静电场作业含答案
高中物理静电场经典习题30道--带答案

高中物理静电场经典习题30道--带答案1.如图,在光滑绝缘水平面上,三个带电小球a、b和c 分别位于边长为l的正三角形的三个顶点上;a、b带正电,电荷量均为q,c带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k.若三个小球均处于静止状态,则匀强电场场强的大小为()A.$\frac{kq}{l^2}$。
B.$\frac{\sqrt{3}kq}{l^2}$。
C.$\frac{2kq}{l^2}$。
D.$\frac{3kq}{l^2}$2.如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>)的固定点电荷.已知b点处的场强为零,则d点处场强的大小为(k为静电力常量)A.$\frac{kQ}{4R^2}$。
B.$\frac{\sqrt{2}kQ}{4R^2}$。
C.$\frac{kQ}{2R^2}$。
D.$\frac{\sqrt{2}kQ}{R^2}$3.如图所示,在光滑绝缘水平面上放置3个电荷量均为q (q>)的相同小球,小球之间用劲度系数均为k的轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹簧长度为l.已知静电力常量为k,若不考虑弹簧的静电感应,则每根弹簧的原长为A.$l+\frac{2q^2}{kl}$。
B.$l-\frac{2q^2}{kl}$。
C.$l-\frac{q^2}{kl}$。
D.$l+\frac{q^2}{kl}$4.如图所示,在光滑的绝缘水平面上,由两个质量均为m 带电量分别为+q和﹣q的甲、乙两个小球,在力F的作用下匀加速直线运动,则甲、乙两球之间的距离r为A.$\frac{F}{2kq^2}$。
B.$\frac{F}{kq^2}$。
C.$\frac{F}{4kq^2}$。
D.$\frac{2F}{kq^2}$5.一带负电荷的质点,在电场力作用下沿曲线abc从a运动到c,已知质点的速率是递减的.关于b点电场强度E的方向,下列图示中可能正确的是(虚线是曲线在b点的切线)A.。
第二章作业题解答

第二章静电场习题解答2-1.已知半径为F = Cl的导体球面上分布着面电荷密度为A = p s0 cos的电荷,式中的炖0为常数,试计算球面上的总电荷量。
解取球坐标系,球心位于原点中心,如图所示。
由球面积分,得到2用打Q =护= J j p50cos OrsmOd Od(p(S) 0 0In x=j j psQSefsinGded00 0In n=PsF j J cos ageded(p0 0丸=sin20d0 = 0o2-2.两个无限人平面相距为d,分别均匀分布着等面电荷密度的异性电荷,求两平面外及两平面间的电场强度。
解对于单一均匀带电无限人平面,根据对称性分析,计算可得上半空间和卞半空间的电场为常矢量,且大小相等方向相反。
由高斯定理,可得电场大小为E = ^-2e0对于两个相距为的d无限大均匀带电平面,同样可以得到E] = E“耳=E3题2-2图因此,有2-3.两点电荷q、= 8C和q2 = -4C ,分别位于z = 4和),=4处,求点P(4,0,0)处的电场强度。
解根据点电荷电场强度叠加原理,P点的电场强度矢量为点Si和Si处点电荷在P处产生的电场强度的矢量和,即E r = Qi 弘 | ① R?4T V£0/?/ 4TT£0R] = r — r L = 4e v — 4e., R 、= J 4-0 " + 0-4 ~ = 4>/2 R 2 =r —r 2 =4e v -4e v , R 2 = J 4-0 ' + 0-4 ' = 4>/22-7. 一个点电荷+q 位于(-a, 0,0)处,另一点电荷-2q 位于(a,0,0)处,求电位等于零的 面;空间有电场强度等于零的点吗?