滚动轴承的故障机理与诊断
滚动轴承故障诊断实例

滚动轴承故障诊断实例
滚动轴承故障诊断实例可以包括以下几种情况:
1. 声音异常:当滚动轴承出现故障时,可能会出现异常的噪音,如嘶嘶声、刮擦声或者咔咔声等。
这种情况下,可以通过听觉判断故障的类型和位置。
噪音一般源于滚珠或滚道表面的损伤或者磨损。
2. 振动异常:故障的滚动轴承会导致轴承运行不稳定,产生过大的振动。
可以通过振动传感器来检测振动的频率和幅度,进而判断故障的严重程度和位置。
振动异常可能是由于轴承内部松动、滚子损伤或滚道不平整等问题引起的。
3. 温度异常:滚动轴承运行时,由于磨擦和摩擦产生的热量,轴承温度会有所上升。
但是,如果滚动轴承的温度明显高于正常值,可能表明存在故障。
可以通过红外测温仪或接触式温度计来测量轴承的温度,判断是否存在异常。
4. 润滑问题:滚动轴承需要得到正确的润滑以保持正常运行。
如果滚动轴承出现故障,润滑不足或者污染等问题,会导致滚动轴承的寿命缩短。
可以通过观察润滑脂或润滑油的颜色、黏度以及滚动轴承周围是否有渗漏等来判断润滑是否正常。
上述实例中的故障诊断需要依靠专业的设备和工具,同时需要具备相应的专业知识和经验,建议请专业人士进行诊断和修复。
滚动轴承故障诊断

滚动轴承故障诊断工课设备管理看工课141篇原创内容公众号正文 1072 字丨3分钟阅读一、滚动轴承故障诊断的方式及要点对滚动轴承进行状态监测和故障诊断的实用方法是振动分析。
实用中需注意选择测点的位置和采集方法。
要想真实准确反映滚动轴承振动状态,必须注意采集的信号准确真实,因此要在离轴承最近的地方安排测点。
另外必须注意对振动信号进行多次采集和分析,综合进行比较,才能得到准确结论。
二、滚动轴承正常运行的特点与实用诊断技巧滚动轴承在其使用过程中会表现出很强的规律性,并且重复性非常好。
正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,可能是由于制造过程中的一些缺陷,如表面毛刺等所致。
运行一段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。
极少出现三倍工频以上频谱,轴承状态非常稳定,进入稳定工作期。
继续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化较缓慢。
此时,轴承峭度值开始突然达到一定数值,此时认为轴承表现为初期故障。
这时,就要求对该轴承进行严密监测,密切注意其变化。
此后,轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,当振动超过振动标准时,其轴承峭度值也开始快速增大,当既超过振动标准,而峭度值也超过正常值时,认为轴承已进入晚期故障,需及时检修设备,更换滚动轴承。
轴承表现出晚期故障特征到出现严重故障(一般为轴承损坏如抱轴、烧伤、沙架散裂、滚道、珠粒磨损等)时间大都很短,设备容量越大,转速越快,其间隔时间越短。
因此,在实际滚动轴承故障诊断中,一旦发现晚期故障特征,应果断判断轴承存在故障,尽快安排检修。
三、实用的滚动轴承频谱分析与诊断技巧对于振动不大,轴承峭度不大,频谱复杂的振动信号,在现场难以判断有无故障情况时,需将振动信号采集回来,传到计算机进行精密分析。
此时,先进行常规分析,检查振动速度频谱和轴承峭度是否接近标准,观察频谱中各种频率成份。
