.(D为定义域)1. 型的周期为T。

定义:对x取定义域内的每一个值时,都有,则为周期函数,T叫函数的周期。

【相似题练习】1.定义在R上的函数f(x)满足:f(x+6)=f(x),当﹣3≤x<﹣1时,f(x)=﹣(x+2)2;当﹣1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2019)=()A.336B.337C.338D.3391.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+2)=f(x).当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|至少有6个零点,则a的取值范围是.1.已知f(x)是定义在R上的函数,且对任意实数x有f(x+4)=﹣f(x)+2,若函数y=f(x﹣1)的图象关于直线x=1对称,则f(2014)=()A.﹣2+2B.2+2C.2D.【知识点分析】:2. 型的周期为。

证明:。

特别得:f(x-a)=f(x+a)型,的周期为2a。

【相似题练习】2.已知偶函数y=f(x)满足条件f(x+1)=f(x﹣1),且当x∈[﹣1,0]时,f(x)=3x+,则f(5)的值等于.1.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当时,,则f(2019)=()A.﹣2B.﹣1C.0D.2【知识点分析】:3. 型的周期为2a。

证明:【相似题练习】1.已知定义在R上的函数f(x﹣1)的对称中心为(1,0),且f(x+2)=﹣f(x),当x∈(0,1]时,f(x)=2x﹣1,则f(x)在闭区间[﹣2014,2014]上的零点个数为.1.设函数f(x)是定义在R上的奇函数,满足f(x+1)=﹣f(x﹣1),若f(﹣1)>1,f(5)=a2﹣2a﹣4,则实数a的取值范围是()A.(﹣1,3)B.(﹣∞,﹣1)∪(3,+∞)C.(﹣3,1)D.(﹣∞,﹣3)∪(1,+∞)1.已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的图象关于点(1,0)对称,且f (4)=4,则f(2012)=()A.0B.﹣4C.﹣8D.﹣161.已知定义在R上的函数f(x)的图象关于点(﹣,0)成中心对称图形,且满足,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)+…+f(2015)的值为()A.1B.2C.﹣1D.﹣2【知识点分析】:4. 型的周期为2a。

函数的周期性和对称性形影不离-学会解题之高三数学多题一解【原卷版】

函数的周期性和对称性形影不离-学会解题之高三数学多题一解【原卷版】

专题05 函数的周期性和对称性形影不离【高考地位】函数的周期性和对称性是函数的两个基本性质。

在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。

因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。

类型一 函数的周期性的判定及应用万能模板 内 容使用场景 几类特殊函数类型解题模板第一步 合理利用已知函数关系并进行适当地变形; 第二步 熟记常见结论,准确求出函数的周期性;(1)若函数)(x f 满足)()(a x f a x f -=+,则函数)(x f 的周期为a 2; (2)若函数)(x f 满足)()(x f a x f -=+或)(1)(x f a x f =+或)(1)(x f a x f -=+,则函数)(x f 的周期为a 2; 第三步 运用函数的周期性求解实际问题.例 1 函数定义域为,且对任意,都有,若在区间上则( )A.B. C.D.【变式演练1】(2022·江苏南京·高三阶段练习)已知函数()f x ,任意x y R ∈,,满足()()()()22f x y f x y f x f y +-=-,且()()1220f f ==,,则()()()1290f f f +++的值为( )A .2-B .0C .2D .4【变式演练2】(2022·陕西·武功县普集高级中学高三阶段练习(理))定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有2()81f x ≤,则m 的取值范围是( )A .10,3⎡⎫+∞⎪⎢⎣⎭B .11,3⎡⎫+∞⎪⎢⎣⎭C .13,3⎡⎫+∞⎪⎢⎣⎭D .143⎡⎫+∞⎪⎢⎣⎭【变式演练3】(多选)(2022·云南·高三阶段练习)已知函数()f x 的定义域为1221R,,R,2x x x x ∀∈-=,都有()()120f x f x +=,且()11f =,则下列结论正确的是( )A .()231f =B .()231f -=C .()()()()()123451f f f f f ++++=D .()()()()1230f x f x f x f x ++++++=类型二 函数的对称性问题万能模板 内 容使用场景 几类特殊函数类型 解题模板记住常见的几种对称结论:第一类 函数)(x f 满足()()f x a f b x +=-时,函数()y f x =的图像关于直线2a bx +=对称; 第二类 函数)(x f 满足()()c f x a f b x ++-=时,函数()y f x =的图像关于点(,)22a b c+对称; 第三类 函数()y f x a =+的图像与函数()y f b x =-的图像关于直线2b ax -=对称. 例2 .(多选)(2022·福建省福州第一中学高三开学考试)已知函数()()sin sin 1f x x x =+-,则下列结论正确的是( )A .()y f x =图象是轴对称图形B .()()0f x f x π++=C .()f x 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增D .()[]1,0,1f x x <∀∈例3 (2022·宁夏·青铜峡市宁朔中学高三开学考试(理))定义在R 上的奇函数()f x 满足()()2f x f x -+=,且()f x 在[]10-,上是增函数,给出下列几个命题:①()f x 是周期函数;②()f x 的图象关于直线1x =对称; ③()f x 在[]1,2上是减函数; ④(2)(0)f f =.其中正确命题的序号是_____.(写出所有正确命题的序号)例4 (2022·辽宁·大连二十四中高三阶段练习)已知直线3y x =-+分别与函数e x y =和ln y x =的图象交于点()11,A x y ,()22,B x y ,则12x x +=_________.【变式演练4】(2022·湖南湘潭·高三开学考试)(多选)已知函数()()sin cos f x x x x ππ=+∈R ,则下列说法正确的是( ) A .函数()f x 是周期函数 B .函数()f x 的最大值是2C .函数()f x 的图象关于点1,04⎛⎫- ⎪⎝⎭对称D .函数()f x 的图象关于直线12x =对称 【变式演练5】(2022·四川省德阳市第三中学高三开学考试)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程()f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为___________.【高考再现】1.(2022·全国乙(理)T12) 已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A. 21-B. 22-C. 23-D. 24-2.(2022·新高考Ⅰ卷T12) 已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A. (0)0f =B. 102g ⎛⎫-= ⎪⎝⎭C. (1)(4)f f -=D. (1)(2)g g -=3.(2022·新高考Ⅱ卷T8) 若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 14.(2021·全国高考真题(理))设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .525.(2021·全国高考真题(理))设函数1()1xf x x-=+,则下列函数中为奇函数的是( )A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++6. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m7. 【2018年全国普通高等学校招生统一考试理数(全国卷II )】已知f(x)是定义域为(−∞,+∞)的奇函数,满足f(1−x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+⋯+f(50)=( ) A . −50 B . 0 C . 2 D . 508. 【2018年全国文科数学】已知函数f(x)=lnx +ln(2−x),则 A . f(x)在(0,2)单调递增B . f(x)在(0,2)单调递减C . y =f(x)的图像关于直线x=1对称D . y =f(x)的图像关于点(1,0)对称9.【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+=.10. 【2018年全国普通高等学校招生统一考试数学】函数f(x)满足f(x +4)=f(x)(x ∈R),且在区间(−2,2]上,f(x)={cosπx2,0<x ≤2,|x +12|,−2<x ≤0,则f(f(15))的值为____,11. 【2016高考江苏卷】设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩ 其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是. 【反馈练习】1.(2022·河南·南阳市第六完全学校高级中学高三阶段练习(文))已知函数()f x 是R 上的偶函数,且()f x 的图象关于点()1,0对称,当[]0,1x ∈时,()22xf x =-,则()()()()0122022f f f f +++⋅⋅⋅+的值为( )A .2-B .1-C .0D .12.(2022·福建省龙岩第一中学高三阶段练习)已知定义在R 上的函数()f x 满足:()()0f x f x -+=,()2()f x f x -=,当01x ≤≤时,()21x f x =-,则()2log 2023f =( )A .252048-B .9991024-C .10242023-D .512999-3.(2022·河南·南阳中学高三阶段练习(理))已知函数()f x ,()g x 的定义域均为R ,且()()25f x g x +-=,()()49g x f x --=,若y g x 的图象关于直线2x =对称,()24g =,则()221k f k ==∑( )A .47-B .48-C .23-D .24-4.(2022·甘肃·武威十八中高三阶段练习(理))已知奇函数()f x 满足()(2)f x f x -=+,当[0,1]x ∈时,2()2f x x =,则(7)f =( )A .2-B .1-C .1D .25.(2022·河北深州市中学高三阶段练习)已知定义域为R 的函数()f x 满足:对任意的x ∈R ,有()()22f x f x +=-,且当[]0,1x ∈时,()()21log 1f x x =++,则()2023f =( )A .0B .1C .2D .36.(2022·北京四中高三开学考试)已知函数()sin cos sin cos x xf x x x+=,在下列结论中:①π是()f x 的一个周期; ②()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减;③()f x 的图象关于直线π4x =对称; ④()f x 的图象关于点π,04⎛⎫- ⎪⎝⎭对称.正确结论的个数为( ) A .1B .2C .3D .47.(2022·云南·高三阶段练习)已知函数()2()ln11f x x x =++,定义域为R 的函数满足()()20g x g x +--=,若函数()y f x =与()y g x =图象的交点为()11,x y ,()22,x y ,……,()66,x y ,则()61i i i x y =-=∑( )A .6B .12C .6-D .12-8.(2022·福建省龙岩第一中学高三阶段练习)(多选)已知函数()f x 为R 上的奇函数,()()1g x f x =+为偶函数,下列说法正确的有( ) A .()f x 图象关于(10)-,对称 B .()20230g =C .()g x 的最小正周期为4D .对任意R x ∈都有()()11f x f x -=+9.(2022·黑龙江·嫩江市高级中学高三开学考试)(多选)已知偶函数()f x 满足()(2)0f x f x +-=,则下列说法正确的是( )A .函数()f x 是以2为周期的周期函数B .函数()f x 是以4为周期的周期函数C .函数(3)f x -为偶函数D .函数(1)f x -为奇函数10.(2022·浙江·慈溪中学高三开学考试)(多选)已知函数()[]f x x x =-,其中[]x 表示不大于x 的最大整数,如:[]0.20=,[]1.22-=-,则( ) A .()f x 是增函数 B .()f x 是周期函数 C .()2f x 的值域为[)0,1D .()2f x 是偶函数11.(2022·河北深州市中学高三阶段练习)(多选)已知函数()f x 对x ∀∈R ,都有()()()(),2f x f x f x f x -=--=,且()11f =,则( )A .()f x 的图像关于直线1x =对称B .()f x 的图像关于点()2,0-中心对称C .()60f =D .()51f =-12.(2022·广西·桂电中学高三阶段练习)已知函数()f x 满足对R x ∀∈,有()()11f x f x -=+,()()2f x f x +=-,当()0,1x ∈时,()2f x x mx =+,若35122f ⎛⎫= ⎪⎝⎭,则m =________13.(2022·宁夏·银川一中高三阶段练习(理))奇函数()f x 的定义域为R ,若()1f x +为偶函数,且()11f -=-,则()()20222023f f +=______.14.(2021·辽宁·沈阳二中高三开学考试)已知定义域为R 的函数()f x 对任意的实数x ,y 满足()()()πcos 222f x f y x y x y f +-+⎛⎫=⋅ ⎪⎝⎭,且()()010f f ==,112f ⎛⎫= ⎪⎝⎭,并且当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >, ①函数()f x 是奇函数;②函数()f x 在11,22⎛⎫- ⎪⎝⎭上单调递增③函数()f x 是以2为周期的周期函数;④502f ⎛⎫-= ⎪⎝⎭其中的真命题有______.(写出所有真命题的序号)15.(2022·河北衡水·高三阶段练习)已知函数()g x 的图象与函数()[)()20,f x x x =∈+∞的图象关于直线y x =对称,将函数()g x 图象右移2个单位,下移2个单位得到函数()h x 的图象,若P ,Q 分别为函数()f x ,()h x 图象上的两个动点,则这两点间距离的最小值为______.16.定义在R 上的奇函数()f x 满足(1)()f x f x +=-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时,()4f x x =,则函数1()()1g x f x x =+-在[]-24,上的零点之和为____________. 【来源】山东省济南市济南市莱芜第一中学2020-2021学年高三下学期2月月考数学试题 17.定义在R 上的函数()f x 满足(2)(2)f x f x +=-,当[2,2)x ∈-时,3()sin 2f x x x π=-,则函数()f x 在区间[0,669)上的零点个数是______.【来源】云南师范大学附属中学2021届高三高考适应性月考卷(六)数学(理)试题18.已知定义在R 上的函数满足(3)(3)f x f x -=-+,且()f x 图像关于1x =对称,当(1,2]x ∈时,2()log (21)f x x =+,则8252f ⎛⎫= ⎪⎝⎭________.19.定义在R 上的函数()f x 满足(6)()f x f x +=.当[)3,3x ∈-时,()()22,3113x x f x x x ⎧-+-≤<-⎪=⎨-≤<⎪⎩,,则(4)f =___________;(1)(2)(3)(2016)(2017)f f f f f +++++=__________.20.(2022·安徽·合肥市第十中学模拟预测)已知函数()f x 是定义在R 上的奇函数,且它的图象关于直线1x =对称.(1)求证:()f x 是周期为4的周期函数;(2)若())01f x x x =≤≤,求[]5,4x ∈--时,函数()f x 的解析式.。

