实验十三-气质联用分离测定有机混合体系

合集下载

气质联用仪实验报告

气质联用仪实验报告

气质联用仪实验报告气质联用仪实验报告引言:气质联用仪是一种用于分析化学物质的仪器,它能够同时测量物质的质量和结构信息,因此在科学研究和实际应用中具有广泛的应用前景。

本实验旨在通过使用气质联用仪,对某种有机物进行分析,探索其结构和性质。

实验方法:1. 样品准备:选取一种有机物,称取适量放入气相色谱柱中。

2. 仪器设置:将气相色谱仪和质谱联用仪连接,调整仪器参数,如进样速度、柱温、质谱检测器的工作模式等。

3. 开始实验:将样品注入气相色谱柱,通过气相色谱分离样品成分,然后进入质谱检测器进行质谱分析。

4. 数据处理:根据质谱图和气相色谱图的结果,分析样品的组成和结构。

实验结果:通过实验,得到了一组质谱图和气相色谱图。

质谱图显示了样品中各个成分的质量和相对丰度,而气相色谱图则展示了样品中各个成分的保留时间和峰形。

通过对这些数据的分析,可以得到以下结论:1. 成分分析:质谱图显示,样品中存在多个峰,每个峰代表一个成分。

通过比对质谱图中的峰与数据库中已知物质的质谱图,可以确定样品中各个成分的化学物质。

2. 结构推断:通过对质谱图中峰的相对丰度和气相色谱图中峰的保留时间的分析,可以推断样品中各个成分的结构。

例如,当某个峰的相对丰度较高且保留时间较长时,可以推断该成分为样品中的主要组成部分。

3. 纯度评估:通过气相色谱图中峰的峰形和峰宽的分析,可以评估样品的纯度。

如果样品中的成分纯度较高,则气相色谱图中的峰形会更尖锐,峰宽更窄。

讨论与分析:本实验通过使用气质联用仪,成功地对某种有机物进行了分析。

通过质谱图和气相色谱图的分析,我们可以确定样品的组成、推断其结构,并评估样品的纯度。

这些结果对于进一步的研究和应用具有重要意义。

然而,需要注意的是,气质联用仪分析过程中还存在一些挑战和限制。

首先,样品的制备过程可能会对实验结果产生影响,因此需要严格控制样品的制备方法。

其次,质谱图和气相色谱图的解析需要一定的专业知识和经验,对于初学者来说可能有一定的难度。

气质联用原理及应用

气质联用原理及应用
气质联用原理及应用
• 气质联用原理介绍 • 气质联用仪器介绍 • 气质联用样品处理技术 • 气质联用应用实例 • 气质联用技术展望
01
气质联用原理介绍
气质联用的定义
气质联用(GC-MS)是一种将 气相色谱(GC)与质谱(MS)
相结合的检测技术。
它通过气相色谱将复杂样品分离 成单一组分,然后利用质谱对分 离后的组分进行鉴定和结构分析。
样品制备
样品净化
去除样品中的杂质和干扰物质,以提高分析的准确性和可靠性。
样品浓缩
将样品中的目标化合物浓缩,以便进行后续的分析。
衍生化技术
衍生化反应
通过衍生化反应将目标化合物转化为更适合分析的形式,以 提高检测的灵敏度和选择性。
衍生化试剂
选择合适的衍生化试剂,以确保衍生化反应的效率和效果。
04
气质联用应用实例
特点。
工作原理
通过电场和磁场将带电粒子分离, 根据粒子质量和电荷比的不同进行 检测。
应用领域
在化学、生物学、医学等领域中用 于鉴定未知物、药物代谢、疾病诊 断等。
接口技术
作用
接口技术是将气相色谱仪与质谱 仪连接起来的关键部件,实现气 相色谱仪的流出物与质谱仪的进
样口的对接。
工作原理
通过高温、高真空条件将气相色 谱仪的流出物进行蒸发和离化,
药物代谢和药效的评估
通过气质联用技术,可以评估药物在体内的代谢和药效,为临床用药提供科学依据。
05
气ቤተ መጻሕፍቲ ባይዱ联用技术展望
技术发展与创新
01
02
03
高效能分离系统
采用更高效的分离柱和先 进的加热技术,提高分离 效率和灵敏度。
新型检测器
开发高灵敏度、高分辨率 的新型检测器,如飞行时 间质谱和离子阱质谱。