滚动轴承常见故障及故障程度诊断方法

(6)座圈产生裂纹和保持架碎裂
轴承座圈产生裂纹的原因可能是 轴承配合过紧、轴承外圈或内圈 松动、轴承的包容件变形、安装 轴承的表面加工不良等。保持架 碎裂的原因是润滑不足、滚动体 破碎、座圈歪斜等。座圈滚道严 重磨损可能是座圈内落入异物、 润滑油不足或润滑油牌号不符合
要求引起的。
3.故障诊断
⑤保持架噪声。产生原因:滚动 体和保持架、保持架与引导面之 间的滑动摩擦,以及保持架与滚 动体发生相互撞击而发出的噪声。
特点:具有周期性;当采用滚动 体引导保持架时,这种运动的不 稳定性更加严重,深沟球轴承的 冲压保持架较薄,径向、轴向的 刚度较低,整体稳定性差,轴承 高速旋转时,因弯曲变形而产生
1.故障识别
运转中的检查项目有轴承的滚动 声、振动、温度等,主要识别方
法如下:
(1)噪声识别
这需要有丰富的经验,应尽量由 专人进行这项工作。用听音器或 听音棒贴在外壳上可清楚地听到 轴承的声音,也可采用测声器对 运转轴承的滚动声的大小及音质 进行检测,分辨出不同的故障。
轴承噪声主要有以下几种:
现振动。
表面疲劳剥落的初期是表面上出 现麻点,最后发展成片状的表层 脱落。轴承滚动体和内外圈滚道 面上均承受周期性脉动载荷的作 用,产生周期性变化的接触应力。 当应力循环次数达到一定数量后, 在滚动体或内外圈滚道工作面上 就产生疲劳剥落。如果轴承的负
荷过大,会使这种疲劳加剧。
另外,轴承安装不正、轴弯曲, 也会产生滚道剥落现象。轴承滚 道的疲劳剥落会降低轴的运转精
自激振动,发出“蜂鸣声”。
⑥夹杂物噪声。大约14%的轴承过 早损毁是污染所致,外部杂质进 入轴承工作面引起非周期性振动 和噪声。特点:随机性强,特别
是小型轴承对此很敏感。
滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述引言:滚动轴承作为机械设备中常用的零部件之一,承担着支撑和传递载荷的重要作用。
然而,由于使用环境的恶劣和工作条件的复杂性,滚动轴承往往容易出现各种故障。
因此,为了保证机械设备的正常运行和延长轴承寿命,对滚动轴承的故障进行准确诊断非常重要。
一、故障诊断方法1. 观察法观察法是最常用的故障诊断方法之一。
通过观察滚动轴承的外观和运行状态来判断是否存在故障。
例如,如果发现滚动轴承有异常噪声、温度升高、润滑油泡沫、振动加剧等现象,很可能是轴承出现了故障。
2. 振动诊断法振动诊断法是一种先进的故障诊断方法,可以通过检测轴承的振动信号来判断轴承是否存在故障。
通过分析振动信号的频谱图,可以确定轴承故障的类型和位置。
常用的振动诊断方法包括时域分析、频域分析和小波分析等。
3. 声音诊断法声音诊断法是一种通过听觉判断轴承故障的方法。
通过专业人员对轴承产生的声音进行听觉分析,可以判断轴承是否存在异常。
常见的轴承故障声音包括金属碰撞声、摩擦声和振动声等。
4. 热诊断法热诊断法是一种通过测量轴承的温度来判断轴承故障的方法。
由于轴承在故障状态下会产生摩擦热,因此轴承的温度可以间接反映轴承的工作状态。
通过测量轴承的温度分布,可以判断轴承是否存在异常。
二、故障诊断技术1. 模式识别技术模式识别技术是一种基于机器学习的故障诊断技术,可以根据轴承的振动信号和声音信号等特征,通过训练模型来识别轴承的故障类型。