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x −=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x −=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x −=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。

例如:()f x 关于1x =轴对称()()2f x f x ⇒=−,或得到()()31f x f x −=−+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=−+,进而可得到:()f x 关于x a =轴对称。

① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=−+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=−+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=−+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

3、中心对称的等价描述:(1)()()f a x f a x −=−+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x −=−+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x −=−+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。

【优化指导】高中数学(基础预习 课堂探究 达标训练)341 三角函数的周期性以及函数y=Asinx,

【优化指导】高中数学(基础预习 课堂探究 达标训练)341 三角函数的周期性以及函数y=Asinx,

3.4.1 三角函数的周期性以及函数y =Asin x ,y =sin ωx 的图象与性质学习目标重点难点1.知道什么是周期函数,什么是函数的周期以及最小正周期;2.能说出函数y =sin x ,y =cos x ,y =tan x 的最小正周期;3.能分析y =A sin x ,y =sin ωx 的图象与y =sin x 图象的关系; 4.会解决函数y =A sin x ,y =sin ωx 的性质问题.重点:周期函数的定义以及正弦函数、余弦函数、正切函数的周期.分析函数y =A sin x ,y =sin ωx 的图象与性质;难点:周期函数的定义;疑点:函数y =A sin x ,y =sin ωx 的图象与函数y =sin x 图象的关系.1.三角函数的周期性(1)一般地,对于函数y =f (x ),如果存在非零常数T ,使得当x 取定义域内每一个值时,x ±T 都有定义,并且f (x ±T )=f (x ),则这个函数y =f (x )称为周期函数,T 称为这个函数的一个周期.如果周期函数y =f (x )的所有的周期中存在一个最小的正数,这个最小的正数就称为这个函数的最小正周期,我们也常常将“最小正周期”简称为“周期”.(2)y =sin x 是周期函数,2k π(k ∈Z ,k ≠0)都是它的周期,最小正周期是2π. (3)y =cos x 是周期函数,2k π(k ∈Z ,k ≠0)都是它的周期,最小正周期是2π. (4)y =tan x 是周期函数,k π(k ∈Z ,k ≠0)都是它的周期,最小正周期是π. 预习交流1能否由sin ⎝ ⎛⎭⎪⎫π2+π4=sin π4,sin ⎝ ⎛⎭⎪⎫π2+5π4=sin 5π4等说明π2是y =sin x 的周期?提示:不能,周期函数中的定义中应要求对定义域中的每一个x ,都满足f (x +T )=f (x ),如果只有个别x 的值满足f (x +T )=f (x ),则不能说f (x )的周期为T .预习交流2所有的周期函数都具有最小正周期吗? 提示:并不是所有周期函数都存在最小正周期.例如,常数函数f (x )=C (C 为常数),x ∈R ,当x 为定义域内的任何值时,函数值都是C ,即对于函数f (x )的定义域内的每一个值x ,都有f (x +T )=C ,因此f (x )是周期函数,由于T 可以是任意不为零的常数,而正数集合中没有最小者,所以f (x )没有最小正周期.2.函数y =A sin x (A >0,A ≠1)的图象与性质(1)一般地,对任意A >0,A ≠1,函数y =A sin x 的图象可以由y =sin x 的图象上每一点的横坐标不变,纵坐标乘以A 得到.(2)函数y =A sin x 的周期是2π,值域是[-A ,A ],最大值和最小值分别为A 和-A . 预习交流3函数y =A sin x (A >0,A ≠1)的奇偶性、单调区间是怎样的?提示:函数y =A sin x (A >0,A ≠1)仍然是奇函数,它的单调区间与y =sin x 的单调区间也完全相同.3.函数y =sin ωx (ω>0,ω≠1)的图象与性质(1)函数y =sin ωx (ω>0,ω≠1)的图象可以由y =sin x 的图象上每一点(x ,sin x )的纵坐标不变,横坐标伸长(0<ω<1)或缩短(ω>1)为原来的1ω得到.(2)函数y =sin ωx (ω>0,ω≠1)的周期是T =2πω,值域为[-1,1].预习交流4你能由周期函数的定义说明y =sin ωx (ω>0,ω≠1)的周期为什么是2πω吗?提示:由于sin(ωx +2π)=sin ωx ,即sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +2πω=sin ωx ,因此y =sin ωx 的周期为2πω.预习交流5若对于函数f (x )定义域中的每个值x ,都有f (2x +T )=f (2x ),能否说f (x )的周期为T? 提示:不能.从周期函数的定义式f (x +T )=f (x )可知,自变量x 本身增加的常数才是周期.当f (2x +T )=f (2x )时,有f ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +T 2=f (2x ),所以f (x )的周期不是T ,而是T2.在预习中,还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点 我的学疑点一、求三角函数的周期求下列函数的周期:(1)y =-3sin x ;(2)y =cos 5x ;(3)y =3tan 3x .思路分析:利用三角函数的周期以及周期的定义求解.解:(1)由于-3sin x =-3sin(x +2π),所以y =-3sin x 的周期T =2π;(2)由于cos 5x =cos(5x +2π)=cos ⎣⎢⎡⎦⎥⎤5⎝⎛⎭⎪⎫x +2π5,所以y =cos 5x 的周期T =2π5; (3)由于3tan 3x =3tan(3x +π)=3tan ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π3,所以y =3tan 3x 的周期T =π3.1.函数y =cos(-4x )的最小正周期为__________.答案:π2解析:y =cos(-4x )=cos 4x ,而cos 4x =cos(4x +2π)=cos ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫x +π2,所以函数的最小正周期为π2.2.已知y =2sin ωx (ω>0)的周期为4π,则ω=__________.答案:12解析:依题意应有2πω=4π,所以ω=12.一般地,函数y =A sin(ωx +φ)及函数y =A cos(ωx +φ)(A ≠0,ω≠0)的周期为2π|ω|,函数y =A tan(ωx +φ)的周期为π|ω|.二、三角函数的图象变换画出函数y =2sin 12x 的图象,并说明由这个函数的图象怎样得到函数y =sin x 的图象?思路分析:利用五点作图法画函数y =2sin 12x 的图象,然后通过横、纵坐标的变换得到函数y =sin x 的图象.解:令12x 分别取0,π,π,3π,2π,列表如下:x 0 π 2π 3π 4π 12x 0 π2 π 3π22πy =2sin 12x 02 0 -2 0 描点、连线即得函数y =2sin 2x 在一个周期上的图象,然后根据周期性,将其向左、右扩展,即得y =2sin 12x ,x ∈R 的图象.将y =2sin 12x 的图象上每一点的横坐标不变,纵坐标变为原来的12,可以得到函数y =sin 12x的图象,然后再将y =sin 12x 图象上每一点的纵坐标不变,横坐标变为原来的12,即可得到函数y =sin x 的图象.1.(2012浙江高考,文6)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( ).答案:A解析:y =cos 2x +1图象上所有点的横坐标伸长到原来的2倍得y 1=cos x +1,再向左平移1个单位长度得y 2=cos(x +1)+1,再向下平移1个单位长度得y 3=cos(x +1),故相应图象为A .2.为了得到函数y =sin x 的图象,应将函数y =13sin x 的图象上每一点的横坐标不变,纵坐标变为原来的( )倍即可.A .3B .13C .1D .32答案:A1.画函数y =A sin ωx (A >0,ω>0)的图象时,仍然可以用“五点法”,但应先作变量代换,令ωx =0,π2,π,3π2,2π,求得x 相应的值,然后根据x ,y 的值描点,连线画出函数的图象.2.进行图象变换时,一是要牢记横坐标与纵坐标的变化规则,二是要分清哪是变换前的函数,哪是变换后的函数.三、函数y =A sin ωx 的性质已知函数f (x )=3cos(2x +φ),其中0<φ<π,若f (x )是奇函数. (1)求φ的值;(2)求f (x )的单调区间.思路分析:结合诱导公式求φ的值,根据φ的值,将f (x )解析式化简,然后求其单调区间.解:(1)由于cos ⎝⎛⎭⎪⎫2x +π2=-sin 2x . 而y =-sin 2x 是奇函数,从而y =-3sin 2x 也是奇函数,故当φ=π2时,f (x )=3cos ⎝⎛⎭⎪⎫2x +π2=-3sin 2x 是奇函数,即φ的值为π2. (2)由(1)知f (x )=-3sin 2x .令2k π-π2≤2x ≤2k π+π2解得k π-π4≤x ≤k π+π4,k ∈Z ,所以f (x )的单调减区间是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ); 令2k π+π2≤2x ≤2k π+3π2解得k π+π4≤x ≤k π+3π4,所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ).若函数f (x )=14sin ωx (ω>0)的周期为3π,则其递减区间为__________.答案:⎣⎢⎡⎦⎥⎤3k π+3π4,3k π+9π4(k ∈Z ) 解析:由于f (x )的周期为3π,所以2πω=3π,ω=23.于是f (x )=14sin 23x .令2k π+π2≤23x ≤2k π+3π2,解得3k π+3π4≤x ≤3k π+94π,k ∈Z .故f (x )的减区间是⎣⎢⎡⎦⎥⎤3k π+3π4,3k π+9π4(k ∈Z ).求y =A sin ωx 的单调区间,可以把ωx 看作一个整体(保证ω>0)放入y =sin x 的单调区间内,解不等式求得.1.函数y =-sin x 的周期为( )A .π B.2π C.4π D.π2答案:B2.函数y =-3cos 2x 的最大值是( ) A .-1 B .-3 C .1 D .3 答案:D3.要得到函数y =sin 4x 的图象,只须将函数y =sin x 的图象上每一点的( ) A .横坐标不变,纵坐标变为原来的4倍 B .纵坐标不变,横坐标变为原来的4倍C .横坐标不变,纵坐标变为原来的14倍D .纵坐标不变,横坐标变为原来的14倍答案:D4.函数y =sin 3x 的图象,可以由函数y =12sin 3x 的图象上每一点( )得到.A .横坐标变为原来的3倍B .纵坐标变为原来的12倍C .横坐标变为原来的13倍D .纵坐标变为原来的2倍 答案:D5.若函数y =-5cos ωx (ω>0)的周期为4,则其递增区间是__________. 答案:[4k,4k +2](k ∈Z )解析:依题意有2πω=4,所以ω=π2,即y =-5cos π2x .令2k π≤π2x ≤2k π+π,解得4k ≤x ≤4k +2,k ∈Z ,因此函数的递增区间是[4k,4k +2](k ∈Z ).。

