MEAN SHIFT SEGMENTATION(meanshift分割算法)

合集下载

mean-shift图像分割

mean-shift图像分割

由式 (4) 获得 :
������ = . ������+1
∑������������=1 ������������������������������(||������������������ℎ−������������������������||2)������(||������������������ℎ−������������������������||2) ∑������������=1 ������������������(||������������������ℎ−������������������������||2)������(||������������������ℎ−������������������������||2)
图4 3. 图像分割的细节图片如图 5 所示:
图5
实验小结
根据 mean-shift 算法原理,通过对聚类中心的不断迭代,从而找到相近的类,达到分割 的目的。通过这次实验,进一步理解了图像分割的含义,也充分体现了 mean-shift 算法在图 像分割中的应用。
参考文献
【1】 【2】 【3】
Mean-shift 跟踪算法中核函数窗宽的自动选取——彭宁嵩 杨杰 刘志 张凤超——软 件学报——2005,16(9) Mean-shift 算法的收敛性分析——刘志强 蔡自兴——《《软件学报》》——2007,18 (2) 基于分级 mean-shift 的图像分割算法——汤杨 潘志庚 汤敏 王平安 夏德深
计算机视觉实验三
——利用 mean-shift 进行图像分割
算法简介
mean-shift 是一种非参数概率密度估计的方法。通过有限次的迭代过程,Parzen 窗定义 的概率密度函数能够快速找到数据分布的模式。由于具有原理简单、无需预处理、参数少等 诸多优点,mean-shift 方法在滤波、目标跟踪、图像分割等领域得到了广泛的应用。

均值偏移算法

均值偏移算法

均值偏移算法1. 概述均值偏移算法(Mean Shift algorithm)是一种非参数化的聚类算法,能够对数据进行自动的聚类分析。

该算法的原理基于密度估计和梯度下降,通过不断迭代的方式找到数据的局部最大密度区域,从而将数据划分成不同的簇。

均值偏移算法在计算机视觉、图像处理以及模式识别等领域都有应用。

2. 均值偏移原理均值偏移算法的核心思想是通过计算样本点与其邻近点之间的距离来寻找密度最大的区域,并将距离小于某个阈值的样本点划分到同一簇中。

具体步骤如下:2.1. 初始化首先,需要初始化聚类中心点。

可以选择从样本中随机选择一些点作为初始的聚类中心。

2.2. 密度估计对于每个聚类中心点,计算它与所有样本点的距离。

可以使用欧氏距离或者其他距离度量方法。

根据距离大小,将样本点按照距离聚类中心点的远近分别分为不同的簇。

2.3. 均值迁移对于每个样本点,计算它距离所属簇其他样本点的中心的平均距离,并将该样本点迁移到距离最近的中心。

重复这一过程,直到所有样本点不再发生迁移。

2.4. 聚类结果经过迭代的均值偏移过程之后,每个样本点都会被分配到一个簇中。

最终的聚类结果即为各个样本点所属的簇。

3. 实例详解下面通过一个实例来详细解释均值偏移算法的工作原理。

假设我们有一组二维数据点,如下所示:[(1, 2), (1.5, 1.8), (5, 8), (8, 8), (1, 0.6), (9, 11)]3.1. 初始化我们随机选择两个点作为初始的聚类中心,比如选择(1, 2)和(9, 11)。

3.2. 密度估计计算每个样本点与聚类中心的距离:距离中心点(1, 2)的距离:[0, 0.2828, 10.8167, 10.8167, 1.412, 13.6015]距离中心点(9, 11)的距离:[13.6015, 13.193, 4.4721, 1.4142, 11.6619, 0]根据距离的大小,可以将数据分为两个初始簇:初始簇1: [(1, 2), (1.5, 1.8), (1, 0.6)]初始簇2: [(5, 8), (8, 8), (9, 11)]3.3. 均值迁移对于簇1中的样本点(1, 2),计算其与其他样本点的平均距离,并将其迁移到距离最近的中心点。