常用的模式识别技术包括支持向量机、神经网络和决策树等。
2. 图像诊断技术图像诊断技术是一种通过图像处理和分析来判断轴承故障的技术。
通过对轴承的外观图像进行特征提取和分类,可以实现对轴承故障的自动诊断。
常用的图像诊断技术包括边缘检测、纹理分析和目标识别等。
3. 声音信号处理技术声音信号处理技术是一种通过对轴承声音信号进行滤波、频谱分析和特征提取等处理,来判断轴承故障的技术。
通过对声音信号的频谱图和时域图进行分析,可以判断轴承故障的类型和位置。
轴不对中故障机理以及滚动轴承故障机理分析

轴不对中故障机理以及滚动轴承故障机理分析一、轴不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。
轴不对中可分为联轴器不对中和轴承不对中,联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。
轴不对中的主要故障特征:(1)平行不对中:径向出现轴的一倍频、二倍频峰值,尤以二倍频显著。
(2)偏角不对中:轴向振动大,在基频、二倍频甚至三倍频处有稳定的高峰。
(3)平行偏角不对中:轴向和径向均发生振动。
二、滚动轴承故障机理滚动轴承的监测诊断技术有很多种,如振动信号分析诊断、声发射诊断、油液分析诊断、光纤监测诊断等,它们各具特点,其中振动信号分析诊断技术应用最为广泛。
在轴承工况监视与故障诊断的各方法中,振动法由于其适用性强,效果好,测试及信号处理简单直观等优点而被广泛采用。
振动信号作为预知滚动轴承故障的载体,具有很优良的性质。
1.滚动轴承的基本类型分类滚动轴承已是标准化、系列化、通用化、商品化的部件。
滚动轴承是机械构造中的基础运动元件,对机械的运动、做功和发挥机械的功能与效率具有直接的制约功能。
滚动轴承的数据信息繁多复杂,分类方式主要依据轴承所能承受的负荷方向、公称接触角及滚动体形状按照轴承类型对滚动轴承库的数据进行分类,基本类型如图所示。
2.滚动轴承的典型故障滚动轴承的主要故障形式有:(1)疲劳剥落滚动轴承工作时,滚道和滚动体表面既承受载荷又相对滚动,由于交变载荷的作用,首先在表面下一定深度处(最大剪应力处)形成裂纹,继而扩展到接触表面层发生剥落坑,最后发展到大片剥落,这种现象就称为疲劳剥落。
(2)磨损由于滚道和滚动体的相对运动(包括滚动和滑动)和尘埃异物的侵入等都会引起表面磨损,而当润滑不良时更会加剧表面磨损。
磨损的结果使轴承游隙增大,表面粗糙度增加,降低运转精度。
(3)塑性变形在工作负荷过重的情况下,轴承受到过大的冲击载荷和静载荷,或者因为热变形引起的额外的载荷,或者当有高硬度的异物侵入时,都会在滚道表面上形成凹痕或划痕。
滚动轴承的故障诊断方法研究

滚动轴承的故障诊断⽅法研究滚动轴承的故障诊断⽅法研究第1章绪论1.1研究的⽬的和意义滚动轴承是⽣产机械中的地位⽆可替代,当然也最易损坏的部件。
其运⾏状态会直接影响整台机械⼯作效率、精度寿命和可靠性。
滚动轴承的损坏会导致⽣产机械剧烈振动,并伴有强⼤噪声,不仅会影响产品的加⼯质量,严重时会导致⽣产机械的损坏或机械事故。
随着电机的⼴泛应⽤及其⾃动化程度的不断提⾼,对其安全性、精度和故障诊断的准确性的要求也随之提⾼。
传统的诊断⽅法不仅成本较⾼、准确率偏低,并且更新费⽤⾼,已然不能满⾜⾼科技设备的需求。
基于以上原因,本⽂在虚拟仪器的环境下,利⽤多传感器信息融合技术,实现滚动轴承的故障诊断,会对现在和将来的⽣产技术提供强有⼒的帮助。