高中数学《函数的周期性与对称性》针对练习及答案

高中数学《函数的周期性与对称性》针对练习及答案

第二章 函数2.3.2 函数的周期性与对称性(针对练习)针对练习针对练习一 周期性与对称性的判断1.下列函数中,既是奇函数又是周期函数的是 A .sin y x = B .cos y x =C .ln y x =D .3y x =2.已知函数()3lg x f x x =+,则下列选项正确的是( ) A .()f x 是奇函数 B .()f x 是偶函数 C .()f x 是周期函数 D .()f x 没有最大值3.函数221()f x x x =+的图像关于( ) A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称4.函数5x y =与5-=x y 的图象( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称 D .关于直线y x =轴对称5.函数cos y x =与函数cos y x =-的图象 A .关于直线1x =对称 B .关于原点对称 C .关于x 轴对称 D .关于y 轴对称针对练习二 由函数周期性求函数值6.已知()f x 在R 上是奇函数,且满足(4)()f x f x +=,当(2,0)x ∈-时,2()2f x x =,则(2019)f 等于( )A .-2B .2C .-98D .987.已知函数()f x 是定义在R 上周期为4的奇函数,当02x <<时,()2log f x x =,则()722f f ⎛⎫+= ⎪⎝⎭A .1B .-1C .0D .28.已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为( ) A .4 B .4- C .0 D .6-9.已知定义在R 上的函数()f x 满足()()2=-+f x f x ,当(]0,2x ∈时,()22log xf x x =+,则(2022)f =( ) A .5 B .12C .2D .-210.定义在R 上的函数()f x ,满足()()5f x f x +=,当(]3,0x ∈-时,()1f x x =--,当(]0,2x ∈时,()2log f x x =,则()()()122022f f f ++⋅⋅⋅+=( ).A .403B .405C .806D .809针对练习三 由函数对称性求函数值11.设定义在R 上的奇函数()y f x =,满足对任意的t R ∈都有()()1f t f t =-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时,()2f x x =-,则()332f f ⎛⎫+- ⎪⎝⎭的值等于( ) A .12- B .13-C .14-D .15-12.已知函数()f x 是定义在R 上的奇函数,且()f x 的图象关于直线2x =对称,当02x <<时,()22x x f x +=-,则()5f =A .3B .3-C .7D .7-13.已知(1)y f x =+是定义在R 上的奇函数,且(4)(2)f x f x +=-,当[1,1)x 时,()2x f x =,则(2021)(2022)+=f f ( )A .1B .4C .8D .1014.函数()y f x =为偶函数,且图象关于直线32x =对称,()54f =,则()1f -=( ) A .3 B .4 C .3- D .4-15.已知函数()2f x x ax =+对定义域内任意的x 都有()()22f x f x -=+,则实数a 等于( ) A .4 B .-4C .14D .14-针对练习四 由周期性与对称性求函数解析式16.设奇函数()f x 的定义域为R ,且(4)()f x f x +=,当(]4,6x ∈时()21x f x =+,则()f x 在区间[)2,0-上的表达式为 A .()21x f x =+ B .4()21x f x -+=-- C .4()21x f x -+=+ D .()21x f x -=+17.函数y =f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x +1,则在x ∈(1,2)时f (x )=( ) A .﹣x ﹣3 B .3﹣x C .1﹣x D .x +118.设函数()()y f x x R =∈为偶函数,且x R ∀∈;满足3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,当[]2,3x ∈时,()f x x =,则当[]2,0x ∈-时,()f x = A .4x + B .2x - C .21x ++ D .31x -+19.函数()f x 的图象与曲线2log y x =关于x 轴对称,则()f x =( ) A .2x B .2x - C .2log ()x - D .21log x20.若函数()y g x =的图象与ln y x =的图象关于直线2x =对称,则()g x =( ) A .()ln 2x + B .()ln 2x -C .()ln 4x -D .()ln 4x +针对练习五 由周期性与对称性比较大小21.已知函数()f x 是奇函数,且(2)()f x f x +=-,若()f x 在[]1,0-上是增函数,313(1),(),()23f f f 的大小关系是( )A .313(1)()()23f f f << B .313()(1)()23f f f << C .133()(1)()32f f f << D .133()()(1)32f f f <<22.已知定义在R 上的函数()y f x =满足下列三个条件:①对任意的1212x x ≤<≤,都有()()12f x f x >;②()1y f x =+的图象关于y 轴对称; ②对任意的R x ∈,都有()()2f x f x =+,则13f ⎛⎫ ⎪⎝⎭,32f ⎛⎫ ⎪⎝⎭,83f ⎛⎫⎪⎝⎭的大小关系是( )A .831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .813332f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C .138323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .381233f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23.定义在R 上的函数()f x 满足:()()111f x f x -=-+成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>24.已知函数()y f x =的定义域为R ,且满足下列三个条件:②任意[]12,4,8x x ∈,当12x x <时,都有()()12120f x f x x x ->-;②()()4f x f x +=-;②()4y f x =+是偶函数;若()()()6,11,2025a f b f c f ===,则a b c 、、的大小关系正确的是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<25.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >>针对练习六 由抽象函数周期性与对称性求函数值26.已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()2f x f x +=-,()01f =,则()()()()1232018f f f f ++++= ( )A .1-B .0C .1D .201827.已知函数()f x 是R 上的奇函数,且对任意x ∈R 有()1f x +是偶函数,且()11f -=,则()()20202021f f +=. A .1- B .0 C .1 D .228.已知()f x 是定义在R 上的奇函数,()1f x -为偶函数,且函数()f x 与直线y x =有一个交点()()1,1f ,则()()()()()12320182019f f f f f +++++=( )A .2-B .0C .1-D .129.设定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,若(1)2f =,则(99)f = A .132B .134C .2D .430.已知函数()f x 对任意的R x ∈都有()()()21f x f x f +-=.若函数()2y f x =+的图象关于2x =-对称,且()08f =,则()()99100f f +=( )A .0B .4C .5D .8第二章 函数2.3.2 函数的周期性与对称性(针对练习)针对练习针对练习一 周期性与对称性的判断1.下列函数中,既是奇函数又是周期函数的是 A .sin y x = B .cos y x =C .ln y x =D .3y x =【答案】A 【解析】 【详解】根据函数的奇偶性定义可知函数3sin ,y x y x ==为奇函数,sin y x =为周期函数,选A.2.已知函数()3lg x f x x =+,则下列选项正确的是( ) A .()f x 是奇函数 B .()f x 是偶函数 C .()f x 是周期函数 D .()f x 没有最大值【答案】D 【解析】 【分析】根据指数函数、对数函数的性质直接进行分析即可. 【详解】因为()3lg x f x x =+的定义域为()0,∞+,不关于原点对称,排除A 和B ; 又因为3,lg x y y x ==在()0,∞+上单调递增, 所以()f x 易知不是周期函数,排除C ,()f x 在()0,∞+上单调递增没有最大值,故D 正确,故选:D. 3.函数221()f x x x =+的图像关于( ) A .y 轴对称B .直线y x =-对称C .坐标原点对称D .直线y x =对称【答案】A 【解析】 【分析】函数221()f x x x =+,观察知该函数是一个偶函数,解答本题要先证明其是偶函数再由偶函数的性质得出其对称轴是y 轴. 【详解】函数的定义域为R , ()()()()222211f x x x f x x x -=-+=+=-, ()221f x x x ∴=+是一个偶函数, 由偶函数的性质知函数221()f x x x=+的图像关于y 轴对称. 故选:A . 【点睛】本题考点是奇偶函数图象的对称性,考查了偶函数的证明以及偶函数的性质,属于一道基本题.4.函数5x y =与5-=x y 的图象( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称 D .关于直线y x =轴对称【答案】A 【解析】 【分析】设()5x f x =,得()5xf x --=,根据函数()y f x =与函数()y f x =-之间的对称性可得出正确选项. 【详解】设()5x f x =,得()5x f x --=,由于函数()y f x =与函数()y f x =-的图象关于y 轴对称,因此,函数5x y =与5-=x y 的图象关于y 轴对称. 故选A. 【点睛】本题考查函数图象之间对称性的判断,熟悉两函数关于坐标轴、原点对称的两个函数解析式之间的关系是关键,考查推理能力,属于基础题. 5.函数cos y x =与函数cos y x =-的图象 A .关于直线1x =对称 B .关于原点对称 C .关于x 轴对称 D .关于y 轴对称【答案】C 【解析】 【分析】作出函数cos y x =与函数cos y x =-的简图,即可得到答案. 【详解】根据余弦函数的图像,作出函数cos y x =与函数cos y x =-的简图如下:由图可得函数cos y x =与函数cos y x =-的图象关于x 轴对称, 故答案选C 【点睛】本题考查余弦函数的图像问题,属于基础题.针对练习二 由函数周期性求函数值6.已知()f x 在R 上是奇函数,且满足(4)()f x f x +=,当(2,0)x ∈-时,2()2f x x =,则(2019)f 等于( )A .-2B .2C .-98D .98【答案】B 【解析】 【分析】根据已知条件判断出()f x 的周期,由此求得()2019f 的值. 【详解】由于(4)()f x f x +=,所以()f x 是周期为4的周期函数,所以()()()()22019505411212f f f =⨯-=-=⨯-=.故选:B 【点睛】本小题主要考查利用函数的周期性化简求值,属于基础题.7.已知函数()f x 是定义在R 上周期为4的奇函数,当02x <<时,()2log f x x =,则()722f f ⎛⎫+= ⎪⎝⎭A .1B .-1C .0D .2【答案】A 【解析】 【详解】函数()f x 是定义在R 上周期为4的奇函数, (2)(2)(2)(2)0f f f f ∴-==-⇒=,又122711()()()log 1222f f f =-=-=-=,所以()7212f f ⎛⎫+= ⎪⎝⎭,故选A. 8.已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为( ) A .4 B .4- C .0 D .6-【答案】B 【解析】 【分析】由已知可求得函数的周期为3,结合函数为奇函数可得1(2021)(2022)(2023)2()2f f f f -+--=即可求解.【详解】因为3()()2f x f x -=-,所以(3)()f x f x -=,因此函数的周期为3,所以(2021)(2022)(2023)f f f -+--(2)(0)(1)f f f =-+--, 又函数()f x 是R 上的奇函数,所以(3)()()f x f x f x -==--, 所以(1)(2)f f -=--,即(2)(1)f f =-,所以原式1(2)(0)(1)(2)(1)2(1)2()2f f f f f f f =-++=-+==,又当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,可得1()22f =-,因此原式1242f ⎛⎫==- ⎪⎝⎭.故选:B .9.已知定义在R 上的函数()f x 满足()()2=-+f x f x ,当(]0,2x ∈时,()22log xf x x =+,则(2022)f =( ) A .5 B .12C .2D .-2【答案】A 【解析】 【分析】根据题中条件,先确定函数以4为周期,利用函数周期性,再由给定区间的解析式,即可求出结果. 【详解】由()()2=-+f x f x 可得()()2f x f x +=-,所以()()()42f x f x f x +=-+=,因此函数()f x 以4为周期,又当(]0,2x ∈时,()22log xf x x =+, 所以()()222450522log 25(2022)f f f =+⨯==+=.故选:A.10.定义在R 上的函数()f x ,满足()()5f x f x +=,当(]3,0x ∈-时,()1f x x =--,当(]0,2x ∈时,()2log f x x =,则()()()122022f f f ++⋅⋅⋅+=( ).A .403B .405C .806D .809【答案】B 【解析】 【分析】由函数的周期性计算. 【详解】由()()5f x f x +=得()f x 是周期函数,周期是5,2(1)log 10f ==,2log (2)21f ==,(3)(2)(2)11f f =-=---=,(4)(1)0f f =-=,(5)011f =--=-,所以(1)(2)(3)(4)(5)1f f f f f ++++=,()()()1220224041(1)(2)405f f f f f ++⋅⋅⋅+=⨯++=.故选:B .针对练习三 由函数对称性求函数值11.设定义在R 上的奇函数()y f x =,满足对任意的t R ∈都有()()1f t f t =-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时,()2f x x =-,则()332f f ⎛⎫+- ⎪⎝⎭的值等于( ) A .12- B .13-C .14-D .15-【答案】C 【解析】 【分析】利用函数()y f x =的奇偶性和对称性可分别求得()3f 和32f ⎛⎫- ⎪⎝⎭的值,相加即可求得结果. 【详解】由于函数()y f x =为R 上的奇函数,满足对任意的t R ∈都有()()1f t f t =-, 则()()()()()()()()31322121100f f f f f f f f =-=-=-=--=--===,2333111112222224f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=--==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因此,()31324f f ⎛⎫+-=- ⎪⎝⎭.故选:C. 【点睛】本题考查利用函数的奇偶性与对称性求函数值,考查计算能力,属于基础题. 12.已知函数()f x 是定义在R 上的奇函数,且()f x 的图象关于直线2x =对称,当02x <<时,()22x x f x +=-,则()5f =A .3B .3-C .7D .7-【答案】D 【解析】 【分析】由题意可得()()22f x f x +=-+,再将()5f 化成()1f -,即可得到答案; 【详解】由题意可得()()22f x f x +=-+,所以()()()()()()35323211217f f f f f =+=-+=-=-=--=-.故选:D. 【点睛】本题考查函数的性质,考查运算求解能力与推理论证能力.13.已知(1)y f x =+是定义在R 上的奇函数,且(4)(2)f x f x +=-,当[1,1)x 时,()2x f x =,则(2021)(2022)+=f f ( )A .1B .4C .8D .10【答案】A 【解析】根据函数的奇偶性,对称性判断函数的周期并求解. 【详解】因为(1)f x +是定义在R 上的奇函数,所以()y f x =图象的对称中心为(1,0),且(1)0f =. 因为(4)(2)f x f x +=-,所以()y f x =图象的对称轴方程为3x =, 故()f x 的周期8T =,(2021)(5)==f f (1)0f =,(2022)(6)(0)1===f f f ,从而(2021)(2022)1+=f f , 故选:A .14.函数()y f x =为偶函数,且图象关于直线32x =对称,()54f =,则()1f -=( ) A .3 B .4 C .3- D .4-【答案】B 【解析】 【分析】利用函数的对称性和偶函数的性质进行求解即可. 【详解】因为函数()y f x =的图象关于直线32x =对称,所以()(2)54f f -==, 又因为函数()y f x =为偶函数,所以()2(2)4f f -==,()1(1)f f -=, 而函数()y f x =的图象关于直线32x =对称,所以()1(1)(2)4f f f -===.故选:B15.已知函数()2f x x ax =+对定义域内任意的x 都有()()22f x f x -=+,则实数a 等于( ) A .4 B .-4 C .14D .14-【答案】B 【解析】 【分析】根据()()22f x f x -=+得到()f x 关于2x =对称,利用对称轴公式得到答案. 【详解】()()22f x f x -=+则()f x 关于2x =对称,故242aa -=∴=-故选:B 【点睛】本题考查了函数的对称问题,根据()()22f x f x -=+确定函数的对称轴是解题的关键.针对练习四 由周期性与对称性求函数解析式16.