初中九年级(初三)物理12-3理想气体压强公式
1理想气体压强公式

压强的另外一个表达式
第七章气体动理论
m N, M NA
pV m RT M
NA:阿伏伽德罗常数 N:总分子数
p N RT N R T
N AV
V NA
p nkT
分子数密度 n N V
玻耳兹曼常量
在相同的温度和压强下,各种 气体的分子数密度相等。
k
R NA
8.31J mol1 k 1 6.022 1023 mol1
第七章气体动理论
系统
在热力学中,把所要研究的对象,即由大量微观粒子组成的物
体或物体系称为热力学系统。(如容器中的气体分子集合或溶
液中液体分子的集合或固体中的分子集合。) 系统的外界(简称外界) 能够与所研究的热力学系统发生相互作用的其它物体,称为外 界。
把用来描述系统宏观状态的物理量称为状态参量。
气体的宏观状态可以用V、P、T 描述
求 (1) 此时管内气体分子的数目; (2) 这些分子的总平动动能。
解 760 mmHg = 1大气压 = 1.013×105Pa
1 mmHg = 133.3Pa
(1) 由理想气体状态方程得
p nkT N kT V
N
nV
pV kT
5 106 133.3105 1.381023 300
1.611012
热力学与统计物理的发展, 加强了物理学与化学的联系, 建立了物理化学这一门交叉科学 .
热学
1.什么是热学
•宏观物体是由大量的微观粒子——分子、原子等组成的 •微观粒子的无规则的运动,称为热运动。 热学是研究热运动的规律及其对物质宏观性质的影响,以 及与其他运动形态之间的转化的物理学分支。
2.热学的分类
3
p
理想气体的压强及温度的微观解释

理想气体的压强及温度的微观解释在普通物理热学的教学中,对理想气体的压强、温度的学习和讨论时,学生对压强、温度的微观实质理解困难,特别是对宏观规律的微观解释与分析问题。
文章从理想气体分子模型的建立和统计假设的提出,对压强、温度的实质进行讨论,从而使学生得到正确理解,并学会用微观理论解释和研究宏观现象和规律的分析方法。
标签:理想气体;微观模型;压强;温度;微观本质在物理的学习和研究中,经常会讨论和分析一些物理现象和规律,很多物理现象和规律,是可以通过实验观察和验证的宏观规律,而表征分子、原子运动性质的微观量,很难用观察或实验直接测定。
宏观量与微观量之间必然存在着联系,要更深入地认识和研究宏观规律,必须对宏观规律的微观本质进行分析。
通过对理想气体的几个宏观规律与微观实质的关系对比和分析,帮助我们认识和理解气体动理论的有关规律,并掌握这一研究方法。
1 理想气体模型及状态方程1.1 理想气体模型。
所谓理想气体是指重力不计,密度很小,在任何温度、任何压强下都严格遵守气体实验定律的稀薄气体。
理想气体是一种理想化的物理模型,是对实际气体的科学抽象。
理想气体的微观特征是:分子间距大于分子直径10倍以上,分子间无相互作用的引力和斥力,分子势能为零,其内能仅由温度和气体的量决定,内能等于分子的总动能。
温度提高,理想气体的内能增大;温度降低,理想气体的内能减小。
实际气体抽象为理想气体的条件:不易被液化的气体,如氢气、氧气、氮气、氦气、空气等,在压强不太大、温度不太低的情况下,所发生的状态变化,可近似地按理想气体处理。
分子本身的线度与分子之间的距离相比可忽略不计,视分子为没有体积的质点;除碰撞瞬间外,分子之间及分子与容器壁之间没有相互作用力,不计分子所受的重力;分子之间及分子与器壁之间作完全弹性碰撞,没有能量损失,气体分子的动能不因碰撞而损失。
容器各部分分子数密度等于分子在容器中的平均密度n=NV,式中,n是气体分子数密度,N是气体的总分子数,V是气体容器的容积;沿空间各个方向运动的分子数目是相等的;气体分子的运动在各个方向机会均等,不应在某个方向更占优势,即全体分子速度分量vx、vy和vz的平均值vx=vy=vz=0。
理想气体压强公式和温度公式东北大学 大学物理