均值漂移MeanShift

均值漂移MeanShift

均值漂移Mean Shift均值漂移(Mean Shift)00均值漂移是一种有效的统计迭代算法。

均值漂移算法是一种基于密度梯度上升的非参数方法,通过迭代运算找到目标位置,实现目标跟踪。

它显著的优点是算法计算量小,简单易实现,很适合于实时跟踪场合;但是跟踪小目标和快速移动目标时常常失败,而且在全部遮挡情况下不能自我恢复跟踪。

通过实验提出应用核直方图来计算目标分布,证明了均值漂移算法具有很好的实时性特点。

Mean Shift 简介Mean Shift 这个概念最早是由Fukunaga等人[1]于1975年在一篇关于概率密度梯度函数的估计中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift是一个名词,它指代的是一个向量,但随着Mean Shift理论的发展,Mean Shift的含义也发生了变化,如果我们说Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.然而在以后的很长一段时间内Mean Shift并没有引起人们的注意,直到20年以后,也就是1995年,另外一篇关于Mean Shift的重要文献[2]才发表.在这篇重要的文献中,Yizong Cheng对基本的Mean Shift算法在以下两个方面做了推广,首先Yizong Cheng定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同,其次Yizong Cheng还设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了Mean Shift的适用范围.另外Yizong Cheng指出了Mean Shift可能应用的领域,并给出了具体的例子.Comaniciu等人[3][4]把Mean Shift成功的运用的特征空间的分析,在图像平滑和图像分割中Mean Shift都得到了很好的应用. Comaniciu等在文章中证明了,Mean Shift算法在满足一定条件下,一定可以收敛到最近的一个概率密度函数的稳态点,因此Mean Shift算法可以用来检测概率密度函数中存在的模态.Comaniciu等人[5]还把非刚体的跟踪问题近似为一个Mean Shift最优化问题,使得跟踪可以实时的进行.在后面的几节,本文将详细的说明Mean Shift的基本思想及其扩展,其背后的物理含义,以及算法步骤,并给出理论证明.最后本文还将给出Mean Shift在聚类,图像平滑,图像分割,物体实时跟踪这几个方面的具体应用.Mean Shift 的基本思想及其扩展基本Mean Shift给定d维空间中的n个样本点,i=1,…,n,在点的Mean Shift向量的基本形式定义为:k表示在这n个样本点中,有k个点落入区域中.我们可以看到是样本点相对于点的偏移向量,(1)式定义的Mean Shift向量就是对落入区域中的k个样本点相对于点的偏移向量求和然后再平均.从直观上看,如果样本点从一个概率密度函数中采样得到,由于非零的概率密度梯度指向概率密度增加最大的方向,因此从平均上来说, 区域内的样本点更多的落在沿着概率密度梯度的方向.因此,对应的, Mean Shift向量应该指向概率密度梯度的方向如上图所示, 大圆圈所圈定的范围就是 ,小圆圈代表落入区域内的样本点,黑点就是Mean Shift的基准点 ,箭头表示样本点相对于基准点的偏移向量,很明显的,我们可以看出,平均的偏移向量会指向样本分布最多的区域,也就是概率密度函数的梯度方向从前面关于Mean Shift和概率密度梯度的关系的论述,我们可以清楚的看到,Mean Shift算法本质上是一个自适应的梯度上升搜索峰值的方法,如下图所示,如果数据集服从概率密度函数f(x),给定一个如图初始点,Mean Shift算法就会一步步的移动,最终收敛到第一个峰值点.从这张图上,我们可以看到Mean Shift至少有如下三方面的应用:(1)聚类,数据集中的每一点都可以作为初始点,分别执行Mean Shift算法,收敛到同一个点算作一类;(2)模态的检测,概率密度函数中的一个峰值就是一个模态,Mean Shift在峰值处收敛,自然可以找到该模态.(3)最优化,Mean Shift可以找到峰值,自然可以作为最优化的方法,Mean Shift算法进行最优化的关键是要把最优化的目标转化成Mean Shift 隐含估计的概率密度函数.[1]The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition (1975)[2]Mean shift, mode seeking, and clustering (1995)[3]Mean Shift: a robust approach toward feature space analysis (2002)[4]Real-time tracking of non-rigid objects using mean shift (2000)[5]Mean-shift Blob Tracking through Scale Space (2003)[6]An algorithm for data-driven bandwidth selection(2003) 从直观上看,如果样本点从一个概率密度函数中采样得到,由于非零的概率密度梯度指向概率密度增加最大的方向,因此从平均上来说, 区域内的样本点更多的落在沿着概率密度梯度的方向.因此,对应的, Mean Shift向量应该指向概率密度梯度的方向。