设奇函数()f x 的定义域为R ,且(4)()f x f x +=,当(]4,6x ∈时()21x f x =+,则()f x 在区间[)2,0-上的表达式为 A .()21x f x =+ B .4()21x f x -+=-- C .4()21x f x -+=+ D .()21x f x -=+【答案】B 【解析】 【分析】由()()4f x f x +=,可得原函数的周期,再结合奇偶性,把自变量的范围[)2,0-转化到(]4,6上,则f (x )在区间[)2,0-上的表达式可求. 【详解】当[2,0)x ∈-时,(]0,2x -∈,(]44,6x ∴-+∈又②当(]4,6x ∈时,()21x f x =+,4(4)21x f x -+∴-+=+又(4)()f x f x +=,∴函数()f x 的周期为4T =,(4)()f x f x ∴-+=-又②函数()f x 是R 上的奇函数,()()f x f x ∴-=-∴4()21x f x -+-=+,∴当[)2,0x ∈-时,4()21x f x -+=--.故选:B . 【点睛】本题综合考查函数的周期性、奇偶性,以及函数解析式的求法.要注意函数性质的灵活转化,是中档题.一般这类求函数解析式的题目是求谁设谁,再由周期性或者奇偶性将要求的区间化到所给的区间内.17.函数y =f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x +1,则在x ∈(1,2)时f (x )=( ) A .﹣x ﹣3 B .3﹣xC .1﹣xD .x +1【答案】B 【解析】 【分析】先设x ∈(1,2),根据周期性和奇偶性将x 转化到(0,1),代入函数解析式,然后根据性质化简求出解析式即可. 【详解】设x ∈(1,2),则﹣x ∈(﹣2,﹣1),2﹣x ∈(0,1), ∴f (2﹣x )=2﹣x +1=3﹣x ,函数y =f (x )是以2为周期的偶函数, ∴f (x +2)=f (x ),f (﹣x )=f (x ), 则f (2﹣x )=f (﹣x )=f (x )=3﹣x . 故选:B . 【点睛】本题主要考查了函数的奇偶性、周期性等有关性质,同时考查了函数解析式的求解方法,属于基础题.18.设函数()()y f x x R =∈为偶函数,且x R ∀∈;满足3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,当[]2,3x ∈时,()f x x =,则当[]2,0x ∈-时,()f x = A .4x + B .2x - C .21x ++ D .31x -+【答案】D 【解析】 【详解】试题分析:由3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭可得 (2)()f x f x +=,则当[2,1]x ∈--时,4[2,3],()(4)413x f x f x x x +∈=+=+=++;当 [1,0]x ∈-时,[0,1]x -∈, 2[2,3]x -∈,()()(2)231f x f x f x x x =-=-=-=--,应选D.考点:分段函数的解析式及分类整合思想.【易错点晴】函数的周期性、奇偶性及分类整合思想不仅是中学数学中的重要知识点也是解决许多数学问题的重要思想和方法.本题在求解时,先从题设中的已知条件3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭入手,探究出其周期为 2,再分类求出当[]2,0x ∈-时,和当[1,0]x ∈-时函数的解析表达式分别为4[2,3],()(4)x f x f x +∈=+413x x =+=++和 [0,1],2[2,3]x -∈-,()()(2)231f x f x f x x x =-=-=-=--,从而使得问题巧妙获解.19.函数()f x 的图象与曲线2log y x =关于x 轴对称,则()f x =( ) A .2x B .2x - C .2log ()x - D .21log x【答案】D 【解析】任取函数()f x 上的一点(),x y ,先求出点(),x y 关于x 轴对称的点坐标为(),x y -,又点(),x y -在曲线2log y x =上,整理即可得出结果.【详解】任取函数()f x 上的一点(),x y ,由函数()f x 的图象与曲线2log y x =关于x 轴对称, 则点(),x y 关于x 轴对称的点坐标为(),x y -, 又点(),x y -在曲线2log y x =上, 可得222log log log 1y y xx x -=⇒=-=, 则()21log f x x=. 故选:D. 【点睛】关键点睛:求出点(),x y 关于x 轴对称的点坐标是解题的关键.20.若函数()y g x =的图象与ln y x =的图象关于直线2x =对称,则()g x =( ) A .()ln 2x + B .()ln 2x -C .()ln 4x -D .()ln 4x +【答案】C 【解析】 【分析】在函数()y g x =的图象上任取一点(),x y ,由对称性的知识可知,点(),x y 关于直线2x =的对称点在函数ln y x =的图象上,然后计算即可得解. 【详解】在函数()y g x =的图象上任取一点(),x y , 则点(),x y 关于直线2x =对称的点为()4,x y -,且点()4,x y -在函数ln y x =的图象上,所以()ln 4y x =-. 故选:C . 【点睛】本题考查函数的对称性的应用,考查逻辑思维能力和分析能力,属于常考题.针对练习五 由周期性与对称性比较大小21.已知函数()f x 是奇函数,且(2)()f x f x +=-,若()f x 在[]1,0-上是增函数,313(1),(),()23f f f 的大小关系是( )A .313(1)()()23f f f <<B .313()(1)()23f f f <<C .133()(1)()32f f f << D .133()()(1)32f f f <<【答案】D 【解析】 【分析】由f (x+2)=﹣f (x ),得f (x+4)=f (x ),利用函数奇偶性单调性之间的关系,即可比较大小. 【详解】②f (x+2)=﹣f (x ),函数f (x )是奇函数, ②f (x+2)=﹣f (x )=f (﹣x ), ②函数f (x )关于x=1对称, 且f (x+4)=f (x ),②函数是周期为4的周期数列. ②f (x )在[﹣1,0]上是增函数,②f (x )在[﹣1,1]上是增函数,f (x )在[1,2]上是减函数, f (133)=f (4+13)=f (13)=f (53),②f (x )在[1,2]上是减函数,且1<32<53, ②f (1)>f (32)>f (53), 即f (133)<f (32)<f (1),故选D . 【点睛】本题主要考查函数值的大小比较,利用函数的奇偶性,对称性和单调性是解决本题的关键,综合考查函数的性质,考查学生的转化意识,属于中档题. 22.已知定义在R 上的函数()y f x =满足下列三个条件: ②对任意的1212x x ≤<≤,都有()()12f x f x >; ②()1y f x =+的图象关于y 轴对称; ②对任意的R x ∈,都有()()2f x f x =+ 则13f ⎛⎫⎪⎝⎭,32f ⎛⎫ ⎪⎝⎭,83f ⎛⎫⎪⎝⎭的大小关系是( )A .831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .813332f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .138323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .381233f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】A 【解析】 【分析】根据②可得()y f x =在()1,2上单调递减,根据②可得()y f x =的图象关于1x =对称,根据②可得()y f x =周期为2,根据单调性、周期性、对称性即可比较大小. 【详解】因为②对任意的1212x x ≤<≤,都有()()12f x f x >; 可得()y f x =在()1,2上单调递减, 因为②()1y f x =+的图象关于y 轴对称; 可得()y f x =的图象关于1x =对称, 因为②对任意的R x ∈,都有()()2f x f x =+, 所以()y f x =周期为2,因为()y f x =的图象关于1x =对称,所以1533f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 因为()y f x =周期为2,所以824333f f f ⎫⎛⎫⎛⎫==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()y f x =在()1,2上单调递减,435323<<, 所以435323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:A.23.定义在R 上的函数()f x 满足:()()111f x f x -=-+成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >>C .b c a >>D .c b a >>【答案】D 【解析】 【分析】由()()111f x f x -=-+,可得函数()f x 周期4T =,将自变量的值利用周期转化到[]2,0-,结合单调性,即得解 【详解】由题意,()()111f x f x -=-+,则()()113f x f x +=-+ ()1(3)f x f x ∴-=+()(4)f x f x ∴=+,可得函数()f x 周期4T =()6(2)a f f ∴==-,(()4b f f ==,()4(0)c f f ==由于()f x 在[]2,0-上单调递增(2)4)(0)f f f ∴-<<即a b c ∴<< 故选:D 【点睛】本题考查了函数的周期性与单调性综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题24.已知函数()y f x =的定义域为R ,且满足下列三个条件:②任意[]12,4,8x x ∈,当12x x <时,都有()()12120f x f x x x ->-;②()()4f x f x +=-;②()4y f x =+是偶函数;若()()()6,11,2025a f b f c f ===,则a b c 、、的大小关系正确的是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<【答案】C 【解析】 【分析】由条件②确实单调性,条件②确定周期性,条件②确定对称性,由对称性和周期性化自变量到区间[4,8]上,再由单调性得大小关系、 【详解】因为任意[]12,4,8x x ∈,当12x x <时,都有()()12120f x f x x x ->-,所以()f x 在[4,8]上是增函数,因为()()4f x f x +=-,所以(8)(4)()f x f x f x +=-+=,()f x 是周期函数,周期是8; 由()4y f x =+是偶函数,得()f x 的图象关于直线4x =对称,(11)(3)f f =(5)f =,(2025)(1)(7)f f f ==,又(5)(6)(7)f f f <<,所以b a c <<. 故选:C . 【点睛】思路点睛:本题考查函数的奇偶性、单调性、周期性.解题方法一般是利用周期性把自变量化小,再由周期性(或对称性)化自变量到同一个单调区间上,然后由单调性得函数值大小.25.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >>【答案】B 【解析】根据已知可得函数()f x 的图象关于直线1x =对称,周期为4,且在[]1,3上为增函数,得出()()20193f f =,()()()202002f f f ==,()()20211f f =,根据单调性即可比较(2019),(2020),(2021)f f f 的大小.【详解】解:②函数()f x 满足:(2)()f x f x -=,故函数的图象关于直线1x =对称; (2)(2)f x f x +=-,则()()4f x f x +=,故函数的周期为4;12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->,故函数在[]1,3上为增函数;故()()20193f f =,()()()202002f f f ==,()()20211f f =, 而()()()321f f f >>,所以(2019)(2020)(2021)f f f >>. 故选:B. 【点睛】本题考查函数的基本性质的应用,考查函数的对称性、周期性和利用函数的单调性比较大小,考查化简能力和转化思想.针对练习六 由抽象函数周期性与对称性求函数值26.已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()2f x f x +=-,()01f =,则()()()()1232018f f f f ++++= ( )A .1-B .0C .1D .2018【答案】A【解析】【分析】 首先求得函数()f x 为周期函数,周期为4,故()()()()()()()()()()1232018504123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦,分别求得()()()()1,2,3,4f f f f ,问题得解.【详解】解:因为()()2f x f x +=-,()()()()()222,42,f x f x f x f x f x ++=-++=-+=则 所以函数()f x 为周期函数,且周期为4,所以()()()()1232018f f f f ++++()()()()()()504123412f f f f f f ⎡⎤=+++++⎣⎦.因为()f x 是定义域为(),-∞+∞的偶函数,且()01f =,所以()()401f f ==,当1x =-时,()()()111f f f =--=-,所以()10f =,当0x =时,()()201f f =-=-,当1x =时,()()310f f =-=,所以()()()()12340f f f f +++=,所以()()()()1232018f f f f ++++()()()()()()504123412f f f f f f ⎡⎤=+++++⎣⎦1=-. 故选A .【点睛】本题考查函数的周期性以及奇偶性,比较基础.27.已知函数()f x 是R 上的奇函数,且对任意x ∈R 有()1f x +是偶函数,且()11f -=,则()()20202021f f +=.A .1-B .0C .1D .2 【答案】A【解析】根据题意,由函数奇偶性的定义分析可得()()()2f x f x f x +=-=-,进而可得()()()42f x f x f x +=-+=,即可得()f x 是周期为4的周期函数,据此求出()()20202021f f +的值,相加即可得答案.【详解】解:根据题意,()1f x +是偶函数,则()()11f x f x -+=+,变形可得()()2f x f x +=-.又由()f x 是R 上的奇函数,则()()()2f x f x f x +=-=-,变形可得()()()42f x f x f x +=-+=,所以()f x 是周期为4得周期函数.因为()f x 是R 上的奇函数,所以()00f =,则()()()20200505400f f f =+⨯=;()()()()202115054111f f f f =+⨯==--=-.故()()202020211f f +=-.故选:A.【点睛】本题考查函数的奇偶性与周期性的应用,关键是分析函数的周期性,属于基础题. 28.已知()f x 是定义在R 上的奇函数,()1f x -为偶函数,且函数()f x 与直线y x =有一个交点()()1,1f ,则()()()()()12320182019f f f f f +++++=( ) A .2-B .0C .1-D .1【答案】B【解析】推导出函数()y f x =是以4为周期的周期函数,并求出()()()()1234f f f f +++以及()2020f 值,结合周期性可求得所求代数式的值.【详解】因为函数()y f x =为奇函数,()1f x -为偶函数,所以()()()111f x f x f x -+=--=-,则()()()311f x f x f x +=-+=-,所以函数()y f x =是周期为4的周期函数.因为奇函数()y f x =的定义域为R ,所以()00f =.因为函数()y f x =与直线y x =有一个交点()()1,1f ,所以()11f =.所以()()200f f =-=,()()311f f =-=-,()()400f f ==.所以()()()()()410120130f f f f =++++++-=.故()()()()()12320182019f f f f f +++++=()()()()()()()()123201820192020202002020000f f f f f f f f ++++++-=-=-=. 故选:B.【点睛】本题考查抽象函数值的计算,涉及函数对称性的应用,推导出函数的周期性是解答的关键,考查分析问题和解决问题的能力,属于中等题.29.设定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,若(1)2f =,则(99)f = A .132 B .134 C .2 D .4【答案】A【解析】先由题意推出函数()f x 为周期函数且周期为4,则有()(99)3f f =,然后由()(2)13f x f x ⋅+=和(1)2f =解得13(3)2f =,即可得出答案. 【详解】由题意定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,则有(2)(4)13f x f x +⋅+=,联立解得()(4)f x f x =+,则得函数()f x 为周期函数且周期为4,则有()()(99)42433f f f =⨯+=;又因(1)2f =,则由(1)(3)13f f ⋅=解得13(3)2f =,所以可得13(99)2f =. 故选:A.【点睛】本题考查了函数周期性的判断与求解,考查了函数周期性的应用,属于一般难度的题.30.已知函数()f x 对任意的R x ∈都有()()()21f x f x f +-=.若函数()2y f x =+的图象关于2x =-对称,且()08f =,则()()99100f f +=( )A .0B .4C .5D .8 【答案】D【解析】【分析】由函数()2y f x =+的图象关于2x =-对称,可得()f x 为偶函数,再对()()()21f x f x f +-=赋值1x =-可得()10f =,从而可得()()+2f x f x =,即()f x 的最小正周期为2,从而可得()()()()9910010f f f f +=+.【详解】因为()+2=y f x 的图象关于直线2x =-对称,所以()y f x =的图象关于直线0x =对称,即()f x 为偶函数.因为()()()+21-=f x f x f ,所以()()()1211f f f -+--=,又()()11f f -=,所以()10f =,可得()()+2f x f x =,所以()f x 的最小正周期为2,所以(99)(1)0f f ==,(100)(0)8f f ==,所以(99)(100)8f f +=.故选:D.【点睛】本题主要考查利用函数的奇偶性及周期性,求抽象函数的值,同时考查函数的图象的平移变换,属于中档题.。