解根据点电荷电位叠加原理,有々)=丄]鱼+鱼4矶丄忌」式中Rj =r-r L = x-\-a e v + ye v +e. R i = yl x + a 2 + r+^2 R 2 =r-r 2 = x ~a e v + ),e y+e r R? — yj x — ci + )r +代入得到式中代入得到心孟 _______ 1^x + a)2+ y 2+ z 22JaS+b+z 2(3x+d )(x+3a ) + 3),+3z ,=0根据电位与电场强度的关系,有电位为零,即令简化可得零电位面方程为要是电场强度为零,必有E x = 0, E y = 0, E : = 0一 (x+ d)[(x + d)2 + y 2 + ^2p + 2(—d)[(—d)2+ y 2 + 疋 -)^(x+n)2 + y 2 + z 2 2 +2y^(x-a)2 + y 2+ z 2丄-z[(x + d)2 + + 疋 2+2z[(x-d)2 +)*此方程组无解,因此,空间没有电场强度为零的点。
静电场习题(有答案)

经典的静电场习题1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。
将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。
那么,为了使小球能从B 板的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、B 、C 三点的电势分别为1V 、6V 和9V 。
则D 、E 、F 三点的电势分别为( )A 、+7V 、+2V 和+1VB 、+7V 、+2V 和1VC 、-7V 、-2V 和+1VD 、+7V 、-2V 和1V3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。
则(1)A 、B 两点间的电势差为( ) A 、q m U AB232υ-= B 、q m U AB232υ= C 、q m U AB22υ-= D 、qm U AB22υ= (2)匀强电场的场强大小和方向( ) A 、qdm E 221υ=方向水平向左 B 、qdm E 221υ=方向水平向右 C 、qdm E 2212υ= 方向水平向左D 、qdm E 2212υ=方向水平向右4、一个点电荷从静电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运动方向垂直 A B a bP· m 、q。
。
U+ -A B C DEF E· Aυ0 B·5、在静电场中( )A.电场强度处处为零的区域内,电势也一定处处为零B.电场强度处处相等的区域内,电势也一定处处相等C.电场强度的方向总是跟等势面垂直D.沿着电场线的方向电势是不断降低的6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A 、4E K B 、4.25E K C 、5E K D 、8E K7、如图所示,实线为一簇电场线,虚线是间距相等的等势面,一带电粒子沿着电场线方向运动,当它位于等势面φ1上时,其动能为20eV ,当它运动到等势面φ3上时,动能恰好等于零,设φ2=0,则,当粒子的动能为8eV 时,其电势能为( ) A 、12eV B 、2eV C 、10eV D 、08、如图10—7所示,在两电荷+Q 1和-Q 2连线的延长线上有a 、b 、c 三点,测得b 点的场强为零。
静电场习题-参考答案

静电场习题参考答案一、选择题1C 2D 3D 4D 5B 6C 7C 8B 9D 10B 11B 12B 13C 二、填空1. 002-3E ε、0043E ε2. 06q ε3. 不变 减小4. ⎪⎪⎭⎫ ⎝⎛-π00114r r q ε5. ⎪⎭⎫ ⎝⎛-πR r Q 1140ε6.⎪⎪⎭⎫ ⎝⎛-π20114r R Qq ε7.10114q r R ε⎛⎫- ⎪π⎝⎭8. 2202dSU ε 9.204R q επ10. 2021+4q L επ() 11. C Fd /2 FdC 212. 不变 、 减小三、计算1. 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 总场强为 ⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε方向沿x 轴,即杆的延长线方向.P Ldd q x(L+d -d ExO2. 