线性代数期末考试复习考点—同济大学(第六版)
关于高等数学同济第六版上册期末复习重点

关于高等数学同济第六版上册期末复习重点标准化管理部编码-[99968T-6889628-J68568-1689N]第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列 {xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列 1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列 1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
高等教育数学[同济第六版](上册)期末复习重点
期末复习重点](https://img.taocdn.com/s3/m/5594ae27f18583d0496459dc.png)
第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列 {xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列 1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列 1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解

目 录
第1章 行列式
1.1 复习笔记
1.2 课后习题详解
1.3 考研真题详解
第2章 矩阵及其运算
2.1 复习笔记
2.2 课后习题详解
2.3 考研真题详解
第3章 矩阵的初等变换与线性方程组
3.1 复习笔记
3.2 课后习题详解
3.3 考研真题详解
第4章 向量组的线性相关性4.1 复习笔记
4.2 课后习题详解
4.3 考研真题详解
第5章 相似矩阵及二次型5.1 复习笔记
5.2 课后习题详解
5.3 考研真题详解
第6章 线性空间与线性变换6.1 复习笔记
6.2 课后习题详解
6.3 考研真题详解
第1章 行列式
1.1 复习笔记
一、二阶与三阶行列式
1二阶行列式
定义 将四个数,,,按一定位置,排成二行二列的数表:
则表达式就是数表的二阶行列式,并记作
2三阶行列式
定义 设有9个数排成3行3列的数表
记
该式称为数表所确定的三阶行列式.
二、全排列和对换
1全排列。
(完整版)线性代数(同济六版)知识点总结

1. 二阶行列式--------对角线法则 : |a 11 a 12a 21a 22|= a 11a 22 −a 12a 212. 三阶行列式 ①对角线法则②按行(列)展开法则3. 全排列:n 个不同的元素排成一列。
所有排列的种数用P n 表示, P n = n !逆序数:对于排列p 1 p 2… p n ,如果排在元素p i 前面,且比p i 大的元素个数有t i 个,则p i 这个元素的逆序数为t i 。
整个排列的逆序数就是所有元素的逆序数之和。
奇排列:逆序数为奇数的排列。
偶排列:逆序数为偶数的排列。
n 个元素的所有排列中,奇偶各占一半,即n!2对换:一个排列中的任意两个元素对换,排列改变奇偶性. 4.其中:j 1j 2j 3 是1,2,3的一个排列,t(j 1j 2j 3)是排列 j 1j 2j 3 的逆序数5.下三角行列式: 副三角跟副对角相识对角行列式: 副对角行列式:6. 行列式的性质: ①行列式与它的转置行列式相等. (转置:行变列,列变行)。
D = D T ②互换行列式的两行(列),行列式变号。
推论 :两行(列)相同的行列式值为零。
互换两行:r i ↔ r j ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。
第i 行乘k :r i x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0⑤若行列式的某一列(行)的元素都是两个元素和,则此行列式等于两个行列式之和。
如:⑥把行列式的某行(列)的各元素同一倍数后加到另一行(列)的对应元素上去,行列式的值不变。
如第j 列的k 倍加到第i 列上:c i +kc j333231232221131211a a a a a a a a a 3221312312332211a a a a a a a a a 13++=312213332112322311a a a a a a a a a ---32132123312322211312113j 2j 1j )j j t (j 33a a a a a a a a a a a a 1)(∑-=n n 2211n n n 2n 1222111...a a a a ...a a 0a a a =O M M n...λλλλλλ21n 21=O n21λλλNn2121)n(n λλλ1)(ΛΛ--=n n n j n jn 2n 12n 2j 2j 22211n 1j 1j 1211a )c (b a a a )c (b a a a )c (b a a ΛΛM MMM ΛΛΛΛ+++n nn j n 2n 12n 2j 22211n 1j 1211n n n j n 2n 12n 2j 22211n 1j 1211a c a a a c a a a c a a a b a a a b a a a b a a ΛΛM M M M ΛΛΛΛΛΛM M M M ΛΛΛΛ+=n n n j n j n i n 12n 2j 2j 2i 211n 1j 1j 1i 11a a ka a a a a ka a a a a ka a a ΛΛΛM M MM ΛΛΛΛΛΛ+++n nn j n i n 12n 2j 2i 211n 1j 1i 11a a a a a a a a a a a a ΛΛΛM M M M ΛΛΛΛΛΛ=7. 重要性质:利用行列式的性质 r i +kr j 或 c i +kc j ,可以把行列式化为上(下)三角行列式,从而计算n 阶 行列式的值。
线性代数(同济六版)知识点总结

个
2.矩阵的秩:设矩阵 A 中有一个不等于零的 r 阶子式 D,且所有 r+1 阶子式(如果存在的话)全等于零,那么 D 称为矩阵 A 的最高阶非零子式,数 r 称为矩阵 A 的秩,记作 R(A)。零矩阵的秩等于 0。
常用:
1)对于 n 阶方阵 A,R(A)=n(称 A 满秩)?