高中数学《函数的周期性与对称性》题型战法试题及答案

高中数学《函数的周期性与对称性》题型战法试题及答案

第二章 函数2.3.1函数的周期性与对称性(题型战法)知识梳理一 函数的周期性函数()y f x =满足定义域内的任一实数x (其中,a b 为常数) (1)()()f x f x a =+,则()x f 是以T a =为周期的周期函数; (2)()()f x a f x b +=-, 则()x f 是以b a T +=为周期的周期函数; (3)()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (4)()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; 二 函数的对称性轴对称:若()()f a x f b x +=- 则f(x)关于2ba x +=对称. 中心对称:若()()2f a x f b x m ++-= 则f(x)关于(2ba +,m) 对称.三 由对称性推周期性(1) 函数()y f x =满足()()f a x f a x +=-(0a >),①若()x f 为奇函数,则函数()f x 4T a =,②若()x f 为偶函数,则函数()f x 周期为2T a =.(2) 函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(3) 函数()y f x =()x R ∈的图象关于两点()0,A a y ,()0,B b y ()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(4) 函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b ≠都对称,则函数()f x 是以4a b -为最小正周期的周期函数;题型战法题型战法一 周期性与对称性的判断典例1.下列函数是周期函数的有( ) ①sin y x = ①cos y x = ①2y xA .①①B .①①C .①①D .①①①变式1-1.下列函数中,既是周期函数又是偶函数的是( ) A .0.5log y x = B .sin y x =C .cos y x =D .tan y x =变式1-2.函数x y e =与x y e -=的图象( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称变式1-3.函数91()3x x f x +=的图像( )A .关于直线1x =对称B .关于y 轴对称C .关于原点对称D .关于x 轴对称变式1-4.函数1()f x x x=+的图象关于( )对称. A .直线y x = B .原点C .y 轴D .x 轴题型战法二 由函数周期性求函数值典例2.已知函数()y f x =为R 上的偶函数,若对于0x ≥时,都有()()4f x f x =+,且当[)0,2x ∈时,()()2log 1f x x =+,则()2021f -等于( ) A .1 B .-1 C .2log 6 D .23log 2变式2-1.定义在R 上的函数()f x 满足(2)()f x f x +=,当[1,1]x ∈-时,2()1f x x =+,则(2020.5)f =( ) A .1716B .54C .2D .1变式2-2.已知函数()f x 是R 上的偶函数,若对于0x ≥,都有()()2f x f x +=.且当[)0,2x ∈时,()()2log 1f x x =+,则()()20132014f f -+的值为( )A .2-B .1-C .1D .2变式2-3.已知定义在R 上的偶函数()f x ,对x ∀∈R ,有(6)()(3)f x f x f +=+成立,当03x ≤≤时,()26f x x =-,则()2021f =( ) A .0 B .2- C .4- D .2变式2-4.已知函数()f x 是定义在R 上的奇函数,f (1)5=,且(4)()f x f x +=-,则(2020)(2021)f f +的值为( )A .0B .5-C .2D .5题型战法三 由函数对称性求函数值典例3.如果函数()f x 对任意的实数x ,都有()1()f x f x +=-,且当12x ≥时,()()2log 31f x x =-,那么函数()f x 在[]2,0-上的最大值与最小值之和为( )A .2B .3C .4D .-1变式3-1.已知3()4f x ax bx =+-,若(2)6f =,则(2)f -=( ) A .-14B .14C .6D .10变式3-2.已知函数124xy a ⎛⎫= ⎪-⎝⎭的图象与指数函数x y a =的图象关于y 轴对称,则实数a 的值是 A .1 B .2 C .4D .8变式3-3.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为 A .1- B .1 C .2 D .3变式3-4.已知函数()sin cos f x a x x =+的图象关于直线3x π=对称,则4f π⎛⎫= ⎪⎝⎭( )AB C .D题型战法四 由周期性与对称性求函数解析式典例4.设()f x 是定义在R 上的周期为2的偶函数,已知[23]x ∈,时,()f x x =,则x ∈[-2,0]时,f (x )的解析式为f (x )=( ) A .4x + B .2x -C .31x -+D .21x -+变式4-1.已知函数()f x 满足(2)()f x f x +=,当(1,0)x ∈-时,有()2x f x =,则当x ①(-3,-2)时,()f x 等于( ) A .2x B .2x -C .22x +D .(2)2x -+-变式4-2.已知()f x 是定义在R 上周期为2的函数,当[]1,1x ∈-时,()||f x x =,那么当[]7,5x ∈--时()f x =( ) A .|3|x +B .|3|x -C .|6|x +D .|6|x -变式4-3.若函数()f x 与()3xg x =的图象关于直线3x =对称,则()f x =( )A .33x -B .33x -C .63x -D .63x -变式4-4.下列函数中,其图象与函数2x y =的图象关于直线1x =对称的是( ) A .12x y -= B .22x y -=C .12x y +=D .22x y +=题型战法五 由周期性与对称性比较大小典例5.定义在R 上的函数()f x 满足:()()4f x f x +=成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>变式5-1.已知定义域为R 的函数()f x 是奇函数,且()()2f x f x +=-,若()f x 在区间[]0,1是减函数,则53f ⎛⎫ ⎪⎝⎭,()1f ,112f ⎛⎫⎪⎝⎭的大小关系是( )A .()115123f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()511132f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ D .()511132f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭变式5-2.已知函数()f x 的定义域为 R ,且满足下列三个条件: ①对任意的[]12,4,8x x ∈ ,且 12x x ≠,都有()1212()0f x f x x x ->- ;①(8)()f x f x +=;①(4)y f x =+ 是偶函数;若(7),(11)a f b f =-=,(2020)c f =,则,,a b c 的大小关系正确的是( ) A .a b c << B .b a c << C .b c a << D .c b a <<变式5-3.定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;①函数()1y f x =+的图象关于y 轴对称;①对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为( A .()()()202120232022f f f >> B .()()()202120222023f f f >> C .()()()202320222021f f f >>D .()()()202220212023f f f >>变式5-4.已知定义在R 上的函数()f x 满足,①()()2f x f x +=,① ()2f x -为奇函数,①当[)0,1x ∈时,()()12120f x f x x x ->-()12x x ≠恒成立.则152f ⎛⎫- ⎪⎝⎭、()4f 、112f ⎛⎫ ⎪⎝⎭的大小关系正确的是( ) A .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭B .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭C .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭D .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭题型战法六 由抽象函数周期性与对称性求函数值典例6.已知()f x 是定义域为R 的偶函数,()10f =,()5.52f =,()()()1g x x f x =-.若()1g x +是偶函数,则()0.5g -=( ) A .-3 B .-2 C .2 D .3变式6-1.已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f = 则(45)f =( )A .2021B .2021-C .2022D .2022-变式6-2.若定义在实数集R 上的偶函数()f x 满足()0f x >,1(2)()f x f x +=,对任意的x ∈R 恒成立,则()2021f =( ) A .4 B .3 C .2 D .1变式6-3.已知定义在R 上的函数()f x ,满足()()0f x f x ,(5)(5)f x f x -=+,且(1)2022f =,则(2020)(2021)f f -=( )A .2026B .4044C .2022-D .4044-变式6-4.函数()f x 定义域为R ,且,(4)()2(2)x R f x f x f ∀∈+=+,若函数(1)f x +的图象关于1x =-对称,且(1)3f =,则(2021)f =( ) A .3 B .-3C .6D .-6第二章 函数2.3.1函数的周期性与对称性(题型战法)知识梳理一 函数的周期性函数()y f x =满足定义域内的任一实数x (其中,a b 为常数) (1)()()f x f x a =+,则()x f 是以T a =为周期的周期函数; (2)()()f x a f x b +=-, 则()x f 是以b a T +=为周期的周期函数;(3)()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (4)()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; 二 函数的对称性轴对称:若()()f a x f b x +=- 则f(x)关于2ba x +=对称. 中心对称:若()()2f a x f b x m ++-= 则f(x)关于(2ba +,m) 对称.三 由对称性推周期性(1) 函数()y f x =满足()()f a x f a x +=-(0a >),①若()x f 为奇函数,则函数()f x 周期为4T a =,②若()x f 为偶函数,则函数()f x 周期为2T a =.(2) 函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(3) 函数()y f x =()x R ∈的图象关于两点()0,A a y ,()0,B b y ()a b ≠都对称,则函数()f x 是以2a b -为最小正周期的周期函数;(4) 函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b ≠都对称,则函数()f x 是以4a b -为最小正周期的周期函数;题型战法题型战法一 周期性与对称性的判断典例1.下列函数是周期函数的有( ) ①sin y x = ①cos y x = ①2y xA .①①B .①①C .①①D .①①①【答案】C 【解析】 【分析】根据三角函数和二次函数的性质可得. 【详解】易得sin y x =和cos y x =是周期函数,2y x 不是周期函数.故选:C.变式1-1.下列函数中,既是周期函数又是偶函数的是( ) A .0.5log y x = B .sin y x =C .cos y x =D .tan y x =【答案】C 【解析】直接利用函数性质判断即可. 【详解】选项A 中0.5log y x =不是周期函数,故排除A; 选项B,D 中的函数均为奇函数,故排除B,D; 故选:C. 【点睛】本题考查基本初等函数的周期性和奇偶性,属于基础题. 变式1-2.