解:选杆的左端为坐标原点,x 轴沿杆的方向.在x 处取一电荷元λd x ,它在点电荷所在处产生场强为:()204d d x d xE +π=ελ整个杆上电荷在该点的场强为:()()l d d lx d x E l+π=+π=⎰00204d 4ελελ 点电荷q 0所受的电场力为:()ld d lq F +π=004ελ=0.90 N 沿x 轴负向3. 解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ= (R 1<r <R 2) 两球的电势差⎰⎰π==212120124d R R R R r dr Q r E U ε⎪⎪⎭⎫ ⎝⎛-π=21114R R Q ε∴ 12122104R R U R R Q -π=ε=2.14×10-9 C4. (1)由高斯定理 024επQE r =求出 204rQ E πε=21R r R <<)11(421021R R Q Edr U R R -==⎰πε5. 解:由高斯定理当r >R 时,20141r QE πε=当r <R 时,r R Q r r R QE 302330241343441πεπππε==以无穷远处为参考点,球内离球心r 处的P 点的电势为⎰⎰⎰∞∞⋅+⋅=⋅=RR r PP l E l E l E V Pϖϖϖϖϖϖd d d 12q沿径向路径积分得32202030122)3(41d 41d 41d d R r R Q r r Qr r R Q rE r E V P R Rr RRr P PP-=⋅+⋅=⋅+⋅=⎰⎰⎰⎰∞∞πεπεπε6. 解:未插导体片时,极板A 、B 间场强为: E 1=V / d 插入带电荷q 的导体片后,电荷q 在C 、B 间产生的场强为:E 2=q / (2ε0S ) 则C 、B 间合场强为:E =E 1+E 2=(V / d )+q / (2ε0S )因而C 板电势为: U =Ed / 2=[V +qd / (2ε0S )] / 27. 解:应用动能定理,电场力作功等于粒子的动能增量0212-=v m qEl无限大带电平面的电场强度为: E = σ / (2ε0) 由以上两式得 σ = ε0m v 2 / (ql )8. 解:设试验电荷置于x 处所受合力为零,即该点场强为零.()()0142142020=+π-+-πx qx q εε 得 x 2-6x +1=0, ()223±=x m因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得 ()223+=x md d。
大物静电场作业解答

一半径为R的无限长带电圆柱,其体电荷密度为 = 0 r ( r R ), 0为常数,求其圆柱体内的场强(r R),圆柱体外的场强为(r > R)。
R
解:取同轴高斯面r R,由高斯定理得
h
解:取同轴高斯面r > R,由高斯定理得
三.计算题:
真空中一高 h 等于 20 cm ,底面半径 R = 10cm 的圆锥体, 在其顶点与底面中心连线的中点上置一 q = 10-5 C 的点电荷,求通过该圆锥体侧面的电场强度通量.( 0 = 8.85×10-12 N -1 • m -2 )
8
4.在静电场中,下列说法中哪一个是正确的? [ D ]
5. 有四个等量点电荷在OXY平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零,则原点O处电场强度和电势为零的组态是: [ D ]
-q
-q
+q
+q
O
-q
+q
-q
+q
O
+q
-q
+q
-q
O
+q
-q
-q
+q
O
则通过圆锥侧面的电场强度通量就等于对整个球面的通量减去通过圆锥底面所截球冠的通量 .
以为圆心、为 半径作球面。
r 由几何关系 h
2. 图示一厚度为d 的"无限大"均匀带电平面,电荷密度为,试求板内外的场强分布.并画出场强在x轴的投影值随坐标变化的图线,即Ex-x图线.(设原点在带电平板的中央平面上,ox轴垂直于平板)
,不是 y!