?A 可逆
2)若 ,则 R(A)=R(B) 3)对于行阶梯形矩阵,它的秩等于非零行的行数
第 i 个数 ai 称为第 i 个分量. 2.向量组:若干个同维数的列向量(行向量)所组成的集合 3.给定向量组 A:a1,a2,…,am,对于任何一组实数 k1,k2,…,km,表达式
k1a1+k2a2+…+kmam 称为向量组 A 的一个线性组合。k1,k2,…,km 称为这个线性组合的系数. 4.给定向量组 A:a1,a2,…,am 和向量 b,如果存在一组实数 l1,l2,…,lm,使得
:即对矩阵(A,B)进行初等行变换,当 A 变成 E 时,B 就变成了所求的
二、矩阵的秩
1.k 阶子式:在 m×n 矩阵 A 中,任取 k 行 k 列(k≤m,k≤n),位于这些行列交叉处的 k2 个元素,不改变它 们在 A 中所处的位置次序而得的 k 阶行列式,称为矩阵 A 的 k 阶子式.
m×n 矩阵 A 的 k 阶子式共有
5.伴随矩阵:其中 是 的代数余子式, A* 称为 A 的伴随矩阵。(特别注意符号)
A11 A21
An1
6.逆矩A阵:B对为于A A的n1阶逆2 方矩阵阵A,A22,记如为果有 n。A阶且n方2A阵的B逆,注矩使阵意得的是:第A唯B元=j一B素A行的=E第。,的则i代列称数(A 余可类逆子似,式于转置是)位于
同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题考研真题复习答案

同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解完整版>精研学习䋞>无偿试用20%资料
全国547所院校视频及题库全收集
考研全套>视频资料>课后答案>往年真题>职称考试
第1章行列式
1.1复习笔记
1.2课后习题详解
1.3考研真题详解
第2章矩阵及其运算
2.1复习笔记
2.2课后习题详解
2.3考研真题详解
第3章矩阵的初等变换与线性方程组
3.1复习笔记
3.2课后习题详解
3.3考研真题详解
第4章向量组的线性相关性
4.1复习笔记
4.2课后习题详解
4.3考研真题详解
第5章相似矩阵及二次型
5.1复习笔记
5.2课后习题详解
5.3考研真题详解
第6章线性空间与线性变换
6.1复习笔记
6.2课后习题详解
6.3考研真题详解。
线性代数(同济第6版)复习要点

2
,,
er
1 r
r
主要计算
1.正交化方法 2.求矩阵的特征值和特征向量
例
1
1
4
1.(例 2)设1 2 , 2 3 , 3 1 ,试用施密特正交化过程把这组向量标准正交化。
1
1
0
2.(例 6)求矩阵
1
[3 , 2 ] [2, 2]
2
r
r
[ r [1
, ,
1 1
] ]
1
[ [
r 2
, ,
2 2
] ]
2
[ r , [ r1
r ,
1 ] r1 ]
r
1
2.单位化: e1
1 1
1,
e2
1 2
线性代数(同济第 6 版)复习要点
第一章 行列式
基本结论
1.行列式的性质 (1) 互换行列式的两行,行列式变号. (2) 行列式中某一行的所有元素的公因子可以提到行列式符号的外面. (3) 把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列
式不变. 2.行列式按行按列展开
定理 3 行列式等于它的任一行的各元素与其对应的代数余子式乘积之和,即 D ai1 Ai1 ai2 Ai2 ain Ain ( i 1, 2,, n)
1.讨论向量组的线性相关性. 2.设矩阵 A ,求矩阵 A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大 无关组线性表示. 3.设非齐次线性方程组 AX b ,试问 (1)此线性方程组有解吗?若有解,有多少解? (2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).