2
在相同温度下,各种气体分子的平均平动动能相等,即:
1 2
m1 v12
1 2
m2
kT
根据压强公式,混合气体的压强为:
p 2 n(1 mv2) 32
2 3
(n1
n2
)(
1 2
mv2
)
p1 p2
第三讲 理想气体压强公式和温度公式
一、理想气体的统计假设
在平衡态下,气体分子运动各向同性,即 分子向各个方向运动几率相等。
vx vy vz 0
vx2
v2y
vz2
1 3
v2
二、压强的本质
气体的压强是大量分子与器壁碰撞作 用力的统计平均值,在数值上等于单位 时间内碰撞单位器壁面积的总冲量。
三、理想气体的压强公式推导
32
3
其中 1 为m v分2 子的平均平动动能
2
四、理想气体的温度公式
p 2 n
3 p nkT
3 kT
2
物理意义:该公式反映产生温度的微观本质
2021/1/17
8
例题:从压强公式和温度公式导出道尔顿分压公式,即 混合气体的压强等于各种气体分压之和。
混合气体单位体积的分子数为:
n n1 n2
l2 A1
x
y
l1
l3
按压强定义:
p
I m t l2l3 l1l2l3
N
vi2x
i1
m V
(v12x
v22x
vN2
x
)
Nm ( v12x v22x vN2 x )
V
N
p
nm vx2
1 nm v2 3
p Nm ( v12x v22x vN2 x )
理想气体的压强公式与气压随高度变化的推导

理想气体的压强公式与气压随高度变化的推导09港航2班杨文江0903010232 任课老师:丁万平1、温度恒定,2、温度随高度变化)(给出高度与确良压强的计算公式)已知对一定质量的同种理想气体,在任一状态下的PV/T值都相等,即PV/T=P0V0/T0其中P0,V0,T0为标准状态下相应的状态参量。
实验指出,在一定温度和压强下,气体的体积和它的质量m或摩尔数v成正比。
以V m,0表示气体在标准状态下的摩尔体积,则v mol气体在标准状态下的体积应为V0=vV m,0,代入上式,得PV=vP0V m,0T/T0。
由阿伏伽德罗定律知,在相同温度和压强下,1 mol的各种理想气体的体积都相同,因此P0V m,0/T0的值就是一个常量,以R表示,则有R≡P0V m,0/T0=8.31(J/(mol·K))故有PV=vRT引入波尔兹曼常量k,k≡R/N A =1.38×10-23J/K则理想气体状态方程又可写为P=nkT,其中n=N/V是单位体积内气体分子的个数。
1、由上式可以看出,当温度恒定时,理想气体压强随气体分子数密度的增加而增大,成正比关系。
2、已知在高度变化不大时,温度随高度的变化规律是t=t0−0.6×△h/100,t0是某一水平面高度上的温度,△h为升高或者下降的高度。
化为热力学温度为T=T0−0.6×△h/100,把此式代入P=nkT得,P=nk(T0−0.6×△h/100)=nkT0−0.6nk×△h/100。
如果以标准状态下的理想气体压强为参照,则在高度为h处的压强P=P0−0.6nk×△h/100,这就是温度随高度变化时,理想气体的压强公式。
空气压强计算公式