设在均匀电场中,场强E与半径为R的半球面的轴相平行,通过此半球面的电场强度通量为 [ ] 解:利用高斯定理,穿过圆平面的电力线必通过半球面,因此在圆平面上 所以通过此半球面的电通量为
高中物理静电场(精选100题答案)

3 2kQ 强为三个场强的竖直分量之和,即 4L2 ,选项 D 正确。
7. 解析:选 A 设在 O 点的球壳为完整的带电荷量为 2q 的带电球壳,则在 M、N 两点产生的场强大
k·2q kq 小为 E0=2R2=2R2。题图中左半球壳在 M 点产生的场强为 E,则右半球壳在 M 点产生的场强为 E′=
4Q·2Q
Q2
FAC=k 12L2 =32kL2
B、C 之间为引力,大小为 Q·2Q Q2
FBC=k12L2=8k L2
Q2 F 合=FAC+FBC=40kL2 。
(2)根据三个点电荷的平衡规律,D 为正电荷,且 D 应放在 AB 连线的延长线上靠近 B 的一侧,设 D 到 B 的距离为 x,电荷量为 q,
静电场典型题目 70 题参考答案
1. 解析:选 A 库仑力作用符合牛顿第三定律,即两小球所带电荷量不相等时,相互作用的库仑力
大小相等,因此 α>β 不是电荷量不相等造成的。根据受力平衡条件及 α>β,可得 m1<m2,故 A 正确。
2. 解析:选 D 由于小球 c 所受库仑力的合力的方向平行于 a、b 的连线,根据受
库仑力与 b 对 c 的库仑力关于 Oc 对称,即 qa=qb,B 正确;对 a、b 整体受力分析可得:因为 a、b 连线
水平,则 ma=mb,但与 c 的质量关系不能确定,A 错误;因 c 对 a、b 的库仑力关于 Oc 对称,由受力分
析知,细线 Oa、Ob 所受拉力大小相等,C 正确;c 所带电荷量与 a、b 所带电荷量不一定相等,所以 a、
kq
kq
静电场部分习题及答案(1)

静电场部分习题一选择题1.在坐标原点放一正电荷Q,它在P点(x=+1,y=0)产生的电场强度为.现在,另外有一个负电荷-2Q,试问应将它放在什么位置才能使P点的电场强度等于零(A) x轴上x>1.(B) x轴上0<x<1.(C) x轴上x<0.(D) y轴上y>0.(E) y轴上y<0.[C ]2有两个电荷都是+q 的点电荷,相距为2a.今以左边的点电荷所在处为球心,以a为半径作一球形高斯面.在球面上取两块相等的小面积S1和S2,其位置如图所示.设通过S1和S2的电场强度通量分别为φ1和φ2,通过整个球面的电场强度通量为φS,则(A)φ1>φ2φS=q /ε0.(B) φ1<φ2,φS=2q /ε0.(C) φ1=φ2,φS=q /ε0.(D) φ1<φ2,φS=q /ε0.[D ]x3 如图所示,边长为m的正三角形abc,在顶点a处有一电荷为10-8 C的正点电荷,顶点b处有一电荷为-10-8 C的负点电荷,则顶点c处的电场强度的大小E和电势U为:(=9×109 N m /C2)(A) E=0,U=0.(B) E=1000 V/m,U=0.(C) E=1000 V/m,U=600 V.(D) E=2000 V/m,U=600 V.[ B ]4. 点电荷-q位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到C,电场力作功最大.(C) 从A到D,电场力作功最大.(D) 从A到各点,电场力作功相等.[D ]A5 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E,则导体球面上的自由电荷面密度δ为(A) ε 0 E.(B) ε 0εr E.(C) ε r E.(D) (ε 0εr-ε 0)E.[ B ]6一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E、电容C、电压U、电场能量W四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E↑,C↑,U↑,W↑.(B) E↓,C↑,U↓,W↓.(C) E↓,C↑,U↑,W↓.(D) E↑,C↓,U↓,W↑.[ B ]7 一个带负电荷的质点,在电场力作用下从A点出发经C点运动到B点,其运动轨道如图所示。
《静电场》_单元测试题(含答案)