1.2国内外电机滚动轴承故障诊断的研究现状近现代以来,国内和国外的研究机构及学者在电机滚动轴承故障诊断的理论、技术与⽅法等⽅⾯进⾏了⼤量的研究分析⼯作,发表了诸多研究成果。
在国外,美国南卡罗林娜⼤学运⽤振动响应的多参数多频率的⽅法,对具有裂纹的和损伤的故障轴承进⾏诊断,⽬前已经取得了良好的成果。
美国宾州⼤学采⽤alpha beta -gamma跟踪滤波器和Kalman滤波器,对轴承故障的智能预⽰实现了完美成功。
⽇本九州⼯业⼤学运⽤基因算法优化组合特征参数,成功诊断出⼯况滚动轴承微弱故障。
意⼤利的Cassino⼤学,使⽤⾃谱技术对出现的轴承进⾏检测,判断故障轴承的初始问题,到⽬前为⽌也取得了有效的研究成果。
国外的这些技术有我们值得借鉴的地⽅,去其糟粕取其精华,研究更有技术的故障轴承诊断系统。
在国内,当滚动轴承存在故障时,⼤都以振动检测为主,因为轴承故障后常伴随巨⼤的声响,以及明显的外观表现。
国内的主要研究成果如下图所⽰。
或⾃⾝故障等多个⽅⾯的原因,会对故障造成误判或错判,如:声级计传感器易受到噪声的⼲扰,不能准确、⽆失真的反映滚动轴承的真实信号,温度传感器由于易受到外界温度的⼲扰,也常会出现误判或者错判等等。
第七章 滚动轴承的故障机理与诊断

第七章滚动轴承的故障机理与诊断第一节滚动轴承故障的主要形式与原因滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分或异物侵入、腐蚀和过载等都可能导致轴承过早损坏。
即使在安装、润滑、和使用维护都正常德情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损而不能正常工作。
总之,滚动轴承的故障原因是十分复杂的滚动轴承的主要故障形式与原因如下:1.疲劳剥落滚动轴承的内外滚道和滚动体表面既承受载荷有相对滚动,由于交变载荷的作用,首先在表面下一定深度处形成裂纹,继而扩展到接触表面使表层发生剥落坑,最后发展到大片剥落,这种现象就是疲劳剥落。
疲劳剥落会造成运转时的冲击载荷、振动和噪声加剧。
通常情况下,疲劳剥落往往是滚动轴承失效的主要原因,一般所说的轴承寿命就是指轴承的疲劳寿命,轴承的寿命试验就是疲劳试验。
试验规程规定,在滚道或滚动体上出现面积为0.5mm2的疲劳剥落坑就认为轴承寿命终结。
滚动轴承的疲劳寿命分散性很大,同一批轴承中,其最高寿命与最低寿命可以相差几十倍乃至上百倍,这从另一角度说明了滚动轴承故障监测的重要性。
2.磨损由于尘埃、异物的侵入,滚道和滚动体相对运动时会引起表面磨损,润滑不良也会加剧磨损,磨损的结果使轴承游隙增大,表面粗糙度增加,降低了轴承运转精度,因而也降低了机器的运动精度,振动及噪声也随之增大。
对于精密机械轴承,往往是磨损量限制了轴承的寿命。
此外,还有一种微振磨损。
在轴承不旋转的情况下,由于振动的作用,滚动体和滚道接触面间有微小的、反复的相对滑动而产生磨损,在滚道表面上形成振纹状的磨痕。
3.塑性变形当轴承受到过大的冲击载荷或静载荷时,或因热变形引起额外的载荷,或有硬度很高的异物侵入时都会在滚道表面上形成凹痕或划痕。
这将使轴承在运转过程中产生剧烈的振动和噪声。
而且一旦有了压痕,压痕引起的冲击载荷会进一步引起附近表面的剥落。
4.锈蚀锈蚀是滚动轴承最严重的问题之一,高精度轴承可能会由于表面锈蚀导致精度丧失而不能继续工作。