mean-shift算法公式

mean-shift算法公式

mean-shift算法公式Mean-shift算法是一种无参聚类算法,常用于图像分割、目标跟踪和模式识别等领域。

本文将详细介绍mean-shift算法的原理、公式和实际应用场景。

一、原理Mean-shift算法的核心思想是密度估计和质心漂移。

它基于高斯核函数,通过不断更新质心,最终将数据点分为不同的簇。

具体而言,我们要对每个数据点x_i进行密度估计,将其周围的点加权后求和得到密度估计值f(x_i)。

给定一个初始质心x_c,我们通过以下公式计算新质心x_c’:x_c' = \frac{\sum_{x_i \in B(x_c,r)} w(x_i) \times x_i}{\sum_{x_i \in B(x_c,r)} w(x_i)}B(x_c,r)表示以x_c为圆心,半径为r的区域,w(x_i)为高斯权重系数,可以写作w(x_i) = e ^ {-\frac{(x_i - x_c)^2}{2 \times \sigma^2}}\sigma是高斯核函数的标准差,控制窗口大小和权重降低的速度。

在计算新质心后,我们将其移动到新位置,即x_c = x_c’,然后重复以上步骤,直到质心不再改变或者达到预定的迭代次数为止。

最终,所有距离相近的数据点被归为同一簇。

算法的时间复杂度为O(nr^2),其中n为数据点数量,r为窗口半径。

可以通过调整r和\sigma来平衡速度和准确率。

二、公式1. 高斯核函数w(x_i) = e ^ {-\frac{(x_i - x_c)^2}{2 \times \sigma^2}}其中x_i和x_c是数据点和质心的位置向量,\sigma是高斯核函数的标准差。

该函数表示距离越大的数据点的权重越小,与质心距离越近的数据点的权重越大,因此可以有效估计密度。

2. 新质心计算公式x_c' = \frac{\sum_{x_i \in B(x_c,r)} w(x_i) \times x_i}{\sum_{x_i \in B(x_c,r)} w(x_i)}B(x_c,r)表示以x_c为圆心,半径为r的区域,w(x_i)为高斯权重系数。

meanshif算法简介PPT课件

meanshif算法简介PPT课件
Meanshift算法的概述及其应用
Meanshift的背景
Mean Shift 这个概念最早是由 Fukunaga等人于1975年在一篇关于概率密度梯度函 数的估计中提出来的,其最初含义正如其名,就是偏 移的均值向量。
直到20年以后,也就是1995年,,Yizong Cheng 发表了一篇对均值漂移算法里程碑意义的文章。对 基本的Mean Shift算法在以下两个方面做了改进, 首先Yizong Cheng定义了一族核函数,使得随着样 本与被偏移点的距离不同,其偏移量对均值偏移向 量的贡献也不同,其次Yizong Cheng还设定了一个 权重系数,使得不同的样本点重要性不一样,这大大 扩大了Mean Shift的适用范围.另外Yizong Cheng 指出了Mean Shift可能应用的领域,并给出了具体 的例子。
Mean shift向量的物理意义的什么呢?
为了更好地理解这个式子的物理意义,假设上式中g(x)=1 平均的偏移量会指向样本点最密的方向,也 就是概率密度函数梯度方向
下面我们看一下mean shift算法的步骤
mh x
给定一个初始点x,核函数G(x), 容许误差 ,Mean
Shift算法循环的执行下面三步,直至结束条件满足,

若再考虑到
这个表达式就是基于核函数
的概率密度函数的估计
怎样找到数据集合中数据最密集的地方呢?
数据最密集的地方,对应于概率密度最大的地方。我们可 以对概率密度求梯度,梯度的方向就是概率密度增加最大 的方向,从而也就是数据最密集的方向。
令 的梯度对所有 廓函数,核函数
,假设除了有限个点,轮廓函数
均存在 。将
Meanshift的应用
• Mean Shift可以应用在很多领域,比如聚类,图像平 滑,,图像分割。尤其是应用在目标跟踪领域,其跟踪