第一章 《静电场 》单元测试题班级 姓名一、单项选择题(本题共6小题,每小题5分,共30分)1.关于电场强度与电势的关系,下面各种说法中正确的是( )A .电场强度大的地方,电势一定高B .电场强度不变,电势也不变C .电场强度为零时,电势一定为零D .电场强度的方向是电势降低最快的方向2.如图1所示,空间有一电场,电场中有两个点a 和b .下列表述正确的是A .该电场是匀强电场B .a 点的电场强度比b 点的大C .a 点的电势比b 点的高D .正电荷在a 、b 两点受力方向相同3.如图2空中有两个等量的正电荷q 1和q 2,分别固定于A 、B 两点,DC 为AB连线的中垂线,C 为A 、B 两点连线的中点,将一正电荷q 3由C 点沿着中垂线移至无穷远处的过程中,下列结论正确的有( )A .电势能逐渐减小B .电势能逐渐增大C .q 3受到的电场力逐渐减小D .q 3受到的电场力逐渐增大 图24.如图3所示,a 、b 、c 为电场中同一条水平方向电场线上的三点,c 为ab 的中点,a 、b 电势分别为φa =5 V 、φb =3 V .下列叙述正确的是( )A .该电场在c 点处的电势一定为4 VB .a 点处的场强E a 一定大于b 点处的场强E bC .一正电荷从c 点运动到b 点电势能一定减少D .一正电荷运动到c 点时受到的静电力由c 指向a 图35.空间存在甲、乙两相邻的金属球,甲球带正电,乙球原来不带电,由于静电感应,两球在空间形成了如图4所示稳定的静电场.实线为其电场线,虚线为其等势线,A 、B 两点与两球球心连线位于同一直线上,C 、D 两点关于直线AB 对称,则( )A .A 点和B 点的电势相同B .C 点和D 点的电场强度相同C .正电荷从A 点移至B 点,静电力做正功D .负电荷从C 点沿直线CD 移至D 点,电势能先增大后减小 图46.如图5所示,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、 b 、d 三个点,a 和b 、b 和c 、 c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( ). 图5A .k 3q R 2B .k 10q 9R 2C .k Q +q R 2D .k 9Q +q 9R 2 二、多项选择题(本题共4小题,每小题8分,共32分)7.下列各量中,与检验电荷无关的物理量是( )A .电场力FB .电场强度EC .电势差UD .电场力做的功W图18.带电粒子M 只在电场力作用下由P 点运动到Q 点,在此过程中克服电场力做了2.6×10-8 J 的功,那么( ) A .M 在P 点的电势能一定小于它在Q 点的电势能B .P 点的场强一定小于Q 点的场强C .P 点的电势一定高于Q 点的电势D .M 在P 点的动能一定大于它在Q 点的动能9.如图6所示的电路中,AB 是两金属板构成的平行板电容器.先将电键K 闭合,等电路稳定后再将K 断开,然后将B 板向下平移一小段距离,并且保持两板间的某点P 与A 板的距离不变.则下列说法正确的是( )A .电容器的电容变小B .电容器内部电场强度大小变大C .电容器内部电场强度大小不变D .P 点电势升高10.带电粒子在匀强电场中的运动轨迹如图7所示,如果带电粒子只受电场力作用从a 到b 运动,下列说法正确的是( )A .粒子带正电B .粒子在a 和b 点的加速度相同C .该粒子在a 点的电势能比在b 点时大D .该粒子在b 点的速度比在a 点时大三.计算题:(38分)11.(16分)有一带电荷量q = -3×10-6 C 的点电荷,从某电场中的A 点移到B 点,电荷克服电场力做6×10-4 J 的功,从B 点移到C 点,电场力对电荷做9×10-4 J 的功,求A 、C 两点的电势差并说明A 、C 两点哪点的电势较高图7图612.(22分)如图所示为一真空示波管,电子从灯丝K发出(初速度不计),经灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线射出,然后进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 姓名 学号 静电场作业 一、填空题1. 一均匀带正电的空心橡皮球,在维持球状吹大的过程中,球内任意点的场强 不变 。
球内任意点的电势 变小 。
始终在球外任意点的电势 不变 。
(填写变大、变小或不变)解:2. 真空中有一半径为R ,带电量为 +Q 的均匀带电球面。
今在球面上挖掉很小一块面积△S ,则球心处的电场强度E = 。
解:电荷面密度3. 点电荷q 1、q 2、q 3和q 4在真空中的分布如图所示。