函数x y e =与x y e -=的图象( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称【答案】B 【解析】 【分析】设点00(,)P x y 在函数x y e =图象上,证明00(,)P x y 关于y 轴对称的点00(,)x y -在函数x y e -=的图象上.【详解】解:设点00(,)P x y 在函数x y e =图象上,则00xy e =,则00(,)P x y 关于y 轴对称的点00(,)x y -满足0()0x x y ee --==, 所以点00(,)x y -在函数x y e -=的图象上. 故选:B变式1-3.函数91()3x x f x +=的图像( )A .关于直线1x =对称B .关于y 轴对称C .关于原点对称D .关于x 轴对称【答案】B 【解析】 【分析】利用分离常数法化简函数式,可知函数()f x 为偶函数,进而判断对称性. 【详解】 解:因为()()231911333333x xx x x xxxf x -++===+=+,()()33x x f x f x --=+= 易知()f x 为偶函数,所以函数()f x 的图象关于y 轴对称. 故选:B.变式1-4.函数1()f x x x=+的图象关于( )对称. A .直线y x = B .原点C .y 轴D .x 轴【答案】B 【解析】根据函数的奇偶性判断. 【详解】因为函数1()f x x x=+的定义域为{}|0x x ≠,关于原点对称, 又11()()f x x x f x x x⎛⎫-=--=-+=- ⎪⎝⎭,所以()f x 是奇函数,图象关于原点对称, 故选:B题型战法二 由函数周期性求函数值典例2.已知函数()y f x =为R 上的偶函数,若对于0x ≥时,都有()()4f x f x =+,且当[)0,2x ∈时,()()2log 1f x x =+,则()2021f -等于( ) A .1 B .-1C .2log 6D .23log 2【答案】A 【解析】 【分析】由已知确定函数的周期,利用周期性和奇偶性进行求解. 【详解】①()y f x =为R 上的偶函数,①(2021)(2021)f f -=, 又当0x ≥时,()(4)f x f x =+, ①(2021)(2017)(1)f f f ==⋅⋅⋅=, 当[)0,2x ∈时,2()log (1)=+f x x , ①2(2021)(1)log (11)1f f -==+=. 故选:A.变式2-1.定义在R 上的函数()f x 满足(2)()f x f x +=,当[1,1]x ∈-时,2()1f x x =+,则(2020.5)f =( ) A .1716B .54C .2D .1【答案】B 【解析】 【分析】由()()2f x f x +=可知,函数()f x 的周期为2,利用周期性把所给的自变量转化到区间[]1,1-上,代入求值即可. 【详解】由()()2f x f x +=可知,函数()f 的周期为2,当[1,1]x ∈-时,2()1f x x =+, ①1115(2020.5)202012244f f f ⎛⎫⎛⎫=+==+= ⎪ ⎪⎝⎭⎝⎭.故选:B变式2-2.已知函数()f x 是R 上的偶函数,若对于0x ≥,都有()()2f x f x +=.且当[)0,2x ∈时,()()2log 1f x x =+,则()()20132014f f -+的值为( )A .2-B .1-C .1D .2【答案】C 【解析】 【分析】由()()2f x f x +=可得函数的周期为2,再结合函数为偶函数可得()()()()2013201410f f f f -+=+,然后由已知的解析式可求得答案【详解】①函数()f x 是(),-∞+∞上的偶函数, ①()()f x f x -=,又①对于0x ≥都有()()2f x f x +=,①2T =,①当[)0,2x ∈时,()()2log 1f x x =+,①()()()()()()201320142013201421006121007f f f f f f -+=+=⨯++⨯()()2210log 2log 11f f =+=+=,故选:C.变式2-3.已知定义在R 上的偶函数()f x ,对x ∀∈R ,有(6)()(3)f x f x f +=+成立,当03x ≤≤时,()26f x x =-,则()2021f =( ) A .0 B .2- C .4- D .2【答案】C 【解析】 【分析】求得()f x 的周期,结合奇偶性求得()2021f 的值. 【详解】依题意对x ∀∈R ,有(6)()(3)f x f x f +=+成立, 令3x =-,则()()()()33323f f f f =-+, 所以()30f =,故()()6f x f x +=, 所以()f x 是周期为6的周期函数,故()()()()202163371112164f f f f =⨯-=-==⨯-=-. 故选:C变式2-4.已知函数()f x 是定义在R 上的奇函数,f (1)5=,且(4)()f x f x +=-,则(2020)(2021)f f +的值为( )A .0B .5-C .2D .5【答案】B 【解析】 【分析】根据题意,分析可得(8)(4)()f x f x f x +=-+=,即函数()f x 是周期为8的周期函数,则有(2020)(0)f f =,(2021)f f =(1),由奇函数的性质求出(0)f 与f (1)的值,相加即可得答案. 【详解】解:根据题意,函数()f x 满足(4)()f x f x +=-,则有(8)(4)()f x f x f x +=-+=, 即函数()f x 是周期为8的周期函数,函数()f x 是定义在R 上的奇函数,则(0)0f =,(2020)(48252)f f f =+⨯=(4)(0)0f ==, (2021)(58252)f f f =+⨯=(5)f =-(1)5=-,则(2020)(2021)(0)f f f f +=+(1)5=-, 故选:B. 【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.题型战法三 由函数对称性求函数值典例3.如果函数()f x 对任意的实数x ,都有()1()f x f x +=-,且当12x ≥时,()()2log 31f x x =-,那么函数()f x 在[]2,0-上的最大值与最小值之和为( )A .2B .3C .4D .-1【答案】C 【解析】根据()1()f x f x +=-,可知:()f x 关于12x =对称,根据对称性,要求函数()f x 在[]2,0-上的最大值与最小值之和,即求函数()f x 在[]1,3上的最大值与最小值之和,代入即可得解. 【详解】根据()1()f x f x +=-,可知:()f x 关于12x =对称, 那么要求函数()f x 在[]2,0-上的最大值与最小值之和, 即求函数()f x 在[]1,3上的最大值与最小值之和,因为()()2log 31f x x =-递增,所以最小值与最大值分别为:(1)1f =,(3)3f =, (1)(3)4f f +=,故答案为:C. 【点睛】本题考查了函数的对称性,考查了转化思想,计算量较小,思路要求较高,属于中档题.变式3-1.已知3()4f x ax bx =+-,若(2)6f =,则(2)f -=( ) A .-14 B .14 C .6 D .10【答案】A 【解析】 【分析】先计算(2)+(2)f f -,再代入数值得结果. 【详解】(2)+(2)8248248f f a b a b -=+----=-,又(2)6f =,所以(2)14,f -=-故选A 【点睛】本题考查函数性质,考查基本分析求解能力,属基础题.变式3-2.已知函数124xy a ⎛⎫= ⎪-⎝⎭的图象与指数函数x y a =的图象关于y 轴对称,则实数a 的值是 A .1 B .2 C .4 D .8【答案】C 【解析】 【分析】指数函数xy a =关于y 轴对称的函数为1xy a ⎛⎫= ⎪⎝⎭,由此得到124a -与a 的关系,即可求解出a 的值. 【详解】因为两函数的图象关于y 轴对称,所以124a -与a 互为倒数,所以124aa =-,解得4a =. 故选C. 【点睛】本题考查指数函数图象对称与底数之间关系,难度较易.关于y 轴对称的指数函数的底数互为倒数.变式3-3.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为 A .1- B .1 C .2 D .3【答案】D 【解析】 【详解】试题分析:因为函数()1f x x x a =++-的图象关于直线1x =对称,所以点()()1,1f --与点()(),a f a ,关于直线1x =对称,11,32aa -+==,故选D.考点: 函数的图象与性质.变式3-4.已知函数()sin cos f x a x x =+的图象关于直线3x π=对称,则4f π⎛⎫= ⎪⎝⎭( )AB C .D 【答案】B 【解析】 【分析】先由对称性求得a ,再将4π代入函数解析式即可求得答案.【详解】因为()f x 的图象关于直线3x π=对称,所以()203f f π⎛⎫= ⎪⎝⎭,即112=-,解得a =422f π⎛⎫+= ⎪⎝⎭.题型战法四 由周期性与对称性求函数解析式典例4.设()f x 是定义在R 上的周期为2的偶函数,已知[23]x ∈,时,()f x x =,则x ∈[-2,0]时,f (x )的解析式为f (x )=( ) A .4x + B .2x - C .31x -+ D .21x -+【答案】C 【解析】 【分析】根据已知中函数的奇偶性和周期性,结合[]2,3x ∈时,()f x x =,可得答案. 【详解】解:∵()f x 是定义在R 上的周期为2的偶函数,[]2,3x ∈时,()f x x =,∴[]21x ∈--,时, []20,1x +∈,[]42,3x +∈,此时()()44f x f x x =+=+,[]1,0x ∈-时,[]0,1x -∈,[]22,3x -∈,此时()()()22f x f x f x x =-=-=-, 综上可得:[]2,0x ∈-时,()31f x x =-+ 故选:C . 【点睛】本题考查函数解析式的求法,函数的周期性,函数的奇偶性,难度中档. 变式4-1.已知函数()f x 满足(2)()f x f x +=,当(1,0)x ∈-时,有()2x f x =,则当x ①(-3,-2)时,()f x 等于( ) A .2x B .2x - C .22x + D .(2)2x -+-【答案】C 【解析】令(32)x ∈--,,则2(1,)x +∈-0,根据(1,0)x ∈-时,f (x )=2x ,可求得f (x +2)的解析式,再根据f (x +2)=f (x ),即可求得f (x )解析式.令(32)x ∈--,,则2(1,)x +∈-0, ①当(1,0)x ∈-时,有()2x f x =, ①f (x +2)=2x +2, ①f (x +2)=f (x ),①f (x +2)=f (x )=2x +2,(32)x ∈--,. 故选:C . 【点睛】本题考查函数解析式的求法,求函数解析式常见的方法有:待定系数法,换元法,凑配法,消元法等,考查学生的计算能力,属于基础题.变式4-2.已知()f x 是定义在R 上周期为2的函数,当[]1,1x ∈-时,()||f x x =,那么当[]7,5x ∈--时()f x =( ) A .|3|x + B .|3|x - C .|6|x + D .|6|x -【答案】C 【解析】利用周期函数的定义求解即可. 【详解】设[]7,5x ∈--,则[]61,1x +∈-, 由题意知,()66f x x +=+,因为函数()f x 是定义在R 上周期为2的函数, 所以()()6f x f x +=,即()6f x x =+. 故选: C 【点睛】本题考查周期函数的性质;熟练掌握周期函数的定义是求解本题的关键;属于常考题.变式4-3.若函数()f x 与()3xg x =的图象关于直线3x =对称,则()f x =( )A .33x -B .33x -C .63x -D .63x -【答案】D 【解析】 【分析】先设出函数()f x 图像上任意点的坐标,再求出关于直线3x =对称的点,代入函数()g x的解析式即可求解. 【详解】解:设函数()y f x =图像上的点为(,)M x y ,关于直线3x =对称的点为(6,)N x y -, 将点N 代入函数()y g x =的解析式可得:63x y -=, 故6()3x f x -=, 故选:D .变式4-4.下列函数中,其图象与函数2x y =的图象关于直线1x =对称的是( ) A .12x y -= B .22x y -= C .12x y += D .22x y +=【答案】B 【解析】 【分析】设所求函数图象上任意一点为(),x y ,由其关于直线1x =的对称点()2,x y -在函数2x y =的图象上可解得结果.【详解】设所求函数图象上任意一点为(),x y ,则其关于直线1x =的对称点()2,x y -在函数2x y =的图象上,所以22x y -=.故选:B.题型战法五 由周期性与对称性比较大小典例5.定义在R 上的函数()f x 满足:()()4f x f x +=成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>【答案】D 【解析】 【分析】由()()4f x f x +=,得到()f x 是周期为4的周期函数,得到(6)(2),(4)(0)f f f f =-=,4)f f =,结合()f x 在[]2,0-上单调递增,得到(2)4)(0)f f f -<<,即可求解.