线性代数(同济六版)知识点总结

0 a11a22...ann
副三角跟副对角相识
an1 an2 ... ann
对角行列式:
副对角行列式:
λ1 λ2
λ 1λ 2...λn
λn
6. 行列式的性质:
λ2
λ1
n ( n1 )
(1) 2 λ 1λ 2 λ n
λn
①行列式与它的转置行列式相等. (转置:行变列,列变行)。D =
②互换行列式的两行(列),行列式变号。
余子式:在 n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去, 剩下的( n −1 )2 个元素按原来的排法构 成的 n − 1 阶行列式 叫做 aij 的余子式,记为 Mij
代数余子式:记 Aij = ( −1 ) i+j Mij 为元素 aij 的代数余子式 。 ②重要性质,定理
a11 a12 (b1 j c1 j ) a1n
a21 a22 (b2 j c2 j ) a2n
an1 an2 (bnj cnj ) ann
a11 a12 b1 j a1n a11 a12 c1 j a1n
a21
a22
b2 j
a2n
a21
a22
c2 j
a2n
(3) ( A)T AT ; (4) ( AB)T BT AT .
设 A 为 n 阶方阵,如果满足
,即
,则 A 为对称阵
如果满足
,即
,则 A 为反对称阵
4. 方阵的行列式:由 n 阶方阵的元素所构成的行列式,叫做方阵 A 的行列式,记作|A|或 det A.
性质:①| AT || A | ,②| A | n | A | ,③| AB || A || B | 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综上所述,有
ai1 Aj1 ai2 Aj2
同理可得
a1i A1 j a2i A2 j
D, i j
ain Ajn
0,
i j
D, i j
ani Anj
0,
i j
第二章 矩阵及其运算
1. 掌握矩阵的运算性质,会求矩阵的加法、数乘 及矩阵与矩阵的运算; 2. 掌握矩阵的转置性质、方阵的行列式性质及 逆矩阵的性质; 3. 会利用伴随矩阵求逆矩阵,会解矩阵方程;
找到矩阵 A 的一个最高阶非零子式Dr 则Dr 所在的 r 列是 A 的 列向量组的一个最大无关组,Dr 所在的 r 行是 A 的行向量组 的一个最大无关组. 注 1. 最大无关组一般选取行阶梯形矩阵中首个非零元所在的列.
2. 向量组的最大无关组一般是不唯一的. 3. 向量组 A 和它自己的最大无关组 A0是等价的.
① x1,x2,...,xr 线性无关; ②方程组中任意一个解都可以表示x1, x2, ..., xr 的线性组合,
那么称这组解是齐次线性方程组的一个基础解系. 齐次线性方程组的解集的最大无关组为基础解系.
注: 齐次线性方程组的基础解系不唯一.
定理7:设 m×n 矩阵的秩 R(A) = r,则 n 元齐次线性方程组 Ax = 0 的解集 S 的秩 RS = n − r .