气质联用分析未知混合物成分及最佳分离条件的选择

气质联用分析未知混合物成分及最佳分离条件的选择

气质联用分析未知混合物成分及最佳分离条件的选择[摘要] 本文是利用GC/MS对生物碱进行分离,运用质谱库进行检索筛选得到混合物的主要成分。

探讨了不同的升温程序,柱前压与流速,进样口温度,接口温度,分流比等参数对分离效果的影响。

实验结果表明,温程序和柱前压与流速对分离效果影响最大,进样口温度,接口温度对分离效果影响较小。

[关键词] 气相色谱-质谱联用;最佳分离条件;成分;影响1.引言GC/MS技术是化学工作者分离有机混合物常用的手段。

色谱-质谱联用技术既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力。

这种技术适用于做多组分混合物中未知组分的定性鉴别,可以判断化合物的分子结构,可以准确的测定未知组分的分子量,可以修正色谱分析的判断错误,可以鉴定出部分分离甚至未分开的色谱峰。

特别是近年来计算机技术的发展,使GC/MS仪使用更为方便,简单,快捷。

本文是利用GC/MS对未知样品(生物碱)进行分离,从而得到它的最佳分离条件,运用质谱库进行检索筛选得到混合物的主要成分,并且进一步探讨了不同的升温程序,柱前压与流速,进样口温度,接口温度,分流比等参数对分离效果的影响。

分离条件的探索对混合物的分离有重要的指导意义。

对分离其它样品具有极大的参考价值。

2.实验部分2.1样品的性质和仪器参数样品来源于从植物的茎叶中提取的生物碱。

柱温选择在50-260℃。

仪器:GC/MS-QP2010 ,He气源(99.999%),毛细管色谱柱DB-5MS (30m×0.25mm×0.25um)。

2.2最佳分离条件的探索与讨论2.2.1升温程序仪器参数:①GC:注射模式:分流; 分流比:20/1; 柱前压:100.1Kpa;流速:1.69ml/min;进样口温度:200℃②MS:离子源温度:200℃;检测范围:35—550;去溶剂峰:2min接口温度:250℃;检测器电压:1000kv升温程序对分离效果有显著的影响。

气质联用仪实验报告

气质联用仪实验报告

气质联用仪实验报告仪器分析实验报告仪器分析实验报告1.质谱仪的简介质谱仪是通过对样品电离后产生的具有不同质荷比(m/z)的离子来进行分离分析的。

先将待分析样品变成气态,在具有一定能量(50~100eV)的电子束轰击下,生成不同m/z 的带正电荷的离子,在加速电场的作用下成为快速运动的粒子,进入质量分析器,这些粒子在电场与磁场作用下,按其质量与电荷的比值(质荷比)大小分开,进入分析器分离并得到质荷比以及相对的丰度。

在进行质谱分析时,一般过程是:通过合适的进样装置将样品引入并进行气化。

气化后的样品引入到离子源进行电离。

电离后的离子经过适当的加速进入质量分析器,按不同的m/z 进行分离。

然后到达检测器,产生不同的信号而进行分析。

2.1 进样系统有机质谱仪的进样装置要求能在既不破坏离子源的高真空工作状态,又不改变有机化合物的组成和结构的条件下,将有机化合物导入离子源,有机质谱仪的进样装置有以下几种:(1)色谱进样色谱对混合的有机化合物有很强的分离能力,而有机质谱仪仅对单一组分的有机化合物有很强的定性能力,对混合的有机化合物则很难对其每一组分给出准确的定性结果。

若将色谱分离后的、单一组分的有机化合物直接送入离子源内,即将这两种仪器串联在一起,将色谱仪器经过特殊的接口装置作为有机质谱仪的一种进样装置,则这种联用仪器将成为有机化合物分析的最强有力的工具,目前,气相色谱-有机质谱的联用已获得成功,液相色谱-有机质谱也取得了突破性的进展,现代的有机质谱仪几乎全部是色谱-质谱联用仪,色谱进样已成为现代有机质谱仪不可缺少的进样装置。

2.2 离子源离子源的作用是将被分析的有机化合物分子电离成离子,并使这些离子在离子光源系统的作用下会聚成有一定几何形状和一定能量的离子束,然后进入质量分析器被分离。