S 为闭合曲面, 则通过该闭合曲面的电通量为 。
42εq q +解:高斯定理 ;其中为S 闭合面内所包围的所有电荷的代数和4. 边长为a 的正六边形每个顶点处有一个点电荷 +q ,取无限远处作为电势零点,则正六边形中心O 点电势为 V 。
aq 023πε解:O 点电势为6个点电荷电势之和。
每个q 产生的电势为+2041rQE ⋅=πε0=E (r > R 球(r < R 球均匀带电球面 r QU ⋅=041πεRQU ⋅=041πεs24R Qπσ=24R s Q q π∆=∴4022022*******R sQ R R s Q r qE εππεππε∆=⨯∆==40216R sQ επ∆0εφ∑⎰=⋅=iSq S d E ∑i qaq rq U 0044πεπε==q q U o 36=⨯=∴5. 两点电荷等量异号,相距为a ,电量为q ,两点电荷连线中点O 处的电场强度大小E = 。
202aqπε 解:6. 电量为-×10-9 C 的试验电荷放在电场中某点时,受到×10-9N 的向下的力,则该点的电场强度 大小为 4 N/C 。
解:由电场强度定义知,7. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d << R ),环上均匀 带正电,总电量为q ,如图所示,则圆心O 处的场强大小E =__________ __。
)2(420d R R qd-ππε解:根据圆环中心E=0可知,相当于缺口处对应电荷在O 点处产生的电场电荷线密度为; 缺口处电荷8. 如图所示,将一电量为-Q 的试验电荷从一对等量异号点电荷连线的中点O 处,沿任意路径移到无穷远处,则电场力对它作功为 0 J 。
解:根据电场力做功与电势差之间的关系可求其中d+-Oq+q-•E 2a 2a 202022422a q a q E E q πεπε=⎪⎭⎫ ⎝⎛⨯==+4==qF E dR q-=πλ2ddR qq ⨯-='π2)2(44124202020d R R qdR d R qd R q E -=⨯-='=ππεπεππε)(∞-=U U q A O ;0=∞U ;04400=+-=rq rq U o πεπε0)(=--=∴∞U U Q A O二、选择题1.关于静电场的高斯定理,下列说法正确的是( B )(A )闭合曲面上各点的电场强度都为零时,曲面内一定没有电荷; (B )闭合曲面上各点的电场强度都为零时,曲面内电荷的代数和必定为零; (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;( D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。
2.电量为q 的三个点电荷,分别放在正三角形的三个顶点。
在三角形中心处有另一个点电荷Q , 欲使作用在每个点电荷上的合力为零,则Q 的电量为: ( C ) (A ) -2q ; (B ) 2q ; (C ) 33q - ; (D ) 32q - 。
解:3.在匀强电场中,将一负电荷从A 移至B ,如图所示,则( D ) (A )电场力作正功,负电荷的电势能减少; (B )电场力作正功,负电荷的电势能增加; (C )电场力作负功,负电荷的电势能减少; (D )电场力作负功,负电荷的电势能增加。
解:沿电场线方向电势降低显然负电荷所受电场力方向向左,阻碍电荷运动,故做负功。
保守力做功等于势能增量的负值 4.静电场的环路定理 0=⋅⎰ll d E说明静电场的性质是( D )(A) 电场线是闭合曲线; (B )静电场力是非保守力;(C) 静电场是有源场; (D )静电场是保守场.30cos 21F F =202202432342a q a q πεπε=⋅=EB20)(41OA qQ F ⋅-='πε202043)33(4a Q q a Q q πεπε-=⋅-=-由 F = F ′解得: q Q 33-=qUW -=0>>B A U U BA W W <∴0)(<--=AB W W A BA W W <∴5.下列说法正确的是 ( D )(A )电场强度为零的点,电势也一定为零; (B )电场强度不为零的点,电势也一定不为零; (C )电势为零的点,电场强度也一定为零;( D )电势在某一区域内为常数,则电场强度在该区域内必定为零。