1 0 0
例3
E
e1 , e2 , e3
A11
A1
A21
As1
第三章 矩阵的初等变换与线性方程组
1. 掌握矩阵的三种初等变换,行阶梯形矩阵、行 最简形矩阵; 2. 会用初等行变换将矩阵化为行阶梯形矩阵、 行最简形矩阵; 3. 会用初等行变换求逆矩阵及矩阵方程; 4. 会用初等行变换求矩阵的秩; 5. 掌握矩阵秩的一些最基本的性质; 6. 掌握线性方程组有解的判定条件; 7. 会讨论线性方程组系数矩阵的待定系数来判定 线性方程组是否有解情况。
向量组线性无关性的判定(重点、难点) 向量组 A:a1, a2, …, am 线性无关
如果 k1a1 + k2a2 + … + kmam =0(零向量),则必有 k1 = k2 = … = km =0 .
m 元齐次线性方程组 Ax = 0 只有零解. 矩阵A = (a1, a2, …, am ) 的秩等于向量的个数 m . 向量组 A 中任何一个向量都不能由其余 m-1 个向量线 性表示.
( A)1 1 A1 ,
( AB)1 B1 A1 .
AA* A* A | A | E | A1 || A |1
分块对角矩阵的性质
A1
A
A2
ቤተ መጻሕፍቲ ባይዱ
As
| A | = | A1 | | A2 | … | As |
若| As | ≠0,则 | A | ≠0,并且
《线性代数》 Linear Algebra
主讲教师: 张恩路
Company Logo
第一章 行列式 1. 牢记行列式的6条性质;
2. 会利用行列式的性质计算行列式的值;
3. 掌握余子式和代数余子式的定义及按行(列) 展开定理; 4. 会利用按行(列)展开定理计算行列式的值;
n 阶行列式的性质
性质1: 行列式与它的转置行列式相等, 即DT = D. 性质2: 互换行列式的两行(列), 行列式变号. 推论: 如果行列式有两行(列)完全相同, 则此行列式为零. 性质3: 行列式的某一行(列)中所有的元素都乘以同一数k, 等于用数k乘此行列式. 推论: 行列式的某一行(列)中所有元素的公因子可以提到 行列式符号的外面. 性质4: 行列式中如果有两行(列)元素成比例, 则此行列式 为零. 性质5: 若行列式的某一列(行)的元素都是两数之和, 则该 行列式等于两个行列式之和. 性质6: 把行列式的某一列(行)的各元素乘以同一数然后加 到另一列(行)对应的元素上去, 行列式不变.
k1a1 + k2a2 + … + kmam 称为向量组 A 的一个线性组合. k1, k2, …, km 称为这个线性组合的系数.
给定向量组 A:a1, a2, …, am 和向量 b,如果存在
一组实数 1, 2, …, m ,使得 b = 1a1 + 2a2 + … + mam
则向量 b 是向量组 A 的线性组合,这时称向量 b 能由向量组 A 线性表示.
定理3 行列式等于它的任一行(列)的各元素与其对应 的代数余子式乘积之和,即
ai1 Ai1 ai2 Ai2 ain Ain D i 1, 2, , n
推论 行列式任一行(列)的元素与另一行(列)的对应 元素的代数余子式乘积之和等于零,即
ai1 Aj1 ai2 Aj2 ain Ajn 0, i j.
例如:若 x = h1, x = h2 是 Ax = b 的解,则: (1)h1 —h2是齐次线性方程组 Ax = 0 的解; (2)(h1 +h2)/2 是非齐次线性方程组 Ax = b 的解.
基础解系的概念
定义2 齐次线性方程组 Ax = 0 的一组解向量x1, x2, ..., xr
如果满足
( A B) 初等行变换 (E A1B)
矩阵的秩的性质
① 若 A 为 m×n 矩阵,则 0≤R(A)≤min(m, n) . ② R(AT) = R(A) . ③ 若 A ~ B,则 R(A) = R(B) . ④ 若 P、Q 可逆,则 R(PAQ) = R(A) . ⑤ max{R(A), R(B)}≤R(A, B)≤R(A)+R(B) .