离子源的结构、性能与有机质谱仪的灵敏度和分辨率有密切的关系。

根据有机化合物的热稳定性和电离的难易程度,可以选择不同的离子源,以期能得到该有机化合物的分子离子。

气质联用

气质联用

第一章气相色谱-质谱联用技术气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。

在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。

目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。

另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。

还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。

GC/MS 已经成为分析复杂混合物最为有效的手段之一。

气质联用法是将气-液色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。

气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。

气相色谱和质谱由接口相连。

气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。

气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。

气质联用仪系统一般有下图所示的部分组成。

图1.1 气质联用仪组成框图气质联用仪根据其要完成的工作被设计成不同的类型和大小。

由于在现代质谱仪中最常用的质量分析器是四极杆型的,所以,在本章中将主要介绍这种将不同质量离子碎片分离的方法。

第一节气相色谱仪简介气相色谱仪,通过对欲检测混合物中组分有不同保留性能的气相色谱色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。

按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。

通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。

气相色谱法和气质联用测定混合烷烃样品的实验讲义

气相色谱法和气质联用测定混合烷烃样品的实验讲义

实验1 毛细管气相色谱法测定混合烷烃样品一、目的要求1. 了解6820气相色谱仪的基本结构及工作原理。

2. 了解色谱定性的基本原理。

3. 熟悉分离度的定义、计算及判据。

二、实验原理色谱法的实质是分离分析。

它根据混合物各组分在互不相溶的两相——固定相与流动相中分配能力、吸附能力等性能的差异作为分离依据。

当各组分随流动相渗漉通过固定相时,在流动相与固定相之间进行反复多次的分配,结果使那些分配系数仅有微小差异的组分在色谱柱中的移动距离产生了较大的差别,从而得到分离。

物质在一定得色谱条件下具有一定的保留值,故保留值可以作为一种定性指标。

色谱定量的依据是峰高或峰面积。

当操作条件一定时,组分的质量(或浓度)与检测器响应讯号成正比。

判断色谱柱分离效能的指标是分离度,其定义式为:Rs=2(t R2-t R1)/(W1+W2)式中,t R为保留时间,W为基线宽度,二者均可由色谱流出曲线得到。

三、仪器与试剂仪器:6820气相色谱仪,FID检测器(Agilent),氮、氢、空气体发生器,稳压电源,微量进样器,定性滤纸试剂:混合烷烃样品四、实验步骤1. 色谱条件色谱柱:DB-1,15 m×0.53 mm;柱温:80℃,梯度:15 ℃/min;气化室温度:250 ℃;FID温度:300 ℃;载气:高纯氮,分压表0.4 MPa,流量:410 mL/min。

2. 混合样品的分离测定(1)注册样品——样品/编辑/注册样品。

(2)进样——混合样品0.2μL/后进样口/手动进样。

五、结果处理1. 方法/输出/报告规格/面积百分比/打印。

2. 计算分离度。

六、思考题1. 气相色谱如何定性?2. 分离度有何意义?3. 气相色谱中柱温的选择原则是什么?4. 分流与不分流进样各适用于何种情况?应注意哪些问题?实验2 气相色谱-质谱联用法测定环境样品中的多环芳烃一、实验目的1. 掌握GC-MS工作的基本原理;2. 了解GC-MS联用仪的基本操作;3. 初步学会质谱图的解析。

气质联用仪法

气质联用仪法

气质联用仪法(GC-MS)测定檀香籽精油挥发性成分1 实验试剂与仪器1.1 实验试剂迷迭香精油1.2 实验仪器气相色谱质谱联用仪:安捷伦7890A/5975C-GC/MSD2 实验方法与原理2.1 仪器基本原理和应用范围质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力;而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。

因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。

像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气-质联用仪。

气质联用仪是利用试样中各组份在气相和固定液两相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器(质谱仪),产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。

气质联用仪的工作过程是高纯载气由高压钢瓶中流出,经减压阀降压到所需压力后,通过净化干燥管使载气净化,再经稳压阀和转子流量计后,以稳定的压力、恒定的速度流经气化室与气化的样品混合,将样品气体带入色谱柱中进行分离。

分离后的各组分随着载气先后流入检测器(质谱仪),然后载气放空。

检测器将物质的浓度或质量的变化转变为一定的电信号,经放大后在记录仪上记录下来,就得到色谱流出曲线。

根据色谱流出曲线上得到的每个峰的保留时间,可以进行定性分析,根据峰面积或峰高的大小,可以进行定量分析。

2.2 定性分析原理将待测物质的谱图与谱库中的谱图对比定性。

2.3 定量分析原理相对定量方法(峰面积归一法):由气质联用仪得到的总离子色谱图或质量色谱图,其色谱峰面积与相应组分含量成正比,可对某一组分进行相对定量。

气质联用[整理版]