【详解】由题意,函数()f x 满足()()4f x f x +=,即函数()f x 是周期为4的周期函数,则(6)(68)(2),4),(4)(0)f f f f f f f =-=-==,又由函数()f x 在区间[]2,0-上单调递增,可得(2)4)(0)f f f -<<,即(6)(4)f f f <<,所以c b a >>. 故选:D.变式5-1.已知定义域为R 的函数()f x 是奇函数,且()()2f x f x +=-,若()f x 在区间[]0,1是减函数,则53f ⎛⎫ ⎪⎝⎭,()1f ,112f ⎛⎫⎪⎝⎭的大小关系是( )A .()115123f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ B .()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()511132f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()511132f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】根据已知等式判断出函数的周期性,再根据奇函数的性质和单调性进行判断即可. 【详解】()()()()()()22224f x f x f x f x f x f x +=-⇒++=-+⇒=+,由此可知函数()f x 的周期为4,函数()f x 是奇函数,()()2f x f x +=-,所以有:55771142333333f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 113311142222222f f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==-+=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 因为()f x 在区间[]0,1是减函数,11132<<, 所以()11132f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,即()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 故选:B变式5-2.已知函数()f x 的定义域为 R ,且满足下列三个条件: ①对任意的[]12,4,8x x ∈ ,且 12x x ≠,都有()1212()0f x f x x x ->- ;①(8)()f x f x +=;①(4)y f x =+ 是偶函数;若(7),(11)a f b f =-=,(2020)c f =,则,,a b c 的大小关系正确的是( ) A .a b c << B .b a c << C .b c a << D .c b a <<【答案】D 【解析】由已知条件可知()f x 在[]4,8上单调递增,周期为8,对称轴为4x =.则()7a f =,()5b f =,()4c f =,再结合函数的单调性即可判断大小.【详解】解:由①知,()f x 在[]4,8上单调递增;由①知,()f x 的周期为8; 由①知,()f x 的对称轴为4x =;则()()()717a f f f =-==,()()()()1183835b f f f f =-==-=,()()202025284c f f =-⨯=,因为457<<,由函数的单调性可知,c b a <<. 故选:D. 【点睛】本题考查了函数的对称性,考查了函数的周期,考查了函数的单调性.本题的关键是由已知条件分析出函数的性质.变式5-3.定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;①函数()1y f x =+的图象关于y 轴对称;①对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为( )A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>【答案】B 【解析】 【分析】由①①可得函数()f x 是周期为4的函数,且()f x 是奇函数,由①可得函数()f x 在[]0,1上单调递增,进而可得函数()f x 在[]1,1-上单调递增,从而利用周期性和单调性即可求解. 【详解】解:由题意,因为函数()1y f x =+的图象关于y 轴对称,所以()()11f x f x +=-+,所以()()2f x f x =-,所以函数()f x 的图象关于1x =对称,又()()220f x f x ++-=,所以()()20f x f x ++=,即()()2f x f x +=-, 因为()()()222f x f x f x ++=-+=⎡⎤⎣⎦,所以函数()f x 是周期为4的函数, 所以()()20211f f =,()()()202220f f f ==,()()20231f f =-, 因为()()2f x f x +=-,且()()2f x f x +=-,所以()()f x f x -=-, 所以函数()f x 为奇函数,又因为对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立,即()()()12120x x f x f x -->⎡⎤⎣⎦, 所以函数()f x 在[]0,1上单调递增, 所以函数()f x 在[]1,1-上单调递增,因为101>>-,所以()()()202120222023f f f >>, 故选:B.变式5-4.已知定义在R 上的函数()f x 满足,①()()2f x f x +=,① ()2f x -为奇函数,①当[)0,1x ∈时,()()12120f x f x x x ->-()12x x ≠恒成立.则152f ⎛⎫- ⎪⎝⎭、()4f 、112f ⎛⎫ ⎪⎝⎭的大小关系正确的是( ) A .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭B .()1115422f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭C .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭D .()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭【答案】C 【解析】 【分析】根据单调性的定义可得()f x 在0,1上单调递增,根据已知条件可得()f x 是周期为2的奇函数,根据周期性和单调性即可求解. 【详解】由()()2f x f x +=可得()f x 的周期为2, 因为()2f x -为奇函数,所以()f x 为奇函数, 因为[)0,1x ∈时,()()12120f x f x x x ->-,所以()f x 在0,1上单调递增,因为()f x 为奇函数,所以()f x 在1,0上单调递增,所以()f x 在()1,1-上单调递增, 因为1515124222f f f ⎛⎫⎛⎫⎛⎫-=-+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()44220f f f =-⨯=,1111123222f f f ⎛⎫⎛⎫⎛⎫=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()11022f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭,即()1511422f f f ⎛⎫⎛⎫->> ⎪ ⎪⎝⎭⎝⎭. 故选:C.题型战法六 由抽象函数周期性与对称性求函数值典例6.已知()f x 是定义域为R 的偶函数,()10f =,()5.52f =,()()()1g x x f x =-.若()1g x +是偶函数,则()0.5g -=( )A .-3B .-2C .2D .3【答案】D【解析】【分析】根据()1g x +得到()g x 关于1x =对称,得到()()2g x g x =-,结合()()()1g x x f x =-和()f x 为偶函数即可得()f x 周期为4,进而即得. 【详解】因为()1g x +为偶函数,则()g x 关于1x =对称,即()()2g x g x =-.即()()()()112x f x x f x -=--,即()()20f x f x +-=,()10f =也满足.又()f x 是定义域为R 偶函数,关于y 轴对称,①()()2f x f x =--,()()()()()2,42f x f x f x f x f x +=-+=-+=,①()f x 周期为4,①()()()()5.5 1.5 2.5 2.52f f f f ==-==,①()()()0.5 2.5 1.5 2.53g g f -===.故选:D.变式6-1.已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f = 则(45)f =( )A .2021B .2021-C .2022D .2022-【答案】D【解析】【分析】 首先利用赋值法求出()20f =,代入等式赋值得到(4)()f x f x +=-,即对称轴为2x =,再根据函数图象的平移规律判断函数为奇函数,进一步求得函数周期,进而得到(45)(3)(3)(1)f f f f =-=-=-,则可求出结果.【详解】因为对任意x ∈R ,都有(3)(1)9(2),f x f x f +=-+令1,x =- 得(2)(2)9(2),f f f =+ 解得(2)0,f =则(3)(1),f x f x +=- 即(4)(),f x f x +=-所以函数()f x 的图象关于直线2x =对称.又函数(9)f x +的图象关于点(9,0)-对称,则函数()f x 的图象关于点(0,0)对称, 即函数()f x 为奇函数,所以(4)()(),f x f x f x +=-=-所以(8)(4)(),f x f x f x +=-+= 所以8是函数()f x 的一个周期,所以(45)(683)(3)(3)(1)2022,f f f f f =⨯-=-=-=-=-故选:D.变式6-2.若定义在实数集R 上的偶函数()f x 满足()0f x >,1(2)()f x f x +=,对任意的x ∈R 恒成立,则()2021f =( )A .4B .3C .2D .1【答案】D【解析】【分析】根据题干条件得到()f x 为周期函数,最小正周期为4,进而得到()()20211f f =,利用()f x 是偶函数得到()()11f f -=,进而得到()211f =,结合()0f x >,得到()11f =. 【详解】1(2)()f x f x +=,则1()(2)f x f x =-,所以1(2)(2)()f x f x f x +==-,即()()4f x f x +=,()f x 为周期函数,最小正周期为4,则()()()2021505411f f f =⨯+=,令1x =-得:1(12)(1)f f -+=-,即()()111f f =-,又因为()f x 为偶函数,所以()()11f f -=,故()()111f f =,即()211f =,因为()0f x >,所以()11f =.故选:D变式6-3.已知定义在R 上的函数()f x ,满足()()0f x f x ,(5)(5)f x f x -=+,且(1)2022f =,则(2020)(2021)f f -=( ) A .2026B .4044C .2022-D .4044-【答案】C【解析】【分析】 根据题意可知函数是奇函数,进而推导()f x 的周期,然后求出函数值即可.【详解】()()0f x f x -+=,()()f x f x ∴-=-,()f x ∴是奇函数,x R ∈,(0)=0f ∴.(5)(5)f x f x -=+,()(10)f x f x ∴-=+, 由()()()(10)f x f x f x f x ,()(20)f x f x ∴=+,()f x ∴的周期为20T =.0(1)202()20=f f =,.(0)(1)020222022(2020)(2021)f f f f ∴-=-=--=. 故选:C变式6-4.函数()f x 定义域为R ,且,(4)()2(2)x R f x f x f ∀∈+=+,若函数(1)f x +的图象关于1x =-对称,且(1)3f =,则(2021)f =( ) A .3B .-3C .6D .-6【答案】A【解析】【分析】由题设可知()f x 为偶函数且(2)(2)2(2)f f f =-+,即可得(2)0f =,易知()f x 是周期为4的函数,利用周期性求(2021)f 即可.【详解】①(1)f x +的图象关于1x =-对称,①()f x 关于y 轴对称,即()f x 为偶函数,又(2)(2)2(2)f f f =-+,即(2)(2)0f f +-=,而(2)(2)f f =-,①(2)(2)0f f =-=,故,(4)()x R f x f x ∀∈+=, ①()f x 是周期为4的函数, 综上,(2021)(45051)(1)3f f f =⨯+==. 故选:A。