第五章_滚动轴承的故障监测和诊断

图
滚动体损伤振动情况
4、轴承偏心 当滚动轴承的内圈出现严重磨损等情况时,轴承会出现偏心 现象,当轴旋转时,轴心(内圈中心)便会绕外圈中心摆动, 如图4示,此时的振动频率为nfr(n=1, 2,…)。
图
滚动轴承偏心振动特征
实例
• 6210轴承的监测与诊断 • 一台单级并流是鼓风机,其结构如图。该机组自 86 年 1 月30日起,测点③的振动加速度逐渐增加至正常值10倍,为 查明原因,对测点③的振动信号进行频谱分析。
第二节 滚动轴承的失效形式
滚动轴承常见的失效形式:
滚动轴承尺寸的选择2
疲劳点蚀或剥落
磨 损
胶 合
断 裂
保持架损坏
烧 伤
第三节 滚动轴承的振动
与轴承的结构有关的振动 ——无论轴承正常与否,都会产生振动
与轴承滚动表面状况有关的振动两种类型
——反映了轴承的损坏状况
一、滚动轴承的振动机理 1、承载状态下滚动轴承的振动
图 IFD法的信号变换过程
二、滚动轴承的精密诊断
1、轴承内滚道损伤 轴承内滚道产生损伤时,如:剥落、裂纹、点蚀等(如图所 示),若滚动轴无径向间隙时,会产生频率为nfi(n=1,2,…) 的冲击振动。
图
内滚道损伤振动特征
通常滚动轴承都有径向间隙,且为单边载荷,根据点蚀部 分与滚动体发生冲击接触的位置的不同,振动的振幅大小会发 生周期性的变化,即发生振幅调制。若以轴旋转频率fr,进行振 幅调制,这时的振动频率为nfi士fr(n=1,2…)。
2.轴承外滚道损伤
当轴承外滚道产生损伤时,如剥落、裂纹、点蚀等(如图2 所示),在滚动体通过时也会产生冲击振动。由于点蚀的位置 与载荷方向的相对位置关系是一定的,所以,这时不存在振幅 调制的情况,振动频率为nfo ( n=1,2,…),振动波形如图 所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、测试分析方法
⒉测试参数选取
吐哈油田分公司 TUHA OIL FIELD
带通滤波器的中心频率应选在传感器安装谐振频率的中心,谐 振频率通过现场测试确定,图1所示是磁座安装的加速度传感器的 谐振频率,上限频率选在10KHz之上。
包络谱的谱线数一般选800条或1600条,谱线数多则频率分辨 率好。
⒊判断标准
根据轴承尺寸计算的轴承故障频率如下:
内圈故障频率BPIR=49.6Hz
外圈故障频率BPOR=34.2Hz
滚动体BSF=14.7Hz
保持架FTF=2.3Hz
曲轴转频f0=335rpm/60s=5.58Hz
六、测试分析方法
吐哈油田分公司 TUHA OIL FIELD
经过包络处理之后,不平衡、松动、皮带轮偏斜、轴向窜 动等频率都被滤掉了,只用考虑轴承故障和泵进排液阀冲击。 而进排液阀产生的冲击频率是泵转频的1、3、6 ···倍,包络谱 中主要频率分量是43Hz、87Hz、130Hz、260Hz,不是转频 5.58Hz的倍频分量,由此断定故障不是由泵进排液阀窜扰引起 的。当轴承跑内圆或轴承磨损使间隙增大时也会在包络谱上产 生转频及其谐波分量。经过比对,这些频率分量是滚动体故障 频率14.7Hz的3、6、9、18倍频,表明滚动体出现故障,并且 很严重。
滚动轴承的故障机理及诊断
朱荣乾 杨涛 刘光勇 陈建宇 中国石油吐哈油田公司技术监测中心
吐哈油田分公司 TUHA OIL FIELD