气质联用[整理版]

第一章气相色谱-质谱联用技术气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。

在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。

目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。

另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。

还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。

GC/MS 已经成为分析复杂混合物最为有效的手段之一。

气质联用法是将气-液色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。

气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。

气相色谱和质谱由接口相连。

气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。

气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。

气质联用仪系统一般有下图所示的部分组成。

图1.1 气质联用仪组成框图气质联用仪根据其要完成的工作被设计成不同的类型和大小。

由于在现代质谱仪中最常用的质量分析器是四极杆型的,所以,在本章中将主要介绍这种将不同质量离子碎片分离的方法。

第一节气相色谱仪简介气相色谱仪,通过对欲检测混合物中组分有不同保留性能的气相色谱色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。

按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。

通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十三、气质联用分离测定有机混合体系
一、实验目的和要求
(1)掌握GC-MS的基本原理。

(2)了解GC-MS的基本构造、分析条件的设置和工作流程。

(3)掌利用GC-MS对有机物进行定性定量分析的方法。

二、实验原理
本实验采用液-液萃取和液-固萃取两种方法,从环境水样中提取多种有机氯农药,如BHCs、DDT及其降解产物DDE和DDD、艾氏剂、狄氏剂等,经GC-MS 分析测定。

通过固相萃取硅胶小柱分离、GC-MS选择离子检测法(SIM)消除共存成分的干扰。

在GC-MS仪中,样品首先经过气相色谱柱被分离成单一组分,再进入质谱计的离子源,在离子源中,样品分子被电离成离子,离子经过质量分析器之后即按照m/z顺序排列成谱。