解:电势是相对概念,与电势零点选择有关,而电势零点选择是任意的6.下面几种说法中正确的是 ( C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向; (B )在以点电荷为球心的球面上,由该点电荷产生的场强处处相同;(C )场强方向可由E=F/q 定出,其中q 为试探电荷的电量,q 可正可负,F 为电场力; (D )均匀电场中各点场强大小一定相等,场强方向不一定相同。
7.在点电荷+q 的电场中,作三个等势面A 、B 、C ,相邻两等势面的间距相等, 那么相邻两等势面的电势差( A )(A )U A -U B > U B -U C ; (B )U A -U B < U B -U C ; (C )U A -U B = U B -U C ; (D )难以判断。
8.电量都为+Q 的两个点电荷相距为l ,连线的中点为O ,另有一点电荷-q ,静止地放在连线的中垂线上距O 为x 处,则点电荷所处的状态为( D )(A)保持静止不动; (B )作均加速直线运动; (C )作均速直线运动; (D )作周期性振动。
9.静电场的电场线方向,就是( B )(A )电势能减小的方向; (B )电势减小的方向; (C )正电荷在场中的运动方向; (D )负电荷在场中的运动方向。
三、计算题1、两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2(R 1<R 2),单位长度上的电量为λ。
求离轴线为r 处的电场强度;(r <R 1、R 1<r <R 2、r >R 2);解:(1)作半径为r 、长为l 的同轴的闭合圆柱面为高斯面,如图所示, 根据高斯定理有02επ∑⎰=⋅=⋅ql r E S d E Sr <R 1 0=∑q E 1= 0R 1<r <R 2lq λ=∑rE 022πελ=r >R 20=∑q E 3= 0+AB C…(1′)2、两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如图所示,求: (1)图中三个区域的场强1E ,2E ,3E 的表达式;(2)若б=×10-6C ·m -2,那么,1E ,2E ,3E 各多大解:(1)无限大均匀带电平板周围一点的场强大小为02E σε=在Ⅰ区域 10002222σσσεεε-=+=E i i i Ⅱ区域 200023222σσσεεε=+=E i i i Ⅲ区域 30002222σσσεεε=-=-E i i i (2)若 624.4310C m σ--=⨯⋅ 则51102.5010(V m )2E i i σε-==⨯⋅ 512037.5010(V m )2E i i σε-==⨯⋅ 51302.5010(V m )2E i i σε-=-=-⨯⋅4、如图所示,在半径为cm R 51=和cm R 102=的两个同心球面上,分别均匀地分布着电荷C Q 51102-⨯=和C Q 52103-⨯=,试求:(1)各区域内的场强分布; (2)各区域内的电势分布;解:(1)利用高斯定理求出空间的电场强度:作同心球面为高斯面,则有024επ∑⎰==⋅q E r S d E S当1R r <时,∑=0q 0=ⅠE当12R r R <<时, ∑=1Q q 252125201108.11085.814.341024rr r Q E ⨯=⨯⨯⨯⨯==--πεⅡ 当2r R >时 , 21Q Q q +=∑ 2521252021105.41085.814.341054rr r Q Q E ⨯=⨯⨯⨯⨯=+=--πεⅢ (2)则空间电势的分布:R 1R 2Q 1Q 2σ+σ2-当1R r <时, 20210144R Q R Q U πεπε+=Ⅰ=当21R r R <≤时,2020144R Q rQ U πεπε+=Ⅱ=当2r R ≥时, rQ Q U 0214πε+=Ⅲ=5、两根26.010m -⨯长的丝线由一点挂下,每根丝线的下端都系着一个质量为30.510kg -⨯的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。
求每一个小球的电量。
解: 设两小球带电12=q q q =,小球受力如图所示220cos304πq F T Rε==︒ ① sin30mg T =︒ ②联立①②得 2o 024tan30mg R qπε= ③其中223sin 606103310(m)r l --=︒=⨯= 2R r =代入③式,得71.0110C q -=⨯。