meanshift算法原理

meanshift算法原理

meanshift算法原理
MeanShift(均值漂移)是一种非参数化的聚类算法,用于在数据集中发现数据点的密集区域。

它基于密度估计的原理,通过计算数据点的局部密度梯度来寻找数据点的聚集中心。

MeanShift 算法的原理如下:
1. 初始化:为每个数据点选择一个随机的聚集中心。

2. 密度估计:对于每个数据点,计算其与其他数据点之间的距离,并将距离定义为核函数的参数。

常用的核函数是高斯核函数。

3. 均值漂移:对于每个数据点,计算其局部密度梯度向量。

梯度向量的方向是从当前数据点指向密度更高的方向,梯度的大小代表密度的变化程度。

使用梯度向量来更新当前数据点的位置。

4. 更新聚集中心:将数据点移动到更新后的位置,并将其作为新的聚集中心。

5. 重复步骤2-4 直到满足停止条件(例如,聚集中心的移动小于某个阈值)。

MeanShift 算法的特点是不需要事先指定聚类的数量,它能够自动确定聚类的形状和数量。

它具有较好的收敛性和适应性,对于非凸形状的聚类问题也能有效地处理。

在应用中,MeanShift 算法可以用于图像分割、目标跟踪、图像压缩等领域。

它在计算复杂度上较高,但在一些特定的数据集和问题中表现出良好的效果。

meanshift算法简介

Mean shift向量
基于核函数G(x)的 概率密度估计

用核函数G在 x点计算得到的Mean Shift 向量 正比于归一化的用核函数K估计的概率 密度的函数 的梯度,归一化因子为用核函数 G估计的x点的概率密度.因此Mean Shift向量 总是指向概率密度增加最大的方向.
Mean shift向量的物理意义的什么呢?

2ck ,d
n
2

2ck ,d cg ,d 2 d h cg ,d nh
g i 1
n
n x xi 2 xi g 2 h x xi i 1 x n x x 2 h i g h i 1
为了更好地理解这个式子的物理意义,假设上式中g(x)=1
平均的偏移量会指向样本点最密的方向,也 就是概率密度函数梯度方向
下面我们看一下mean shift算法的步骤
mh x
给定一个初始点x,核函数G(x), 容许误差 ,Mean Shift算法 循环的执行下面三步,直至结束条件满足, •计算mh ( x) •把 mh ( x)赋给 x. •如果 mh ( x) x ,结束循环;若不然,继续执行(1)
0 =1,2…..m i=1,2…..m
(5)若
,则停止;否则y ←y1转步骤②。
0
限制条件:新目标中心需位于原目标中 心附近。
Meanshift跟踪结果
• 转word文档。
• Meanshift优缺点: 优点 ①算法复杂度小; ②是无参数算法,易于与其它算法集 成; ③采用加权直方图建模,对目标小角 度旋转、轻微变形和部分遮挡不敏感等。

MeanShift

§5-1Mean Shift 算法Mean Shift 算法是由Fukunaga 和Hosteler 于1975年提出的一种无监督聚类方法[109],Mean Shift 的含义是均值偏移向量,它使每一个点“漂移”到密度函数的局部极大值点。

但是再提出之初,Mean Shift 算法并没有得到广泛的重视,直到1995年,Cheng 等人对该算法进行了进一步的研究[110],提出了一般的表达形式并定义了一族核函数,从而扩展了该算法的应用领域,此后Mean Shift 算法逐步得到了人们的重视。

目前,Mean Shift 算法已广泛应用于目标跟踪[111~114]、图像分割与平滑[115~118]等领域,同时由于该算法具有简洁、能够处理目标变形等优点,也是目前目标跟踪领域的一个重要研究热点。

5-1-1 Mean Shift 算法原理Mean Shift 算法是一种基于密度梯度的无参数估计方法,从空间任意一点,沿核密度的梯度上升方向,以自适应的步长进行搜索,最终可以收敛于核密度估计函数的局部极大值处。

基本的Mean Shift 算法可以描述为:设{}()1,,i x i n = 为d 维空间R d 中含有n 个样本点的集合,在点x 处的均值偏移向量的基本形式可以由式(5.1)表示:1()()hh ix S M x xx k∈=-∑ (5.1)其中,S h 是R d 中满足式(5.2)的所有y 点集合,其形状为一个半径为h 的高维球区域。

k 为所有n 个样本点中属于高维球区域的点的数目。

(x i -x )为样本点相对于点x 的偏移向量。

根据式(5.1)的定义可知,点x 的均值偏移向量就是所有属于S h 区域中的样本点与点x 的偏移向量均值,而S h 区域中的样本点大多数是沿着概率密度梯度的方向,所以均值漂移向量的方向与概率密度梯度方向一致,图5.1为具体的示意图。

{}2():()()Th S x y y x y x h=--≤ (5.2)图5.1 Mean Shift 示意图 Fig.5.1 Mean Shift sketch map根据式(5.1)和图5.1可以看出,所有属于区域S h 中的样本点对于点x 的均值漂移向量贡献度相同,而与这些点与点x 间的距离无关。

meanshift算法学习笔记一

Mean shift算法学习周记一我所认知的什么是mean shift算法Mean Shift算法本质上是最优化理论中的最速下降法(亦称梯度下降法,牛顿法等),即沿着梯度下降方法寻找目标函数的极值。