经检测器检测后得到质谱,计算机采集并储存质谱,经过适当处理即可得到样品的色谱图、质谱图等信息。

经谱库检索后可得到化合物的定性结果,由色谱图还可以进行各组分的定量分析。

该方法适用于环境水样(包括地表水、地下水和海水等)中有机氯农药的监测,测量范围在每升几纳克到几百纳克数量级。

单个有机氯农药的GC-MS检测限和最低定量浓度见表7-1。

三、实验仪器和试剂
1、仪器
(1)气相色谐质谱联用仪(GC-MS),EI源。

(2)自动进样器。

(3)固相萃取浓缩装置(加压型或减压型)。

(4)旋转蒸发器。

(5)1~2L分液漏斗。

(6)300mL三角烧瓶。

(7)300mL,茄形瓶。

2、试剂
(1)溶剂。

残留农药分析纯,包括丙酮、正已烷和乙酸乙酯。

(2)氯化钠。

优级纯,在350℃下加热6h,除去吸附在表面的有机物,冷却后保存于干净的试剂瓶中。

(3)无水硫酸钠。

分析纯,在350℃下加热6h,除去水分及吸附于表面的有机物,冷却后保存于干净的试剂瓶中。

(4)硅胶小柱。

Bond Elut JR SI Silica Gel,Varian或Waters Sep-pak Plus Silica Car-tride(美国)。

(5)固相萃取小柱。

PS-2(Waters,Sep-pak Plus PS-2,Nihon Waters K.K)(6)六六六农药标准溶液。

含α-BHC、β-BHC、γ-BHC、δ-BHC,浓度均为100μg/mL。

(7)滴滴涕农药标准溶液。

含p,p’-DDT、o,p’-DDT、p,p’-DDE和p,p’-DDD,浓度分别为100μg/mL。

(8)艾氏剂标准溶液,浓度为100μg/mL。

(9)狄氏剂标准溶液,浓度为100μg/mL。

(10)异狄氏剂标准溶液,浓度为100μg/mL。

(11)氘代蒽(内标)。

1000μg/mL,用正己烷稀释至10μg/mL。

(12)氘代苯并[a]蒽(内标)。

1000μg/mL,用正己烷稀释至10μg/mL。

四、实验步骤
1、采样
必须用玻璃瓶采样,在采样前要把采样瓶用待采水样荡洗2~3次。

采样时不得留有顶上空间和气泡。

水样采集后应尽快分析,若不能及时分析,应在4℃冰箱中储存,但不能超过7天。

2、样品预处理
(1)溶剂萃取。

将1000mL水样放到2L分液漏斗中,加入30 gNaCl,溶解后加入50mL正己烷,振荡10min,静置5min后,将正已烷转移至三角烧瓶中。

再向分液漏斗中加入50mL正已烷,振荡10min,静置分层后,转移并合并正已烷相。

向正已烷相中加入3g无水硫酸钠,稍稍摇动后放置20min,然后过滤转移至浓缩瓶中,经旋转蒸发器浓缩至约3mL,转移到试管中,以N2吹脱浓缩至1mL,硅胶小柱预先用10%丙酮-正已烷10mL、正己烷10mL活化后,将上述预处理溶液加入到硅胶柱上,用10mL 10%的丙酮-正己烷淋洗,淋洗液浓缩约1mL,加入10μL内标氘代蒽和氘代苯并[a]蒽(各10μg/mL),定容后进行GC-MS测定。

(2)固相翠取
①活化。

分别用5mL丙酮、5mL甲醇和5mL纯水活化固相萃取小柱。

之后,安装在固相取装置上。

②萃取。

样品量1~2L,水样速度为10mL/min,加样结東后,再用10mL纯水淋洗小柱。

抽真空30min除去小柱中的水分。

③洗脱。

分别用6mL丙酮、3mL正己烷和3mL乙酸乙酯淋洗洗脱,洗脱液经少量无水硫酸钠干燥后过滤,再用N2吹脱浓缩至约1mL,加入10μL内标氘代蒽和氘代苯并[a]蒽(各10μg/mL),定容后进行GC-MS测定。

3、GC-MS分析
(1)色谱柱。

DB1 30m×0.32mm(内径)×0.25μm(膜厚)。

(2)色谱条件。

柱温20m i n 5/m i n 15/m i n 702mi n 1302003005mi n
−−−−→−−−→−−−−→℃/℃℃℃()℃℃℃()。

载气压力20kPa ;进样口温度280℃;进样方式为无分流方式(进样时间2min ),进样体积2μL 。

(3)质谱条件。

接口温度280℃,质量扫描范围35~450amu ,扫描间隔0.5s ,选择离子数据采样速度0.2s 。

选择离子检测的质量数如表7-2所列。

4、定性分析
本方法中测定的各化合物的定性鉴定是根据保留时间和扣除背景后的样品质谱图与参考质谱图中的特征离子比较完成的。

参考质谱图中的特征离子被定义为最大相对强度的三个离子,或者任何相对强度超过30%的离子。

5、定量分析
定量方法为内标法,配制五点标准曲线用的标准溶液,其中各目标化合物的浓度分别为5ng/L 、10ng/L 、20ng/L 、50ng/L 、100ng/L 、200ng/L 。

每一浓度的标准溶液中加入已知量的一种或多种内标(加入10μL 10μg/mL 的内标),在SIM 检测方式下,以标准溶液中目标化合物的峰面积与内标的峰面积比对目标化合物的浓度做图,得到该目标化合物的定量校准曲线,校准曲线的线性回归系数至少为0.9990。

样品溶液在与标准溶液相同的分析条件下测定,根据样品溶液中目标物与内标物的峰面积比,由定量校准曲线得到该化合物在样品溶液中的浓度。

五、结果计算
水样中该化合物的浓度计算公式如下。

ng /L mL ng /L =mL ⨯测定浓度()萃取液体积()样品中浓度()水样体积()
六、注意事项
(1)样品采集、保存和处理时必须使用玻璃容器采集和保存样品。

另外,有机氯农药容易吸附在瓶壁上,因此,在样品预处理时,最好用少量丙酮淋洗玻璃容器表面,并加人要处理的水样中。

(2)为了保证分析数据的准确性,有机溶剂尽量使用残留农药分析纯(农残级)。

(3)萃取后的正已烷溶液如果无干扰物质,可省略用硅胶小柱净化步骤。

七、思考题
(1)在进行GC-MS 分析时需要设置合适的分析条件。

如果条件设置不合适可能产生什么结果?比如色谱柱温度不合适怎么样?扫描范围过大或过小如何?
(2)进样量过大或过小可能对质谱产生什么影响?
(3)为了得到好的质谱图,通常需要扣除本底,本底是怎么形成的?如何正确地扣除本底?
(4)在定性分析有机氯化合物时,如果不使用GC-MS,是否可以利用其他仪器对样品进行定性分析?如何进行?
(5)用GC-MS进行定量分析,误差来源在哪里?用内标法能克服哪些因素造成的误差?。

相关文档
最新文档