1气体压强的计算公式是什么气体压强三大公式为pv=m/MRT;P=F/S;P液=pgh。
1、理想气体压力公式:pv=nrt,其中p为气体压力,v为气体体积,n为气体摩尔数,r为气体常数,t为热力学温度。
2、压力公式:固体压力p=f/s压力:p帕斯卡(pa)压力:f牛顿(n)面积:s平方米(㎡)液体压力p=jgh压力:p帕斯卡(pa)液体密度:每立方米(kg/m3)1公斤。
3、气体压力公式:pv=nrtp1v1/t1=p2v2/t2对同一理想气体系统的压力体积温度进行比较。
因此,以pv/t=nrr为常数,同一理想气体系统n不变。
封闭式气体对器皿壁的工作压力是由很多气体分子结构对器皿壁的保持和不规律撞击造成的。
气体压强与温度和容积相关。
温度越高,气体压力越大,反过来,气体压力越小。
一定品质的事物越小,分子结构就越集中化。
2气体压强的影响因素1、温度:温度越高,空气分子运动得越强烈,大气压强越大。
2、密度:密度越大,表示单位体积内空气质量越大,大气压强越大。
3、海拔高度:海拔高度越高,空气越稀薄,大气压强就越小。
气体压强与大气压强不同,指的是封闭气体对容器壁的压强,气体压强产生的原因是大量气体分子对容器壁的持续的、无规则撞击产生的。
气体压强与温度和体积有关。
温度越高,气体压强越大,反之则气体压强越小。
一定质量的物体,体积越小,分子越密集。
大气压强既然是由空气重力产生的,高度大的地方,它上面空气柱的高度小,密度也小,所以距离地面越高,大气压强越小。
通常情况下,在2千米以下,高度每升高12米,大气压强降低1毫米水银柱。
气体和液体都具有流动性,它们的压强有相似之处、大气压向各个方向都有,在同一位置各个方向的大气压强相等。
但是由于大气的密度不是均匀的,所以大气压强的计算不能应用液体压强公式。
初中气体压强计算公式

初中气体压强计算公式
1. 理想气体状态方程推导压强公式(适用于一定质量的理想气体)
- 理想气体状态方程:pV = nRT(p是压强,V是体积,n是物质的量,R是摩尔气体常量,R = 8.31J/(mol· K),T是热力学温度)。
- 对于一定质量的气体,n=(m)/(M)(m是气体质量,M是气体摩尔质量),则pV=(m)/(M)RT,可得p=(m)/(MV)RT。
2. 液体压强公式推导气体压强(适用于柱形容器中的气体对容器底部压强的近似计算)
- 液体压强公式p = ρ gh(ρ是液体密度,g是重力加速度,h是液体深度)。
- 对于柱形容器中的气体,可以类比液体压强公式。
假设气体柱高度为h,气体密度为ρ,则气体对容器底部压强p=ρ gh。
不过需要注意的是,气体密度ρ是随压强和温度变化的,不像液体密度基本不变。
3. 根据力和受力面积计算压强(适用于已知压力和受力面积的情况)
- 压强定义式p=(F)/(S)(F是压力,S是受力面积)。
- 在初中物理中,如果知道气体对容器壁的压力F和容器壁的受力面积S,就可以用这个公式计算气体压强。
例如,一个活塞封闭一定质量的气体在气缸内,已知活塞对气体的压力F,活塞面积S,则气体压强p=(F)/(S)。
理想气体的压强与温度公式

快减
快增
速率分布曲线 有单峰,不对称
两者相乘
速率
恒取正
[讨论]
① v 0, f (v ) 0 v , f (v ) 0
f (v)
线,小面积, 大面积的物 理意义?
v0 ②满足归一化条件: f (v)dv 1 o v0 v 1
dv
v 2 dv
v
③ f (v )v N 表示分布在 v v v 区间内的分子
RT
, 则 n 按指数而减小;
m ol
②分子的摩尔质量 M
RT
越大,重力
P P0 e
M m ol gh
作用越显著,n 的减小就越迅速。 ③T ,分子的无规则热运动越剧 烈,n 的减小就越缓慢。
M 2 0.1 2 P v (200) 2 3V 3 10
1.33 10 ( Pa)
5
例3:某气体在温度为T=273K时,压强为 p=1.0×10-2atm,密度 1.24 10 2 kg / m3 , 求该气体分子的方均根速率。
解:
M RT V P PV RT , P M mol M mol M
2. 平衡态理想气体分子运动的统计假设 ①分子在容器中的空间分布平均来说是均匀的,分子数
密度:
dN N n dV V N 表示容器体积V内的分子数。
②具有相同速率的分子,向各个方向运动的平均分子数 是相等的:
统 计 结 果
v v v v
2 i 2 ix 2 iy
2 iz
vx v y vz 0
8 RT v M mol
o
vp v
v2
v
v2
理想气体压强公式