滚动轴承的故障机理及诊断
朱荣乾 杨涛 刘光勇 陈建宇 中国石油吐哈油田公司技术监测中心
吐哈油田分公司 TUHA OIL FIELD
• 摘要:本文介绍了滚动轴承的故障类型和发展历 程,轴承故障频率的计算公式和包络分析的原理 ,并通过实例介绍了滚动轴承的诊断方法。
• 关键词:轴承;故障;诊断;包络
一、引言
吐哈油田分公司 TUHA OIL FIELD
旋转设备约有30%的故障是因滚动轴承引起的,因 滚动轴承抱轴、保持架散落造成转子严重损坏给设备造 成的损失是巨大的。最初的轴承故障诊断是靠有经验的 设备管理和维修人员利用听音棒来判断,只能发现处于 晚期的故障,不能及时发现处于早、中期的轴承故障, 从而造成设备故障的扩展,并延缓维修时间。随着设备 监测诊断技术的发展,各种信号分析与处理技术被用于 轴承的故障诊断。
一、引言
吐哈油田分公司 TUHA OIL FIELD
振动加速度信号的波峰因数是指时域波形的峰值与均方根值之
比,这种方法只适用于轴承点蚀故障的诊断;冲击脉冲技术
(Shock Pulse Method)是瑞典SKF公司多年对轴承故障机理研究的
基础上发明的,它依据滚动轴承在出现疲劳剥落、裂纹、磨损时
产生的脉冲性振动强弱判断轴承故障,这种方法受使用者经验、
转速对轴承包络谱幅值的影响很大,转速越高,幅值越大。因 此,不同转速的轴承,其判断标准也是不同的。最好的判断标准 ,是对同一类设备,在相同工况下,比较其包络谱幅值;或者同 一台设备,不同时段的包络谱幅值趋势。
[ m/ s ^2] 2. 8 2. 4 2 1. 6 1. 2
800m 400m
0 0
Four i er Spect r um( Vi b) - I nput ( Magni t ude) Wor ki ng : I nput : I nput : FFT Anal yzer
些部件因长时间承受交变载荷的作用,首先从接触表面以下最大 交变切应力处产生疲劳裂纹,继而扩展到接触表面在表层产生点 状剥落,逐步发展到大片剥落,称之为疲劳剥落。疲劳剥落往往 是滚动轴承失效的主要原因,一般所说的轴承寿命就是指轴承的 疲劳寿命。
二、滚动轴承的故障形式 吐哈油田分公司 TUHA OIL FIELD
(1
d D
cos )
f0
滚动体:BSF
D 2d
[1
(
d D
cos
)2 ]
f0
保持架:FTF
1 2
(1
d D
cos
)
f0
式中:
n——滚动体数目
d——滚动体直径
D——轴承节径,即外环内径与内环外径的平均值
θ——接触角
对于推力轴承,接触角θ为90°。
四、轴承故障频率计算
吐哈油田分公司 TUHA OIL FIELD
设备干扰因素影响较大。美国Entek-IRD公司的峰值能量(Spike
Energy)技术通过检测高频振动的尖峰诊断轴承的故障;CSI公司
的PeakVue技术通过检测轴承产生的应力波诊断轴承故障,对低
速轴承故障信号也有良好的响应;这两种技术诊断准确,但是仪
器价格偏高。包络分析是采用共振解调技术诊断滚动轴承故障,
图3、损坏的轴承内圈滚道
七、结束语
吐哈油田分公司 TUHA OIL FIELD
了解轴承故障的形式和轴承故障的发展 阶段,对于诊断轴承故障是十分必要的。 掌握轴承故障诊断的分析原理和方法是准 确诊断轴承故障的前提。
吐哈油田分公司 TUHA OIL FIELD
请各位专家给予批评指正!