在跟踪中,就是为了寻找到相似度值最大的候选目标位置。

Mean shift算法的基本思想从初始目标区域提取的特征,对于下一个的视频而言,其上任意位置都可以圈定出一个与初始化目标区域相同大小的区域,并提取该区域的颜色直方图特征与初始化目标区域提取的颜色直方图特征进行匹配,计算得到两个特征之间的相似度。

由此,可以得到一个由特征匹配程度构成的一个相似度概率密度分布图我们真正需要寻找的就是该概率密度分布图上的最大值(与初始目标特征最相似的位置)。

Mean Shift方法就是沿着概率密度的梯度方向进行迭代移动,最终达到密度分布的最值位置。

其迭代过程本质上是的最速下降法,下降方向为一阶梯度方向,步长为固定值。

但是,Mean Shift没有直接求取下降方向和步长,它通过模型的相似度匹配函数的一阶Talor展开式进行近似,直接推到迭代的下一个位置。

由此,沿着梯度方向不断迭代收敛到目标相似度概率目标分布的局部极大值。

Mean shift算法特点由于在实际中,我们不可能去求取下一帧中所有位置的相似度。

Mean Shift 是在不知道该概率密度分布的条件下,使用迭代过程中每次选定的目标区域的局部密度特征来进行迭代的,因此,它寻找的是目标的局部极大值。

这就导致目标运动过快或背景过于复杂时,迭代寻找的局部极值并不是目标在下一帧中的最佳匹配位置。

另外,Mean Shift作为最速下降法的一种,它的收敛速度并不快,且在接近最优值时,存在锯齿现象。

Mean shift算法的作用及特点(1)因为目标直方图具有特征稳定,抗部分遮挡,计算方法简单和计算量小的特点。

所以基于Mean Shift 的跟踪一般采用直方图对目标进行建模,然后通过相似度量,最终实现目标的匹配和跟踪。

饱和模型与非饱和模型的比较论文素材

饱和模型与非饱和模型的比较论文素材饱和模型与非饱和模型的比较引言:在计算机视觉领域,图像分割是一个重要的研究方向。

其中,饱和模型和非饱和模型是两种常用的图像分割方法。

本文将对饱和模型和非饱和模型进行比较,探讨它们在图像分割中的优劣势。

一、饱和模型概述:饱和模型是一种基于像素相似度的图像分割方法。

其基本思想是将图像中相似度高的像素划分到同一区域,从而实现对图像的分割。

饱和模型常用的算法有Mean-Shift算法和基于区域的分割算法。

1.1 Mean-Shift算法:Mean-Shift算法是一种迭代算法,其核心思想是通过计算像素的梯度方向来寻找局部最大梯度,从而确定像素的聚类中心。

算法首先初始化每个像素的聚类中心,然后根据梯度方向进行迭代更新,直到达到收敛条件。

1.2 基于区域的分割算法:基于区域的分割算法主要通过定义像素的邻域关系来实现图像的分割。

常用的算法有平均漂移算法和区域生长算法。

平均漂移算法通过计算像素的颜色和空间距离来确定局部最大梯度,从而实现分割。

区域生长算法则是通过相似度度量来合并相邻区域,直到达到分割目标。

非饱和模型是一种基于能量最小化的图像分割方法。

其核心思想是通过定义能量函数,并通过最小化能量函数来实现图像的分割。

非饱和模型常用的算法有基于图割的分割算法和基于标记传播的分割算法。

2.1 基于图割的分割算法:基于图割的分割算法通过将图像转化为图论中的图,并定义图上的能量函数来实现图像的分割。

算法通过使用最小割/最大流算法来寻找能量最小的分割结果。

2.2 基于标记传播的分割算法:基于标记传播的分割算法是一种迭代算法,其核心思想是通过标记的传播来实现图像的分割。

算法首先初始化图像的标记,然后通过迭代更新标记,直到达到收敛条件。

三、饱和模型与非饱和模型的比较:饱和模型和非饱和模型在图像分割中都有各自的优劣势。

3.1 饱和模型的优势:(1)计算速度快:饱和模型通常基于像素相似性进行分割,计算速度较快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Bucket data structure Mean shift vector reutilization (medium speed up) Local neighborhood inclusion (high speed up)

18
OPTIMIZATION TECHNIQUES - EVALUATION


Mean shift segmentation is an advanced and vertisale technique for clustering based segmentation
3
MEAN SHIFT ALGORITHM