2. 这些非零元所在的列的其它 元素都为零.
(一)初等变换与矩阵乘法的关系
定理1 设A, B是一个 m×n 矩阵,则
(1)
r
A~ B
的充要条件是存在 可逆矩阵P ,使得P A=B;
c
(2) A ~ B 的充要条件是存在 可逆矩阵Q ,使得 A Q =B;
(3) A ~ B 的充要条件是存在 可逆矩阵P 和Q ,使得P A Q =B;
特别地,当 B = b 为非零列向量时,有 R(A)≤R(A, b)≤R(A)+1 .
⑥ R(A+B)≤R(A)+R(B) . ⑦ R(AB)≤min{R(A), R(B)} . ⑧ 若 Am×n Bn×l = O,则 R(A)+R(B)≤n .
定理1 n 元线性方程组 AX = b ①无解的充分必要条件是 R(A) < R(A, b); ②有唯一解的充分必要条件是 R(A) = R(A, b) = n ; ③有无限多解的充分必要条件是 R(A) = R(A, b) < n .
定义:下列三种变换称为矩阵的初等行变换 :
对调两行,记作 ri rj ; 以非零常数 k 乘某一行的所有元素,记作 ri k ; 某一行加上另一行的 k 倍,记作 ri krj .
1 1 2 1 4
0
0
-1 0
1 0
1 2
0
3
F1
0
0
00
0
4. 会利用分块矩阵的性质计算矩阵的逆矩阵。
转置矩阵的运算性质
(1) ( AT )T A; (2) ( A B)T AT BT ;
(3) ( A)T AT ;
(4) ( AB)T BT AT .
方阵的行列式
定义:由 n 阶方阵的元素所构成的行列式,叫做方阵 A 的 行列式,记作|A|或detA.
行阶梯形矩阵: 1. 可画出一条阶梯线,线的下
方全为零; 2. 每个台阶只有一行; 3. 阶梯线的竖线后面是非零行
的第一个非零元素.
1 0 1 0 4
0
0
1 0
1 0
0 1
3 3
F2
0 0 0 0 0
行最简形矩阵: 行阶梯型矩阵若满足:
1. 非零行的首个非零元为1;
已知 n 元齐次线性方程组的解集为 S1 = { x | Ax = 0 }. 则齐次线性方程组Ax = 0的基础解系是 S1 的一个基, 故 S1 的维数等于 n-R(A) .
定义3 如果在向量空间 V 中取定一个基 a1 , a2 , ..., ar , 那么V中任意一个向量 x 可唯一表示为
x = 1a1 + 2a2 + …+ rar 数组 1, 2, ..., r 称为向量 x 在基 a1 , a2 , ..., ar 中的坐标.
齐次线性方程组的解的性质
性质1:若 x = x1, x = x2 是齐次线性方程组 Ax = 0 的解, 则 x = x1 x2 还是 Ax = 0 的解.
性质2:若 x = x 是齐次线性方程组 Ax = 0 的解,k 为实数, 则 x = kx 还是 Ax = 0 的解.
结论:若 x = x1, x = x2, ...,, x = xt 是齐次线性方程组 Ax = 0 的解, 则 x = k1x1 + k2x2 + … + ktxt 还是 Ax = 0 的解.
运算性质
(1) AT A ;
(2) A n A ;
(3) AB A B ; AB BA . 3A 34 A , A为四阶行列式
逆矩阵的性质
如果 n 阶方阵A、B可逆,那么 与AB 也可逆,且
( A1 )1 A,
、A、1 AT A( 0)
( AT )1 ( A1 )T ,
相关结论
(1)若向量组 A :a1, a2, …, am 线性相关, 则向量组 B :a1, a2, …, am, am+1 也线性相关.(部分相关,整体相关)