•
树立质量法制观念、提高全员质量意 识。20.11.1220.11.12Thursday, November 12, 2020
之内。包络分析采用带通滤波器,通常选取以加速度传感器安装
共振频率为中心的频带做为载波频率,使微弱的轴承故障信号搭
载在高幅值的谐振频段传递出来,否则高频低幅的轴承故障信号
在多个界面经过反射、衰减之后,传感器很难拾取。再对所测信
号进行绝对值处理,之后采用低通滤波,即可获得调制信号的包
络线,然后进行快速傅立叶变换FFT,便可得到轴承的包络谱,这
• 第四阶段:在加速度和速度频谱图上均能看到轴承故障频率 的基频和高次谐波,并伴随有转速频率的边频带,各种手段所 测频谱图的基底噪音水平升高,继而轴承故障频率开始消失被 随机振动或噪音代替。能明显听到故障轴承产生的噪声。此时 轴承已处于危险状态。
四、轴承故障频率计算
吐哈油田分公司 TUHA OIL FIELD
三、轴承故障的发展历程 吐哈油田分公司 TUHA OIL FIELD
轴承失效通常划分为四个阶段:
• 第一阶段:在轴承失效的初始阶段,故障频率出现在超声 频段。有多种信号处理手段能够检测到这些频率,如峰值能 量gSE、应力波PeakVue、包络谱ESP、冲击脉冲SPM等。 此时,轴承故障频率在加速度谱和速度频谱图上均无显示。 第二阶段:轻微的轴承故障开始激起轴承元件的固有频段 ,一般在500~2KHz范围内。同时该频率还作为载波频率调 制轴承的故障频率。起初只能观察到这个频率本身,后期表 现为在固有频率附近出现边频。此时,轴承仍可安全运转。
个过程也称为共振解调。
六、测试分析方法
吐哈油田分公司 TUHA OIL FIELD
1、传感器放置
滚动轴承的故障检测主要采用加速度传感器,电涡流位移 传感器和磁电式速度传感器不适用于滚动轴承的故障检测。加 速度传感器的固定方法通常有双头螺栓、磁座、探针。以 Entek-IRD公司的970i传感器为例,在安放稳固的情况下,双头 螺栓的安装谐振频率大约在27KHz附近,磁座安装的谐振频率 约在7KHz附近,探针安装的谐振频率大约在1.6KHz附近。前 两种安装方式都适用滚动轴承的故障检测,探针安装方式不但 谐振频率低,而且对高频振动衰减较大,不适宜滚动轴承故障 的检测。
吐哈油田分公司 TUHA OIL FIELD
5.40KHz
2k
4k
6k
8k
10k
12k
[ Hz]
图1、传感器的安装谐振频率
六、测试分析方法
4.轴承故障分析
吐哈油田分公司 TUHA OIL FIELD
图2是一台三柱塞注水泵轴承的包络谱。泵转速335rpm,排出压力 25MPa,流量16m3/h, 驱动电机功率132KW,电机转速985rpm, 电机与泵通过皮带传动。泵轴承为双排球面滚子轴承,型号22330。
吐哈油田分公司 TUHA OIL FIELD
轴承故障会产生周明性的冲击振动信号,通常是高频低幅值
信号,在故障的早期和中期,因不平衡、不对中、松动等故障的
幅值较高,在常规速度谱和加速度谱难以观察到轴承的故障频率
。现场使用最多的是带磁座的压电加速度传感器,对常规振动通
常取传感器安装共振频率的1/3,以保证所测谱线幅值在线性范围
六、测试分析方法
吐哈油田分公司 TUHA OIL FIELD
加速度传感器一般安装在轴承承受载荷的方向,对于 水平放置联轴器传动的设备,传感器安放在轴承座下方; 对于皮带传动的设备,传感器安放在两皮带轮连线方向轴 承座内侧。在测试之前,一定要了解轴承座的结构,避免 把轴承安放的轴承座空腔处,这样轴承的高频信号衰减很 大。采用磁座方装方式,需清理掉不平或过厚的油漆。
吐哈油田分公司 TUHA OIL FIELD
[ m/ s ^2] 8 7
Four i er Spect r um( Vi b) - I nput ( Magni t ude) Wor ki ng : I nput : I nput : FFT Anal yzer
6 43.0Hz
5
87.0Hz 4
3 5.0Hz 2
应用广泛,效果也不错,许多监测仪器采用这一技术。
二、滚动轴承的故障形式 吐哈油田分公司 TUHA OIL FIELD
滚动轴承在正常情况下,长时间运转也会出现疲劳剥落和磨 损。而制造缺陷、对中偏差大、转子不平衡、基础松动、润滑油 变质等因素会加速轴承的损坏。滚动轴承的主要故障形式与原因 如下。
• ⒈疲劳剥落 滚动轴承的内外滚道和滚动体交替进入和退出承载区域,这
• ⒉磨损 长时间运转使轴承的内外滚道和滚动体表面不可避免地产生磨损,持
续地磨损使轴承间隙增大,振动和噪声增加。润滑不良和硬质颗粒进入 滚道会加速轴承的磨损。