Kernel density estimation
Kernel density estimation is a non parametric way to estimate the density function of a random variable. It is a popular method for estimating probability density. This is usually called as the Parzen window technique. K(x) : kernel, h: bandwidth parameter (radius), n data point xi , i=1..n in d-dimension space Rd Kernel density estimator for a given set of ddimensional points is
original
15
SAMPLES OF MEAN SHIFT SEGMENTATION
(hs,hr ) = (16,4) (hs,hr ) = (16,16)
(hs,hr ) = (8,4)
16
OPTIMIZATION TECHNIQUES – PROBLEM
According to the mean shift algorithm, the complexity is O(Tn2), the first step needs the most computationally expensive. It means finding the closet neighbors of a point is the most expensive operation of mean shift method The larger of hs , the slower of processing time. It‘s known „multidimensional range searching“ (Mean Shift Based Clustering in High Dimensions: A Texture

For each point xi Choose a search window Compute the mean shift vector m(xit) Repeat till convergence

6
MEAN SHIFT ALGORITHM
7
MEAN SHIFT ALGORITHM
MEAN SHIFT SEGMENTATION
Proseminar "Aufgabenstellungen der Bildanalyse und Mustererkennung„
1
Thu Huong Nguyen Fakultät Informatik – TU Dresden
CONTENTS
பைடு நூலகம்1. 2.
Overview about Mean Shift Segmentation Mean Shift algorithm
o o
Kernel density estimation Kernel
3. 4.
Mean shift segmentation Applications of Mean Shift
o o o

13
SAMPLES OF MEAN SHIFT SEGMENTATION
original (hs,hr ) = (8,4) (hs,hr ) = (8,7)
14
SAMPLES OF MEAN SHIFT SEGMENTATION
(hs,hr ) = (8,8) (hs,hr ) = (8,7)

Classification Example.)
17
OPTIMIZATION TECHNIQUES - SOLUTIONS
Speed up the computation of mean shift vector Decrease the number of mean shift vector Combination both ----------oOo--------- In „Mean Shift Segmentation Evaluation of Optimization Techniques“ proposed 3 optimization techniques
is in the gradient direction at x of the density estimate using H
1 2 3
9
MEAN SHIFT ALGORITHM

The most popularly kernel is Gaussian kernel

And their shadows SK(x) = K(x)
is called Mean shift vector (or sample mean shift)
5
MEAN SHIFT ALGORITHM
The mean shift vector computed with kernel G is proportional to the normalized density gradient estimate obtained with the kernel K The mean shift algorithm seeks a mode or local maximum of density of a given distribution Mean shift can be sumed up like this

12
MEAN SHIFT SEGMENTATION

Parameter of mean shift segmentation
hs : Spatial resolution parameter Affects the smoothing, connectivity of segments Chosen depending on the size of the image, objects hr : Range resolution parameter Affects the number of segments Should be kept low if contrast is low M : Size of smallest segment Should be chosen based on size of noisy patches
10
MEAN SHIFT ALGORITHM

Epanechikov kernel

E(x) = 3∕4 (1 – x2) if |x| ≤ 1 0 else

and its shadow SE(x) = E(x)
11
MEAN SHIFT SEGMENTATION
An advanced and versatile technique for clustering-based segmentation Let {xi} i=1…n be the original image points, {zi} i=1… n the points of convergence, and {Li} i=1…n a set of labels Mean Shift Segmentation

For each i = 1…n run the mean shift procedure for xi and store the convergence point in zi . Identify clusters {Cp} p=1…m of convergence points by linking together all zi which are closer than 0,5 from each other in the joint domain. For each i = 1…n assign Li = {p | zi ϵ Cp}. Optional: Eliminate spatial regions smaller than M pixels.

4
MEAN SHIFT ALGORITHM

The estimate of the density gradient is defined as the gradient of the kernel density estimate
Setting it to 0 and define g(x) = -K‘(x) we have
Clustering Filtering Visual tracking
2
5.
Conclusions
OVERVIEW ABOUT MEAN SHIFT SEGMENTATION

What is Mean Shift ?
For each data point, mean shift defines a window around it and computes the mean of data point. Then it shifts the center of window to the mean and repeats the algorithm till it convergens Mean shift is a nonparametric iterative algorithm or a nonparametric density gradient estimation using a generalized kernel approach Mean shift is the most powerful clustering technique Mean shift is used for image segmentation, clustering, visual tracking, space analysis, mode seeking ...
相关文档
最新文档