高中数学第一章三角函数1.1周期变化作业含解析北师大版第二册

高中数学第一章三角函数1.1周期变化作业含解析北师大版第二册

一周期变化(15分钟30分)1。

下列现象是周期现象的是()①日出日落;②潮汐;③海啸;④地震.A。

①② B.①②③ C.①②④ D.③④【解析】选A.日出日落是周期现象;潮汐是周期现象;海啸、地震不是周期现象.2。

如图所示的是一个单摆,让摆球从A点开始摆,最后又回到A 点,单摆所经历的时间是一个周期T,则摆球在O →B→O→A→O 的运动过程中,经历的时间是()A。

2T B。

T C.D。

【解析】选B.整个运动恰好是一个周期,所以运动的时间是T。

3。

2019年,小明17岁了,与小明属相相同的老师的年龄可能是()A。

26 B。

32 C。

36 D。

41【解析】选D。

由十二生肖知,属相是12年循环一次。

4。

定义域为R的偶函数f(x)为周期函数,其周期为8,当x∈时f(x)=x+1,则f(25)=________。

【解题指南】利用函数y=f(x)的周期和奇偶性可得出f(25)=f (1)=f(—1),进而得解。

【解析】由于函数f(x)是R上周期为8的偶函数,且当x∈时,f(x)=x+1,因此,f(25)=f(1)=f(—1)=—1+1=0。

答案:05。

水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?【解析】因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈。

又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升),所以水车1小时内最多盛水160×12=1920(升)。

(20分钟40分)一、单选题(每小题5分,共15分)1.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在()A.8点处B。

10点处C。

11点处 D.12点处【解析】选B。

由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟后分针应指在10点处.2。

高中数学必修一 第二章 函数 第9节 函数的周期性(1)

高中数学必修一 第二章  函数  第9节   函数的周期性(1)

练习:设函数 f(x)是 R 上的奇函数,且 f(1)=a,若对任意 x∈R,均有 f(x+2)
=f(x),则 a 的值为( )
A.﹣1 B.0
C.1
D.2
解:由题意,令 x=﹣1,可得 f(1)=f(﹣1)=﹣f(1),
∴f(1)=0,∴a=0.
故选 B.
典例分析:
例 4:已知周期函数 f(x)是定义在 R 上的奇函数,且 f(x)的最小正周期为 3, f(1)<2,f(2)=m,则 m 的取值范围为( ) A.(﹣∞,﹣2) B.(﹣2,2) C.(2,+∞) D.(﹣2,+∞) 解:∵函数 f(x)是定义在 R 上的奇函数,且 f(x)的最小正周期为 3, ∴f(2)=f(2﹣3)=f(﹣1)=﹣f(1),又 f(1)<2,f(2)=m, ∴m=﹣f(1)>﹣2, ∴m>﹣2. 故选 D.
∴f(23)+f(﹣14)=f(25﹣2)+f(﹣15+1)=f(﹣2)+f(1)
=﹣f(2)+f(1)=﹣2+1=﹣1,
故选:A
练习:设 f(x)是定义在 R 上的周期为 3 的周期函数,如图表示该函数在区间 (﹣2,1]上的图象,则 f(2014)+f(2015)=( )
解:由图象知 f(1)=1,f(﹣1)=2, ∵f(x)是定义在 R 上的周期为 3 的周期函数, ∴f(2014)+f(2015)=f(1)+f(﹣1)=1+2=3, 故选:A A.3 B.2 C.1 D.0
解:由 f(x+4)=f(x),故函数的最小正周期为 4. 又函数 f(x)为奇函数,且 f(x)区间[0,2]上单调递增, ∴f(x)区间[﹣2,0]上单调递增, 又 f(0)=0,故函数在区间[﹣2,2]上单调递增. ∵f(3)=f(﹣1+4)=f(﹣1)<f(0)<f(1), 故选:B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数的周期性练习
题型一:求周期问题
【例1】 已知()f x 是定义在R 上的函数,(10)(10)f x f x +=-且(20)(20)f x f x -=-+,则()f x 是( )
A . 周期为20的奇函数 B. 周期为20的偶函数
C. 周期为40的奇函数
D. 周期为40的偶函数
【例2】 求函数tan cot y αα=- 的最小正周期
【例3】 定义在R 上的函数()f x 满足(3)()0f x f x ++=,且函数32f x ⎛⎫- ⎪⎝
⎭为奇函数.给出以下3个命题:
①函数()f x 的周期是6;
②函数()f x 的图象关于点302
⎛⎫- ⎪⎝⎭,对称; ③函数()f x 的图象关于y 轴对称,其中,真命题的个数是( ).
A .3
B .2
C .1
D .0
【例4】 若y =f (2x )的图像关于直线2a x =和()2
b x b a =>对称,则f (x )的一个周期为( ) A .
2a b + B .2()b a - C .2
b a - D .4()b a -
【例5】 已知函数()f x 对于任意,a b ∈R ,都有()()f a b f a b ++-2()()f a f b =⋅,且(0)0f ≠.
⑴求证:()f x 为偶函数;
⑵若存在正数m 使得()0f m =,求满足()()f x T f x +=的1个T 值(T ≠0).
典例分析
【例6】 设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称.且对任意121,[0,]2
x x ∈,都有1212()()()f x x f x f x +=⋅,(1)0f a =>.
⑴求1()2f 及1()4
f ; ⑵证明()f x 是周期函数;
题型二:求值问题
【例7】 已知定义在R 上的函数()f x 的图象关于点304⎛⎫- ⎪⎝⎭
,成中心对称图形,且满足3()2f x f x ⎛⎫=-+ ⎪⎝
⎭,(1)1f -=,(0)2f =-.那么,(1)(2)(2006)f f f +++L 的值是( ) A .1 B .2 C .1- D .2-
【例8】 (2005天津卷)设f (x )是定义在R 上的奇函数,且()y f x =的图象关于直线12
x =对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_______________.
【例9】 (2006年安徽卷理)函数()f x 对于任意实数x 满足条件()()
12f x f x +=
,若()15,f =-则()()5f f =__________。

【例10】 (2006年山东卷)已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则,f (6)的值为 ( )
(A )-1 (B) 0 (C) 1 (D)2
【例11】 (1996全国,15)设()f x 是(),-∞+∞上的奇函数,()()2f x f x +=-,当0≤x ≤1时,()f x x =,
则f (7.5)等于( )
A .0.5 B.-0.5
C.1.5
D.-1.5
【例12】 已知函数f (x )的定义域为N ,且对任意正整数x ,都有f (x )=f (x -1)+f (x +1)若f (0)=2004,求
f (2004)
【例13】 函数()f x 在R 上有意义,且满足:⑴()f x 是偶函数;⑵(0)999f =;⑶()(1)g x f x =-是奇函
数,求(2008)f .
【例14】 ()f x 是定义在R 上的函数,对任意的x ∈R ,都有(3)()3f x f x ++≤和(2)()2f x f x ++≥,
设()()g x f x x =-,
⑴求证()g x 是周期函数;
⑵如果f (998)=1002,求f (2000)的值.
【例15】 数列{a n }中,a 1=a ,a 2=b ,且a n +2=a n +1-a n (n ∈N +
) ①求a 100;
②求S 100.
题型三:其他综合问题
【例16】 (2006福建卷)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设
63(),(),52a f b f ==5(),2
c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b <<
【例17】 (2005福建卷()f x 是定义在R 上的以3为周期的偶函数,且(2)0f =,则方程()f x =0在区
间(0,6)内解的个数的最小值是 ( )
A .5
B .4
C .3
D .2
【例18】 已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数又
知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-。

①证明:(1)(4)0f f +=;
②求(),[1,4]y f x x =∈的解析式;
③求()y f x =在[4,9]上的解析式。

【例19】 (05广东卷)设函数()f x 在(,)-∞+∞上满足(2)(2)f x f x -=+,(7)(7)f x f x -=+,且在闭
区间[0,7]上,只有(1)(3)0f f ==.
(Ⅰ)试判断函数()y f x =的奇偶性;
(Ⅱ)试求方程()f x =0在闭区间[-2005,2005]上的根的个数,并证明你的结论.
【例20】 对每一个实数对x ,y ,函数f (t)满足f (x +y )=f (x )+f (y )+xy +1,若f (-2)=-2,试求满足f (a )=a 的
所有整数a .
【例21】 已知()f x 为定义在区间(-∞,)+∞上以2为周期的函数,对k ∈Z ,用k I 表示区间(21k -,
21]k +,已知0x I ∈时,2()f x x =.
⑴求()f x 在k I 上的解析式;
⑵对自然数k ,求集合{|k M a =使方程()f x ax =在k I 上有两个不相等的实根}.。

相关文档
最新文档