1、关于气体分子集体的统计假设对于平衡态下的理想气体系统中的大量分子,可作如下统计假设:(1)无外场时,分子在各处出现的概率相同,即容器中单位体积内的分子数处处相等。
―分子数密度(2)由于碰撞,分子可以有各种不同的速度,速度取向各方向等概率,分子速度在各个方向分量的各种统计平均值相等。
2、理想气体压强公式(1)定性解释压强:密闭容器(如气缸)内的气体对容器的器壁有压力作用,作用在单位面积器壁上的压力。
从气体动理论的观点看来:气体在宏观上施于器壁的压强,是大量分子对器壁不断碰撞的结果。
最早使用力学规律来解释气体压强的科学家是伯努利。
他认为:气体压强是大量气体分子单位时间内给予器壁单位面积上的平均冲量。
(2)定量推导前提:平衡态、忽略重力、分子看成质点(只考虑分子的平动)设在任意形状的容器中贮有一定量的理想气体,体积为V,共含有N个分子,单位体积内的分子数为n=N/V,每个分子的质量为m0,分子具有各种可能的速度,把分子分成若干组,每组内的分子具有大小相等、方向一致的速度,并假设在单位体积内各组的分子数分别为n1,n2,…,ni,…,则。
设某一分子以速度运动并与dA面碰撞,碰撞后速度变为。
推导过程:(1)计算单个分子速度为与器壁dA面碰撞一次的过程中施于dA面的冲量:(2)dt时间内速度为能与dA面发生碰撞的分子总数:(dA为底,为高,为轴的斜形柱体的体积内,的分子。
)(3) dt时间内速度为能与dA面发生碰撞的分子对dA面的冲量:(4) dt时间内所有分子对dA面的总冲量:(5)器壁所受的宏观压强:(6)为了使结果的物理意义更明确,对压强表示式进行化简。
根据统计假设,所以应用这一关系,得到理想气体的压强公式:式中是气体分子平均平动动能。
――表征三个统计平均量之间相互联系的一个统计规律,而不是一个力学规律。
气体压强是系统中所有分子对器壁碰撞的平均效果,是大量分子热运动的集体表现。
压强是大量分子对时间、对面积的统计平均结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
A2o
z
- mmvvvxx
x
A1 y
zx
x方向动量变化:
pix 2mvix
分子施于器壁的冲量:
2mvix
6
单个分子与壁面 A1 碰撞
y
两次碰撞间隔时间: 2x vix
A2o
z
- mmvvvxx x
A1 y
zx
单位时间碰撞次数: vix 2x
单个分子单位时间 施于器壁的冲量:
mvi2x
n dN N dV V
4
(2)分子各方向运动概率均等.
分子运动速度
vi
vixi
viy
j
viz
k
各方向运动概率均等 vx vy vz 0
x 方向速度平方的平均值
v2x
1 N
vi2x
i
各方向运动概率均等
v
2 x
v
2 y
v2z
1 v2 3
5
单个分子与壁面 A1 碰撞
x
7
大量分子总效应
单位时间 N 个粒子对器壁总冲量:
mvi2x ix
m x
i
vi2x
Nm vi2x x iN
Nm x
v
2 x
器壁A1 所受平均冲力: F v2x Nm x
8
气体压强
p
F yz
Nm xyz
v
2 x
统计规律
n N xyz
v
2 x
1 v2 3
分子平均平动动能 气体压强公式
一 理想气体的微观模型
(1)分子可视为质点; 线度 d 1010 m
间距 r 109 m , d r ; (2)除碰撞瞬间, 分子间无相互作用力; (3)弹性质点(碰撞均为完全弹性碰撞); (4)分子的运动遵从经典力学的规律 .
1
二 理想气体压强公式
设 边长分别为 x、y 及 z 的长方体中
k
1 mv2 2
p
2 3
n k
9
压强的物理意义
统计关系式
p
2 3
n k
宏观可测量量 微观量的统计平均值
思考 : 为何在推导气体压强公式时不考虑分
子间的相互碰撞 ?
10
有 N 个全同的质量为 m 的气体分子,计
算 A1 壁面所受压强.
2
y
A2 o
z
- mmvvvxx
x
vy A1 y
o
z x vz
v vx
3
单个分子碰撞特性 :偶然性 、不连续性. 大量分子碰撞的总效果 :恒定的、持续 的力的作用. 热动平衡的统计规律( 平衡态 ) (1)分子按位置的分布是均匀的.